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INTRODUCTION

Chapter 1. On the Structure of This Book

The book you're holding in your hands is dedicated to developing APIs as a separate
engineering task. Although many concepts we're going to discuss apply to any type
of software, our primary goal is to describe those problems and approaches to
solving them that are most relevant in the context of the API subject area.

We expect that the reader possesses expertise in software engineering, so we do not
provide detailed definitions and explanations of the terms that a developer should
already be familiar with in our understanding. Without this knowledge, it will be
rather uncomfortable to read the last section of the book (and even more so, other
sections). We sincerely apologize for this but that's the only way of writing the book
without tripling its size.

The book comprises the Introduction and six large sections. The first three (namely,
“The API Design”, “The API Patterns”, and “The Backward Compatibility”) are fully
abstract and not bound to any concrete technology. We hope they will help those
readers who seek to build a systematic understanding of the API architecture in
developing complex interface hierarchies. The proposed approach, as we see it,
allows for designing APIs from start to finish, from a raw idea to concrete
implementation.

The fourth and fifth sections are dedicated to specific technologies, namely
developing HTTP APIs (in the “REST paradigm”) and SDKs (we will mostly talk
about UI component libraries).

Finally, in the sixth section, which is the least technical of all, we will discuss APIs
as products and focus on non-engineering aspects of the API lifecycle: doing market
research, positioning the service, communicating to consumers, setting KPIs for the
team, etc. We insist that the last section is equally important to both PMs and
software engineers as products for developers thrive only if the product and
technical teams work jointly on them.

Let's start.



Chapter 2. The API Definition

Before we start talking about the API design, we need to explicitly define what the
API is. Encyclopedias tell us that “API” is an acronym for “Application Program
Interface.” This definition is fine but useless, much like the “Man” definition by
Plato: “Man stands upright on two legs without feathers.” This definition is fine
again, but it gives us no understanding of what's so important about a Man.
(Actually, it's not even “fine”: Diogenes of Sinope once brought a plucked chicken,
saying “That's Plato's Man.” And Plato had to add “with broad nails” to his
definition.)

What does the API mean apart from the formal definition?

You're possibly reading this book using a Web browser. To make the browser display
this page correctly, a bunch of things must work correctly: parsing the URL
according to the specification, the DNS service, the TLS handshake protocol,
transmitting the data over the HTTP protocol, HTML document parsing, CSS
document parsing, correct HTML+CSS rendering, and so on and so forth.

But those are just the tip of the iceberg. To make the HTTP protocol work you need
the entire network stack (comprising 4-5 or even more different level protocols) to
work correctly. HTML document parsing is performed according to hundreds of
different specifications. Document rendering operations call the underlying
operating system APIs, or even directly graphical processor APIs. And so on, down
to modern CISC processor commands that are implemented on top of the API of
microcommands.

In other words, hundreds or even thousands of different APIs must work correctly
to make basic actions possible such as viewing a webpage. Modern Internet
technologies simply couldn't exist without these tons of APIs working fine.

An API is an obligation. A formal obligation to connect different programmable
contexts.

When I'm asked for an example of a well-designed API, I usually show a picture of a
Roman aqueduct:



e Itinterconnects two areas

e Backward compatibility has not been broken even once in two thousand
years.

What differs between a Roman aqueduct and a good API is that in the case of APIs,
the contract is presumed to be programmable. To connect the two areas, writing some
code is needed. The goal of this book is to help you design APIs that serve their
purposes as solidly as a Roman aqueduct does.

An aqueduct also illustrates another problem with the API design: your customers
are engineers themselves. You are not supplying water to end-users. Suppliers are
plugging their pipes into your engineering structure, building their own structures
upon it. On the one hand, you may provide access to water to many more people
through them, not spending your time plugging each individual house into your
network. On the other hand, you can't control the quality of suppliers' solutions,
and you are to blame every time there is a water problem caused by their
incompetence.


https://pixabay.com/photos/pont-du-gard-france-aqueduct-bridge-3909998/

That's why designing an API implies a larger area of responsibility. An API is a
multiplier to both your opportunities and your mistakes.



Chapter 3. An Overview of Existing APl Development Solutions

In the first three sections of this book, we aim to discuss API design in general, not
bound to any specific technology. The concepts we describe are equally applicable
to, let's say, web services and operating system (OS) APIs.

Still, two main scenarios dominate the stage when we talk about API development:

¢ Developing client-server applications
¢ Developing client SDKs.

In the first case, we almost universally talk about APIs working atop the HTTP
protocol. Today, the only notable examples of non-HTTP-based client-server
interaction protocols are WebSocket (though it might, and frequently does, work in
conjunction with HTTP), MQTT, and highly specialized APIs like media streaming
and broadcasting formats.

HTTP API

Although the technology looks homogeneous because of using the same
application-level protocol, in reality, there is significant diversity regarding
different approaches to realizing HTTP-based APIs.

First, implementations differ in terms of utilizing HTTP capabilities:

o Either the client-server interaction heavily relies on the features described in
the HTTP standard (or rather standards, as the functionality is split across
several different RFCs), or

e HTTP is used as transport, and there is an additional abstraction level built
upon it (ie., the HTTP capabilities, such as the headers and status codes
nomenclatures, are deliberately reduced to a bare minimum, and all the
metadata is handled by the higher-level protocol).

The APIs that belong to the first category are usually denoted as “REST” or “RESTful”
APIs. The second category comprises mostly protocols for making remote
procedure calls (RPC).

