
Sergey Konstantinov
The API



This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International
License.

http://creativecommons.org/licenses/by-nc/4.0/


Introduction

Chapter 1. On the Structure of This Book

The book you're holding in your hands comprises this
Introduction and three large sections.

In Section I we'll descuss designing the API as a concept:
how to build the architecture properly, from a high-level
planning down to �nal interfaces.

Section II is dedicated to API's lifecycle: how interfaces
evolve over time, and how to elaborate the product to
match users' needs.

Finally, Section III is more about un-engineering sides of
the API, like API marketing, organizing support, and
working with a community.

First two sections are the most interesting to engineers,
while third section is being more relevant to both
engineers and product managers. But we insist that this
section is the most important for the API software
developer. Since API is the product for engineers, you
cannot simply pronounce non-engineering team



responsible for its product planning and support. Nobody
but you understands more what product features your API
is capable of.

Let's start.



Chapter 2. The API De�nition

Before we start talking about the API design, we need to
explicitly de�ne what the API is. Encyclopedia tells us that
API is an acronym for ‘Application Program Interface’. This
de�nition is �ne, but useless. Much like ‘Man’ de�nition by
Plato: Man stood upright on two legs without feathers.
This de�nition is �ne again, but it gives us no
understanding what's so important about a Man. (Actually,
not ‘�ne’ either. Diogenes of Sinope once brought a
plucked chicken, saying ‘That's Plato's Man’. And Plato had
to add ‘with broad nails’ to his de�nition.)

What API means apart from formal de�nition?

You're possibly reading this book using a Web browser. To
make the browser display this page correctly, a bunch of
stuff must work correctly: parsing the URL according to the
speci�cation; DNS service; TLS handshake protocol;
transmitting the data over HTTP protocol; HTML
document parsing; CSS document parsing; correct
HTML+CSS rendering.

But those are just a tip of an iceberg. To make HTTP
protocol work you need the entire network stack
(comprising 4-5 or even more different level protocols)



work correctly. HTML document parsing is being
performed according to hundreds of different
speci�cations. Document rendering calls the underlying
operating system API, or even directly graphical processor
API. And so on: down to contemporary CISC processor
commands implemented on top of microcommands API.

In other words, hundreds or even thousands of different
APIs must work correctly to make possible basic actions
like viewing a webpage. Contemporary internet
technologies simply couldn't exist without these tons of
API working �ne.

An API is an obligation. A formal obligation to connect
different programmable contexts.

When I'm asked of an example of a well-designed API, I
usually show the picture of a Roman viaduct:

it interconnects two areas;
backwards compatibility broken zero times in two
thousand years.

What differs a Roman viaduct from a good API is that an
API presumes a contract being programmable. To connect
two areas some coding is needed. The goal of this book is



to help you in designing APIs which serve their purposes as
solidly as a Roman viaduct does.

A viaduct also illustrates another problem of the API
design: your customers are engineers themselves. You are
not supplying water to end-users: suppliers are plugging to
you engineering structure, building their own pipe system
upon it. From one side, you may provide water access to
much more people through them, not your spending time
on plugging each individual house to your network. But
from other side, you can't control the quality of suppliers'
solutions, and you are to be blamed on every time there is a
water problem caused by their incompetence.

That's why designing the API implies a larger area of
responsibilities. API is a multiplier to both your
opportunities and mistakes.



Chapter 3. API Quality Criteria

Before we start laying out the recommendations, we ought
to specify what API we consider ‘�ne’, and what's the pro�t
of having a ‘�ne’ API.

Let's discuss second question �rst. Obviously, API ‘�nesse’
is �rst of all de�ned through its capability to solve
developers' problems. (One may reasonably say that
solving developers' problem might not be the main purpose
of offering the API of ours to developers. However,
manipulating public opinion is out of this book's author
interest. Here we assume that APIs exist primarily to help
developers in solving their problems, not for some other
covertly declared purposes.)

So, how API design might help the developers? Quite
simple: well-designed API must solve their problems in the
most ef�cient and comprehensible manner. Distance from
formulating the task to writing working code must be as
short as possible. Among other things, it means that:

it must be totally obvious out of your API's structure
how to solve a task; ideally, developers at �rst glance
should be able to understand, what entities are meant
to solve their problem;



the API must be readable; ideally, developers write
correct code after just looking at method nomenclature,
never bothering about details (especially API
implementation details!); it also also very important to
mention, that not only problem solution should be
obvious, but also possible errors and exceptions;
the API must be consistent; while developing new
functionality (i.e. while using unknown new API
entities) developers may write new code similar to the
code they already wrote using known API concepts, and
this new code will work.

However static convenience and clarity of APIs is a simple
part. After all, nobody seeks for making an API deliberately
irrational and unreadable. When we are developing an API,
we always start with clear basic concepts. While possessing
some experience in designing APIs it's quite hard to make
an API core which fails to meet obviousness, readability,
and consistency criteria.

Problems begin we we start to expand our API. Adding new
functionality sooner or later result in transforming once
plain and simple API into a mess of con�icting concepts,
and our efforts to maintain backwards compatibility lead to
illogical, unobvious and simply bad design solutions. It is
partly related to an inability to predict future completely:
your understanding of ‘�ne’ APIs will change over time,



both in objective terms (what problems the API is to solve
and what are the best practices) and in subjective ones too
(what obviousness, readability and consistency really
means regarding your API).

Principles we are explaining below are speci�cally oriented
to make APIs evolve smoothly over time, not being turned
into a pile of mixed inconsistent interfaces. It is crucial to
understand that this approach isn't free: a necessity to bear
in mind all possible extension variants and keep essential
growth points mean interface redundancy and possibly
excessing abstractions being embedded in the API design.
Besides both make developers' work harder. Providing
excess design complexities being reserved for future use
makes sense only when this future actually exists for your
API. Otherwise it's simply an overengineering.



Chapter 4. Backwards Compatibility

Backwards compatibility is a temporal characteristics of
your API. An obligation to maintain backwards
compatibility is the crucial point where API developments
differs form software development in general.

Of course, backwards compatibility isn't an absolute. In
some subject areas shipping new backwards incompatible
API versions is a routine. Nevertheless, every time you
deploy new backwards incompatible API version, the
developers need to make some non-zero effort to adapt
their code to the new API version. In this sense, releasing
new API versions puts a sort of a ‘tax’ on customers. They
must spend quite real money just to make sure they
product continue working.

Of course, large companies which occupy �rm market
positions could afford implying such a taxation.
Furthermore, they may introduce penalties for those who
refuse to adapt their code to new API versions, up to
disabling their applications.

From our point of view such practice cannot be justi�ed.
Avoid implying hidden taxes on your customers. If you're



able to avoid breaking backwards compatibility — never
break it.

Of course, maintaining old API versions is sort of a tax too.
Technology changes, and you cannot foresee everything,
regardless of how nice your API is designed initially. At
some point keeping old API versions result in an inability
to provide new functionality and support new platforms,
and you will be forced to release new version. But at least
you will be able to explain to your customers why they
need to make an effort.

We will discuss API lifecycle and version policies in Section
II.



The API Design