Second, different HTTP APIs rely on different data formats:



e REST APIs and some RPC protocols (such as JSON-RPC?, GraphQL?, etc.) use
the JSON3 format (sometimes with some additional endpoints to transfer
binary data)

* gRPC# and some specialized RPC protocols like Apache AvroS utilize binary
formats (such as Protocol Buffers®, FlatBuffers, or Apache Avro's own format)

e Finally, some RPC protocols (notably SOAP® and XML-RPC9) employ the
XML data format (which is considered a rather outdated practice by many
developers).

All the above-mentioned technologies operate in significantly dissimilar
paradigms, which give rise to rather hot “holy war” debates among software
engineers. However, at the moment this book is being written we observe the choice
for general-purpose APIs is reduced to the “REST API (in fact, JSON-over-HTTP) vs.
gRPC vs. GraphQL” triad.

SDKs

The term “SDK” (stands for “Software Development Kit”) is not, strictly speaking,
related to APIs: this is a generic term for a software toolkit. As with “REST,
however, it got some popular reading as a client framework to work with some
underlying API. This might be, for example, a wrapper to a client-server API or a Ul
to some OS API. The major difference from the APIs we discussed in the previous
paragraph is that an “SDK” is implemented for a specific programming language
and platform to work with some underlying low-level API.

Unlike client-server APIs, such SDKs can hardly be generalized as each of them is
developed for a specific language-platform pair. Interoperable SDKs exist, notably
cross-platform mobile (React Native', Flutter'?, Xamarin'3, etc.) and desktop
(JavaFX'4, QT'S, etc.) frameworks and some highly-specialized solutions (Unity').
However, they are still narrowly focused on concrete technologies.

Still, SDKs feature some generality in terms of the problems they solve, and Section V
of this book will be dedicated to solving these problems of translating contexts and
making Ul components.
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Chapter 4. API Quality Criteria

Before we start laying out the recommendations, we ought to specify what API we
consider “fine,” and what the benefits of having a “fine” API are.

Let's discuss the second question first. Obviously, API “finesse” is primarily defined
through its capability to solve developers' and users' problems. (One could
reasonably argue that solving problems might not be the main purpose of offering
an API to developers. However, manipulating public opinion is not of interest to the
author of this book. Here we assume that APIs exist primarily to help people, not
for some other covertly declared purposes.)

So, how might a “fine” API design assist developers in solving their (and their users')
problems? Quite simply: a well-designed API allows developers to do their jobs in
the most efficient and convenient manner. The distance from formulating a task to
writing working code must be as short as possible. Among other things, this means
that:

¢ It must be totally obvious from your API's structure how to solve a task:

o Ideally, developers should be able to understand at first glance, what
entities are meant to solve their problem

¢ The API must be readable:

o Ideally, developers should be able to write correct code after just
looking at the methods' nomenclature, never bothering about details
(especially API implementation details!)

o It is also essential to mention that not only should the problem
solution (the “happy path”) be obvious, but also possible errors and
exceptions (the “unhappy path”)

e The API must be consistent:

o While developing new functionality (i.e., while using previously
unknown API entities) developers may write new code similar to the
code they have already written using the known API concepts, and this
new code will work.

However, the static convenience and clarity of APIs are simple parts. After all,
nobody seeks to make an API deliberately irrational and unreadable. When we
develop an API, we always start with clear basic concepts. Providing you have some
experience in APIs, it's quite hard to make an API core that fails to meet
obviousness, readability, and consistency criteria.



Problems begin when we start to expand our API. Adding new functionality sooner
or later results in transforming once plain and simple API into a mess of conflicting
concepts, and our efforts to maintain backward compatibility will lead to illogical,
unobvious, and simply bad design solutions. It is partly related to an inability to
predict the future in detail: your understanding of “fine” APIs will change over time,
both in objective terms (what problems the API is to solve, and what is best practice)
and in subjective terms too (what obviousness, readability, and consistency really
mean to your API design).

The principles we are explaining below are specifically oriented towards making
APIs evolve smoothly over time, without being turned into a pile of mixed
inconsistent interfaces. It is crucial to understand that this approach isn't free: the
necessity to bear in mind all possible extension variants and to preserve essential
growth points means interface redundancy and possibly excessive abstractions
being embedded in the API design. Besides, both make the developers' jobs harder.
Providing excess design complexities being reserved for future use makes sense
only if this future actually exists for your APIL Otherwise, it's simply
overengineering.



Chapter 5. The API-First Approach

Today, more and more IT companies are recognizing the importance of the “API-
first” approach, which is the paradigm of developing software with a heavy focus on
APIs.

However, we must differentiate between the product concept of the API-first
approach and the technical one.

The former means that the first (and sometimes the only) step in developing a
service is creating an API for it, and we will discuss it in “The API Product” section
of this book.

If we talk about the API-first approach in a technical sense, we mean the following:
the contract, i.e. the obligation to connect two programmable contexts, precedes the
implementation and defines it. More specifically, two rules must be respected:

e The contract is developed and committed to in the form of a specification
before the functionality is implemented.

e If it turns out that the implementation and the contract differ, the
implementation is to be fixed, not the contract.

The “specification” in this context is a formal machine-readable description of the
contract in one of the interface definition languages (IDL) — for example, in the
form of a Swagger/OpenAPI document or a .proto file.

Both rules assert that partner developers' interests are given the highest priority:

e Rule #1 allows partners to write code based on the specification without
coordinating the process with the API provider:

o The possibility of auto-generating code based on the specification
emerges, which might make development significantly less complex
and error-prone or even automate it

o The code might be developed without having access to the API.

e Rule #2 means partners won't need to change their implementations should
some inconsistencies between the specification and the API functionality
arise.



Therefore, for your API consumers, the API-first approach is a guarantee of a kind.
However, it only works if the API was initially well-designed. If some irreparable
flaws in the specification surface, we would have no other option but to break rule
#2.



Chapter 6. On Backward Compatibility

Backward compatibility is a temporal characteristic of an API. The obligation to
maintain backward compatibility is the crucial point where API development
differs from software development in general.

Of course, backward compatibility isn't absolute. In some subject areas shipping
new backward-incompatible API versions is routine. Nevertheless, every time a
new backward-incompatible API version is deployed, developers need to make
some non-zero effort to adapt their code to the new version. In this sense, releasing
new API versions puts a sort of “tax” on customers who must spend quite real
money just to ensure their product continues working.

Large companies that occupy solid market positions could afford to charge such a
tax. Furthermore, they may introduce penalties for those who refuse to adapt their
code to new API versions, up to disabling their applications.

From our point of view, such a practice cannot be justified. Don't impose hidden
levies on your customers. If you can avoid breaking backward compatibility, never
break it.

Of course, maintaining old API versions is a sort of tax as well. Technology changes,
and you cannot foresee everything, regardless of how nicely your API is initially
designed. At some point keeping old API versions results in an inability to provide
new functionality and support new platforms, and you will be forced to release a
new version. But at least you will be able to explain to your customers why they
need to make an effort.

We will discuss API lifecycle and version policies in Section II.



Chapter 7. On Versioning

Here and throughout this book, we firmly adhere to the Semantic Versioning
(semver)! principles:

1. APl versions are denoted with three numbers, e.g., 1.2.3.

2. The first number (a major version) increases when backward-incompatible
changes in the API are introduced.

3.The second number (a minor version) increases when new functionality is
added to the API while keeping backward compatibility intact.

4.The third number (a patch) increases when a new API version contains bug
fixes only.

The sentences “a major API version” and “a new API version, containing backward-
incompatible changes” are considered equivalent.

It is usually (though not necessary) agreed that the last stable API release might be
referenced by either a full version (e.g., 1.2.3) or a reduced one (1.2 or just 1). Some
systems support more sophisticated schemes for defining the desired version (for
example, ~1.2.3 reads like “get the last stable API release that is backward-
compatible to the 1.2.3 version”) or additional shortcuts (for example, 1.2-beta to
refer to the last beta release of the 1.2 API version family). In this book, we will
mostly use designations like v1 (v2, v3, etc.) to denote the latest stable release of the
1.x.x version family of an API

The practical meaning of this versioning system and the applicable policies will be
discussed in more detail in the “Backward Compatibility Problem Statement”
chapter.
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Chapter 8. Terms and Notation Keys

Software development is characterized, among other things, by the existence of
many different engineering paradigms, whose adherents are sometimes quite
aggressive towards other paradigms' adherents. While writing this book, we are
deliberately avoiding using terms like “method,” “object,” “function,” and so on,
using the neutral term “entity” instead. “Entity” means some atomic functionality
unit, like a class, method, object, monad, prototype (underline what you think is
right).

As for an entity's components, we regretfully failed to find a proper term, so we will
use the words “fields” and “methods.”

Most of the examples of APIs will be provided in the form of JSON-over-HTTP
endpoints. This is some sort of notation that, as we see it, helps to describe concepts
in the most comprehensible manner. A GET /v1/orders endpoint call could easily
be replaced with an orders.get() method call, local or remote; JSON could easily be
replaced with any other data format. The semantics of statements shouldn't change.

Let's take a look at the following example:



// Method description

POST /v1/bucket/{id}/some-resourced
/{resource_id}

X-Idempotency-Token: <idempotency token>

{

// This is a single-line comment

"some_parameter": "example value",

}
- 404 Not Found
Cache-Control: no-cache
{
/* And this is
a multiline comment */
"error_reason",
"error_message":
"Long error message<
that will span several¢

lines”

It should be read like this:

e A client performs a POST request to a /vi/bucket/{id}/some-resource
resource, where {id} is to be replaced with some bucket's identifier
({something} notation refers to the nearest term from the left unless explicitly
specified otherwise).

e A specific X-Idempotency-Token header is added to the request alongside
standard headers (which we omit).

e Terms in angle brackets (<idempotency token>) describe the semantics of an
entity value (field, header, parameter).

e A specific JSON, containing a some_parameter field and some other
unspecified fields (indicated by ellipsis) is being sent as a request body
payload.

¢ In response (marked with an arrow symbol -) the server returns a 464 Not
Found status code; the status might be omitted (treat it like a 260 0K if no
status is provided).



e The response could possibly contain additional notable headers.

e The response body is a JSON comprising two fields: error_reason and
error_message. Absence of a value means that the field contains exactly what
you expect it should contain — so there is some generic error reason value
which we omitted.

¢ Ifsome token is too long to fit on a single line, we will split it into several lines
adding « to indicate it continues next line.

The term “client” here stands for an application being executed on a user's device,
either a native or a web one. The terms “agent” and “user agent” are synonymous
with “client.”

Some request and response parts might be omitted if they are irrelevant to the topic
being discussed.

Simplified notation might be used to avoid redundancies, like POST /some-resource
{.., "some_parameter"”, .} — { "operation_id" }; request and response bodies
might also be omitted.

We will use sentences like “POST /v1/bucket/{id}/some-resource method” (or

"«

simply “bucket/some-resource method,” “some-resource” method — if there are no
other some-resources in the chapter, so there is no ambiguity) to refer to such

endpoint definitions.

Apart from HTTP API notation, we will employ C-style pseudocode, or, to be more
precise, JavaScript-like or Python-like one since types are omitted. We assume such
imperative structures are readable enough to skip detailed grammar explanations.
HTTP API-like samples intend to illustrate the contract, i.e., how we would design an
API. Samples in pseudocode are intended to illustrate how developers might work
with the APIin their code, or how we would implement SDKs based on the contract.



SECTION I. THE API DESIGN

Chapter 9. The API Contexts Pyramid

The approach we use to design APIs comprises four steps:

¢ Defining an application field
e Separating abstraction levels
¢ Isolating responsibility areas
e Describing final interfaces.

This four-step algorithm actually builds an API from top to bottom, from common
requirements and use case scenarios down to a refined nomenclature of entities. In
fact, moving this way will eventually conclude with a ready-to-use API, and that's
why we value this approach highly.

It might seem that the most useful pieces of advice are given in the last chapter, but
that's not true. The cost of a mistake made at certain levels differs. Fixing the
naming is simple; revising the wrong understanding of what the API stands for is
practically impossible.

NB: Here and throughout we will illustrate the API design concepts using a
hypothetical example of an API that allows ordering a cup of coffee in city cafes.
Just in case: this example is totally synthetic. If we were to design such an API in the
real world, it would probably have very little in common with our fictional example.



Chapter 10. Defining an Application Field

The key question you should ask yourself before starting to develop any software
product, including an API, is: what problem do we solve? It should be asked four
times, each time putting emphasis on a different word.

1. What problem do we solve? Could we clearly outline the situation in which
our hypothetical API is needed by developers?

2. What problem do we solve? Are we sure that the abovementioned situation
poses a problem? Does someone really want to pay (literally or figuratively)
to automate a solution for this problem?

3. What problem do we solve? Do we actually possess the expertise to solve the
problem?

4. What problem do we solve? Is it true that the solution we propose solves the
problem indeed? Aren't we creating another problem instead?

So, let's imagine that we are going to develop an API for automated coffee ordering
in city cafes, and let's apply the key question to it.

1. Why would someone need an API to make coffee? Why is ordering coffee via
“human-to-human” or “human-to-machine” interfaces inconvenient? Why
have a “machine-to-machine” interface?

o Possibly, we're solving awareness and selection problems? To provide
humans with full knowledge of what options they have right now and
right here.

o Possibly, we're optimizing waiting times? To save the time people
waste while waiting for their beverages.

o Possibly, we're reducing the number of errors? To help people get
exactly what they wanted to order, stop losing information in
imprecise conversational communication, or in dealing with
unfamiliar coffee machine interfaces?

The “why” question is the most important of all questions you must ask
yourself. And not only about global project goals but also locally about every
single piece of functionality. If you can't briefly and clearly answer the
question “what this entity is needed for” then it's not needed.



Here and throughout we assume, to make our example more complex and
bizarre, that we are optimizing all three factors.

2.Do the problems we outlined really exist? Do we really observe unequal
coffee-machine utilization in the mornings? Do people really suffer from the
inability to find nearby a toffee nut latte they long for? Do they really care
about the minutes they spend in lines?

3. Do we actually have resources to solve the problem? Do we have access to a
sufficient number of coffee machines and users to ensure the system's
efficiency?

4. Finally, will we really solve a problem? How are we going to quantify the
impact our API makes?

In general, there are no simple answers to those questions. Ideally, you should start
the work with all the relevant metrics measured: how much time is wasted exactly,
and what numbers will we achieve providing we have such a coffee machine
density. Let us also stress that in the real world obtaining these numbers is only
possible if you're entering a stable market. If you try to create something new, your
only option is to rely on your intuition.

Why an API?

Since our book is dedicated not to software development per se, but to developing
APIs, we should look at all those questions from a different angle: why does solving
those problems specifically require an API, not simply a specialized software
application? In terms of our fictional example, we should ask ourselves: why
provide a service to developers that allows for brewing coffee for end users instead
of just making an app?

In other words, there must be a solid reason to split two software development
domains: there are vendors that provide APIs, and there are vendors that develop
services for end users. Their interests are somehow different to such an extent that
coupling these two roles in one entity is undesirable. We will talk about the
motivation to specifically provide APIs instead of apps (or as an addition to an app)
in more detail in Section III.

We should also note that you should try making an API when, and only when, your
answer to question (3) is “because that's our area of expertise.” Developing APIs is a
sort of meta-engineering: you're writing some software to allow other vendors to
develop software to solve users' problems. You must possess expertise in both



domains (APIs and user products) to design your API well.

As for our speculative example, let us imagine that in the nearby future, some
tectonic shift happened within the coffee brewing market. Two distinct player
groups took shape: some companies provide “hardware,” i.e., coffee machines; other
companies have access to customer audiences. Something like the modern-day
flights market looks like: there are air companies that actually transport
passengers, and there are trip planning services where users choose between trip
options the system generates for them. We're aggregating hardware access to allow
app vendors to order freshly brewed coffee.

What and How

After finishing all these theoretical exercises, we should proceed directly to
designing and developing the API, having a decent understanding of two things:

o What we're doing exactly
e How we're doing it exactly.

In our coffee case, we are:

e Providing an API to services with a larger audience so that their users may
order a cup of coffee in the most efficient and convenient manner

e Abstracting access to coffee machines' “hardware” and developing
generalized software methods to select a beverage kind and a location to
make an order.



Chapter 11. Separating Abstraction Levels

“Separate abstraction levels in your code” is possibly the most general advice for
software developers. However, we don't think it would be a grave exaggeration to
say that separating abstraction levels is also the most challenging task for API
developers.

Before proceeding to the theory, we should clearly formulate why abstraction levels
are so important, and what goals we're trying to achieve by separating them.

Let us remember that a software product is a medium that connects two distinct
contexts, thus transforming terms and operations belonging to one subject area
into concepts from another area. The more these areas differ, the more interim
connecting links we have to introduce.

Returning to our coffee example, what entity abstraction levels do we see?

1. We're preparing an order via the API — one (or more) cups of coffee — and
receiving payments for this.

2.Each cup of coffee is prepared according to some recipe implying the
presence of various ingredients and sequences of preparation steps.

3.Each beverage is prepared on a physical coffee machine, occupying some
position in space.

Each level presents a developer-facing “facet” in our API. While elaborating on the
hierarchy of abstractions, we are primarily trying to reduce the interconnectivity of
different entities. This would help us to achieve several goals:

1. Simplifying developers' work and the learning curve. At each moment, a
developer is operating only those entities that are necessary for the task
they're solving right now. Conversely, poorly designed isolation leads to
situations where developers have to keep in mind a lot of concepts mostly
unrelated to the task being solved.

2. Preserving backward compatibility. Properly separated abstraction levels
allow for adding new functionality while keeping interfaces intact.

3. Maintaining interoperability. Properly isolated low-level abstractions help us
to adapt the API to different platforms and technologies without changing
high-level entities.



Let's assume we have the following interface:

// Returns the lungo recipe
GET /v1/recipes/lungo

// Posts an order to make a lungo
// using the specified coffee-machine,
// and returns an order identifier
POST /v1/orders
{

"coffee_machine_id",

"recipe": "lungo"

// Returns the order
GET /v1/orders/{id}

Let's consider a question: how exactly should developers determine whether the

order is ready or not? Let's say we do the following:

¢ Add areference beverage volume to the lungo recipe
¢ Add the currently prepared volume of the beverage to the order state.

GET /v1/recipes/lungo

{

"volume": "106ml"




GET /v1/orders/{id}

{

"volume": "86ml"

Then a developer just needs to compare two numbers to find out whether the order
is ready.

This solution intuitively looks bad, and it really is. It violates all the aforementioned
principles.

First, to solve the task “order a lungo” a developer needs to refer to the “recipe”
entity and learn that every recipe has an associated volume. Then they need to
embrace the concept that an order is ready at that particular moment when the
prepared beverage volume becomes equal to the reference one. This concept is
simply unguessable, and knowing it is mostly useless.

Second, we will have automatically got problems if we need to vary the beverage
size. For example, if one day we decide to offer customers a choice of how many
milliliters of lungo they desire exactly, then we have to perform one of the following
tricks.

Option I: we have a list of possible volumes fixed and introduce bogus recipes like
/recipes/small-lungo or recipes/large-lungo. Why “bogus”? Because it's still the
same lungo recipe, same ingredients, same preparation steps, only volumes differ.
We will have to start mass-producing recipes, only different in volume, or introduce
some recipe “inheritance” to be able to specify the “base” recipe and just redefine
the volume.

Option II: we modify an interface, pronouncing volumes stated in recipes are just
the default values. We allow requesting different cup volumes while placing an
order:



POST /v1/orders

{
"coffee_machine_id",
"recipe": "lungo",
"volume": "806ml"

}

For those orders with an arbitrary volume requested, a developer will need to
obtain the requested volume, not from the GET /v1/recipes endpoint, but the GET
/v1/orders one. Doing so we're getting a whole bunch of related problems:

o There is a significant chance that developers will make mistakes in this
functionality implementation if they add arbitrary volume support in the
code working with the POST /vi/orders handler, but forget to make
corresponding changes in the order readiness check code.

e The same field (coffee volume) now means different things in different
interfaces. In the context of the GET /v1/recipes endpoint, the volume field
means “a volume to be prepared if no arbitrary volume is specified in the POST
/v1/orders request”; and it cannot be renamed to “default volume” easily.

So we will get this:

GET /v1/orders/{id}

// this is a currently

// prepared volume, bearing
// the legacy name
"volume": "86ml",

// and this is the volume
// requested by user
"volume_requested": "860ml"




Third, the entire scheme becomes totally inoperable if different types of coffee
machines produce different volumes of lungo. To introduce the “lungo volume
depends on machine type” constraint we have to do quite a nasty thing: make
recipes depend on coffee machine ids. By doing so we start actively “stir”
abstraction levels: one part of our API (recipe endpoints) becomes unusable without
explicit knowledge of another part (coffee machines listing). And what is even
worse, developers will have to change the logic of their apps: previously it was
possible to choose volume first, then a coffee machine; but now this step must be
rebuilt from scratch.

Okay, we understood how to make things naughty. But how to make them nice?

Abstraction levels separation should go in three directions:

1. From user scenarios to their internal representation: high-level entities and
their method nomenclatures must directly reflect the API usage scenarios;
low-level entities reflect the decomposition of the scenarios into smaller
parts.

2.From user to “raw” data subject field terms — in our case from high-level
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terms like “order,” “recipe,” and “café” to low-level terms like “beverage
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temperature,” “coffee machine geographical coordinates,” etc.

3. Finally, from data structures suitable for end users to “raw” data structures —
in our case, from “lungo recipe” and “the "Chamomile" café chain” to the raw
byte data stream from “Good Morning” coffee machine sensors.

The more the distance between programmable contexts our API connects, the
deeper the hierarchy of the entities we are to develop.

In our example with coffee readiness detection, we clearly face the situation when
we need an interim abstraction level:

¢ On one hand, an “order” should not store the data regarding coffee machine
sensors

e On the other hand, a coffee machine should not store the data regarding
order properties (and its API probably doesn't provide such functionality).

A naive approach to this situation is to design an interim abstraction level as a
“connecting link,” which reformulates tasks from one abstraction level into another.
For example, introduce a task entity like that:



"volume_requested"”: "8060ml"
"volume_prepared": "206ml",
"readiness_policy": "check_volume",
"ready": false,
"coffee_machine_id",
"operation_state": {
"status": "executing",
"operations”: [
// description of commands
// being executed on

// a physical coffee machine

So an order entity will keep links to the recipe and the task, thus not dealing with
other abstraction layers directly:

GET /v1/orders/{id}

{
"recipe": "lungo",
"task": {
"id": <task id>
}
}

We call this approach “naive” not because it's wrong; on the contrary, that's quite a
logical “default” solution if you don't know yet (or don't understand yet) how your
API will look like. The problem with this approach lies in its speculativeness: it
doesn't reflect the subject area's organization.



An experienced developer in this case must ask: what options do exist? how should
we really determine the readiness of the beverage? If it turns out that comparing
volumes is the only working method to tell whether the beverage is ready, then all
the speculations above are wrong. You may safely include readiness-by-volume
detection into your interfaces since no other methods exist. Before abstracting
something we need to learn what exactly we're abstracting.

In our example let's assume that we have studied coffee machines' API specs, and
learned that two device types exist:

o Coffee machines capable of executing programs coded in the firmware; the
only customizable options are some beverage parameters, like the desired
volume, a syrup flavor, and a kind of milk

¢ Coffee machines with built-in functions, like “grind specified coffee volume,”
“shed the specified amount of water,” etc.; such coffee machines lack
“preparation programs,” but provide access to commands and sensors.

To be more specific, let's assume those two kinds of coffee machines provide the
following physical API.

e Coffee machines with pre-built programs:

// Returns the list of
// available programs
GET /programs
{
// a program identifier
"program": 1,
// coffee type
"type": "lungo"




// Starts an execution

// of the specified program

// and returns the execution status
POST /execute

"program": 1,
"volume": "206ml"

// A unique identifier

// of the execution
"execution_id": "@1-01",

// An identifier of the program
"program": 1,

// The requested beverage volume
"volume": "206ml"

// Cancels the current program
POST /cancel

// Returns the execution status.

// The response format is the same
// as in the 'POST /execute’ method
GET /execution/{id}/status

NB: This API violates a number of design principles, starting with a lack of
versioning; it's described in such a manner because of two reasons: (I) to
demonstrate how to design a more convenient API, (2) in the real life, you will
really get something like that from vendors, and this API is actually quite a
sane one.

¢ Coffee machines with built-in functions:



// Returns the list of
// available functions
GET /functions

"functions": [

// One of the available

// operation types:

// * set_cup

// * grind_coffee

// * pour_water

// * discard_cup

"type": "set_cup",

// Arguments for the operation:
// * volume — a volume of a cup,
// coffee, or water
"arguments”: ["volume"]

// Takes arguments values
// and starts executing a function
POST /functions

"type": "set_cup",
"arguments”: [{
"name": "volume",
"value": "300ml"
H
}

// Returns the state of the sensors
GET /sensors

"sensors": [

// Possible values:

// * cup_volume

// * ground_coffee_volume
// * cup_filled_volume
"type": "cup_volume",
"value": "200ml"

NB: The example is intentionally fictitious to model the situation described
above: to determine beverage readiness you have to compare the requested
volume with volume sensor readings.



Now the picture becomes more apparent: we need to abstract coffee machine API
calls so that the “execution level” in our API provides general functions (like
beverage readiness detection) in a unified form. We should also note that these two
coffee machine API kinds belong to different abstraction levels themselves: the first
one provides a higher-level API than the second one. Therefore, a “branch” of our
API working with the second-kind machines will be deeper.

The next step in abstraction level separating is determining what functionality
we're abstracting. To do so, we need to understand the tasks developers solve at the
“order” level and learn what problems they face if our interim level is missing.

1. Obviously, the developers desire to create an order uniformly: list high-level
order properties (beverage kind, volume, and special options like syrup or
milk type), and don't think about how the specific coffee machine executes it.

2. Developers must be able to learn the execution state: is the order ready? If
not, when can they expect it to be ready (and is there any sense to wait in case
of execution errors)?

3.Developers need to address the order's location in space and time — to
explain to users where and when they should pick the order up.

4. Finally, developers need to run atomic operations, like canceling orders.

Note, that the first-kind API is much closer to developers' needs than the second-
kind API. An indivisible “program” is a way more convenient concept than working
with raw commands and sensor data. There are only two problems we see in the
first-kind API:

o Absence of explicit “programs” to “recipes” relation. A program identifier is of
no use to developers since there is a “recipe” concept.
e Absence of an explicit “ready” status.

But with the second-kind AP], it's much worse. The main problem we foresee is the
absence of “memory” for actions being executed. The functions and sensors API is
totally stateless, which means we don't even understand who called a function
being currently executed, when, or to what order it relates.

So we need to introduce two abstraction levels.

1. Execution control level, which provides a uniform interface to indivisible
programs. “Uniform interface” means here that, regardless of a coffee
machine's kind, developers may expect:



o Statuses and other high-level execution parameters nomenclature (for
example, estimated preparation time or possible execution errors)
being the same;

o Methods nomenclature (for example, order cancellation method) and
their behavior being the same.

2. Program runtime level. For the first-kind API, it will provide just a wrapper
for existing programs API; for the second-kind API, the entire “runtime”
concept is to be developed from scratch by us.

What does this mean in a practical sense? Developers will still be creating orders,
dealing with high-level entities only:

POST /v1/orders

{
"coffee_machine",
"recipe": "lungo",
"volume": "806ml"
}

{ "order_id" }

The POST /orders handler checks all order parameters, puts a hold of the
corresponding sum on the user's credit card, forms a request to run, and calls the
execution level. First, a correct execution program needs to be fetched:

POST /v1/program-matcher
{ "recipe", "coffee-machine" }

{ "program_id" }

Now, after obtaining the correct programidentifier, the handler runs the program:



POST /v1/programs/{id}/run
{
"order_id",
"coffee_machine_id",
"parameters": [
{
"name": "volume",
"value": "800ml"
}
]
}
{ "program_run_id" }

Please note that knowing the coffee machine API kind isn't required at all; that's
why we're making abstractions! We could possibly make the interfaces more
specific by implementing different run and match endpoints for different coffee
machines:

e POST /v1/program-matcher/{api_type}
e POST /v1/{api_type}/programs/{id}/run

This approach has some benefits, like the possibility to provide different sets of
parameters, specific to the API kind. But we see no need for such fragmentation.
The run method handler is capable of extracting all the program metadata and
performing one of two actions:

e Call the POST /execute physical API method, passing the internal program
identifier for the first API kind
e Initiate runtime creation to proceed with the second API kind.

Out of general considerations, the runtime level for the second-kind API will be
private, so we are more or less free in implementing it. The easiest solution would
be to develop a virtual state machine that creates a “runtime” (i.e., a stateful
execution context) to run a program and control its state.



POST /v1/runtimes

{
"coffee_machine",
"program”,
"parameters"

}

{ "runtime_id", "state" }

The program here would look like that:

"program_id",
"api_type",
"commands": [
{
"sequence_id",
"type": "set_cup",
"parameters”

h

And the state like that:



// The “runtime’ status:

// * "pending" - awaiting execution

// * "executing" - performing a command

// * "ready_waiting" — the beverage is ready
// * "finished" - all operations are done
"status": "ready_waiting",

// Command being currently executed.
// Similar to line numbers

// in computer programs
"command_sequence_id",

// How the execution concluded:

// * "success" — the beverage

// prepared and taken

// * "terminated" - the execution aborted

// * "technical_error" — a preparation error
// * "waiting_time_exceeded" — beverage

// prepared, but not taken;

// timed out then disposed
"resolution": "success",

// The values of all variables,
// including the state of the sensors
"variables"

NB: When implementing the orders — match — run — runtimes call sequence, we
have two options:

e Either POST /orders handler requests the data regarding the recipe, the coffee
machine model, and the program on its own, and forms a stateless request
that contains all necessary data (API kind, command sequence, etc.)

e Or the request contains only data identifiers, and the next handler in the
chain will request pieces of data it needs via some internal APIs.

Both variants are plausible and the selection between them depends on
implementation details.

Abstraction Levels Isolation



A crucial quality of properly separated abstraction levels (and therefore a
requirement to their design) is a level isolation restriction: only adjacent levels may
interact. If “jumping over” is needed in the API design, then clearly mistakes were
made.

Returning to our example, how would retrieving the order status work? To obtain a
status the following call chain is to be performed:

¢ Auserinitiates a call to the GET /v1/orders method.

e The orders handler completes operations on its level of responsibility (e.g.,
checks user authorization), finds the program_run_id identifier and performs
a call to the runs/{program_run_id} endpoint.

e The runs endpoint completes operations corresponding to its level (e.g.,
checks the coffee machine API kind) and, depending on the API kind,
proceeds with one of two possible execution branches:

o Either calls the GET /execution/status method of the physical coffee
machine API, gets the coffee volume, and compares it to the reference
value or

o Invokes the GET /v1/runtimes/{runtime_id} method to obtain the
state.status and converts it to the order status.

e In the case of the second-kind API, the call chain continues: the GET
/runtimes handler invokes the GET /sensors method of the physical coffee
machine API and performs some manipulations with the data, like
comparing the cup / ground coffee / shed water volumes with the reference
ones, and changing the state and the status if needed.

NB: The term “call chain” shouldn't be taken literally. Each abstraction level may be
organized differently in a technical sense. For example:

e There might be explicit proxying of calls down the hierarchy

e There might be a cache at each level, which is updated upon receiving a
callback call or an event. In particular, a low-level runtime execution cycle
obviously must be independent of upper levels, which implies renewing its
state in the background and not waiting for an explicit call.

Note what happens here: each abstraction level wields its own status (i.e., order,
runtime, and sensors status respectively) formulated in subject area terms
corresponding to this level. Forbidding “jumping over” results in the necessity to
spawn statuses at each level independently.



Now let's examine how the order cancel operation flows through our abstraction
levels. In this case, the call chain will look like this:

e A user initiates a call to the POST /v1/orders/{id}/cancel method.
e The method handler completes operations on its level of responsibility:
o Checks the authorization
o Resolves money issues (e.g., whether a refund is needed)
o Finds the program_run_id identifier and calls the
runs/{program_run_id}/cancel method.

e The runs/cancel handler completes operations on its level of responsibility
and, depending on the coffee machine API kind, proceeds with one of two
possible execution branches:

o Calls the POST /execution/cancel method of a physical coffee machine
API
o Orinvokes the POST /v1/runtimes/{id}/terminate method.

¢ In the second case, the call chain continues as the terminate handler operates
its internal state:

o Changes the resolutionto "terminated"
o Runsthe "discard_cup" command.

Handling state-modifying operations like the cancel operation requires more
advanced abstraction-level juggling skills compared to non-modifying calls like the
GET /status method. There are two important moments to consider:

1. At each abstraction level the idea of “order canceling” is reformulated:

o At the orders level, this action splits into several “cancels” of other
levels: you need to cancel money holding and cancel order execution

o At the second API kind, physical level the “cancel” operation itself
doesn't exist; “cancel” means “executing the discard_cup command,’
which is quite the same as any other command.

The interim API level is needed to make this transition between
different level “cancels” smooth and rational without jumping over
canyons.

2.From a high-level point of view, canceling an order is a terminal action since
no further operations are possible. From a low-level point of view, processing
continues until the cup is discarded, and then the machine is to be unlocked
(i.e., new runtimes creation allowed). It's an execution control level's task to



couple those two states, outer (the order is canceled) and inner (the execution
continues).

It might seem like forcing the abstraction levels isolation is redundant and makes
interfaces more complicated. In fact, it is. It's essential to understand that flexibility,
consistency, readability, and extensibility come with a price. One may construct an
API with zero overhead, essentially just providing access to the coffee machine's
microcontrollers. However using such an API would be a disaster for a developer,
not to mention the inability to extend it.

Separating abstraction levels is first of all a logical procedure: how we explain to
ourselves and developers what our API consists of. The abstraction gap between
entities exists objectively, no matter what interfaces we design. Our task is just to
sort this gap into levels explicitly. The more implicitly abstraction levels are
separated (or worse — blended into each other), the more complicated your API's
learning curve is, and the worse the code that uses it will be.

The Data Flow

One useful exercise that allows us to examine the entire abstraction hierarchy is to
exclude all the particulars and construct a data flow chart, either on paper or in our
head. This chart shows what data is flowing through your API entities, and how it's
being altered at each step.

This exercise doesn't just help but also allows us design really large APIs with huge
entity nomenclatures. Human memory isn't boundless; any project which grows
extensively will eventually become too big to keep the entire entity hierarchy in
mind. But it's usually possible to keep in mind the data flow chart, or at least keep a
much larger portion of the hierarchy.

What data flow do we have in our coffee API?

1.1t starts with the sensors data, e.g., volumes of coffee / water / cups. This is
the lowest data level we have, and here we can't change anything.

2.A continuous sensors data stream is being transformed into discrete
command execution statuses, injecting new concepts which don't exist within
the subject area. A coffee machine API doesn't provide a “coffee is being
poured” or a “cup is being set” notion. It's our software that treats incoming
sensor data and introduces new terms: if the volume of coffee or water is less
than the target one, then the process isn't over yet. If the target value is



reached, then this synthetic status is to be switched, and the next command is
executed. It is important to note that we don't calculate new variables out of
sensor data: we need to create a new dataset first, a context, an “execution
program” comprising a sequence of steps and conditions, and fill it with
initial values. If this context is missing, it's impossible to understand what's
happening with the machine.

.Having logical data about the program execution state, we can (again via
creating a new high-level data context) merge two different data streams
from two different kinds of APIs into a single stream, which provides in a
unified form the data regarding executing a beverage preparation program
with logical variables like the recipe, volume, and readiness status.

W

Each API abstraction level, therefore corresponds to some data flow generalization
and enrichment, converting low-level (and in fact useless to end users) context
terms into higher-level context terms.

We may also traverse the tree backward.

1. At the order level, we set its logical parameters: recipe, volume, execution
place and possible status set.

2. At the execution level, we read the order-level data and create a lower-level
execution context: the program as a sequence of steps, their parameters,
transition rules, and initial state.

3.At the runtime level, we read the target parameters (which operation to
execute, and what the target volume is) and translate them into coffee
machine API microcommands and statuses for each command.

Also, if we take a deeper look at the “bad” decision (forcing developers to determine
the actual order status on their own), being discussed at the beginning of this
chapter, we could notice a data flow collision there:

e On one hand, in the order context “leaked” physical data (beverage volume
prepared) is injected, stirring abstraction levels irreversibly

¢ On the other hand, the order context itself is deficient: it doesn't provide new
meta-variables non-existent at the lower levels (the order status, in
particular), doesn't initialize them, and doesn't set the game rules.



We will discuss data contexts in more detail in Section II. Here we will just state that
data flows and their transformations might be and must be examined as a specific
API facet, which helps us separate abstraction levels properly and check if our
theoretical concepts work as intended.



Chapter 12. Isolating Responsibility Areas

In the previous chapter, we concluded that the hierarchy of abstractions in our
hypothetical project would comprise:

e The user level (the entities formulated in terms understandable by users and
acted upon by them: orders, coffee recipes)

e The program execution control level (the entities responsible for
transforming orders into machine commands)

e The runtime level for the second API kind (the entities describing the
command execution state machine).

We are now to define each entity's responsibility area: what's the reasoning for
keeping this entity within our API boundaries? What operations are applicable to
the entity directly (and which are delegated to other objects)? In fact, we are to
apply the “why”-principle to every single API entity.

To do so, we must iterate all over the API and formulate in subject area terms what
every object is. Let us remind that the abstraction levels concept implies that each
level is some interim subject area per se; a step we take in the journey from
describing a task in terms belonging to the first connected context (“a lungo ordered
by a user”) to terms belonging to the second connected context (“a command
performed by a coffee machine”).

As for our fictional example, it would look as follows.

1. User-level entities.
o Anorder describes some logical unit in app-user interaction. An order
might be:
= Created
= Checked for its status
= Retrieved
= Canceled.

o A recipe describes an “ideal model” of a coffee beverage type, i.e., its
customer properties. A recipe is an immutable entity that can only be
read.

o A coffee-machine is a model of a real-world device. We must be able to
retrieve the coffee machine's geographical location and the options it
supports from this model (which will be discussed below).

2. Program execution control-level entities.



o A program describes a general execution plan for a coffee machine.
Programs can only be read.

o The programs/matcher entity couples a recipe and a program, which in
fact means retrieving a dataset needed to prepare a specific recipe on a
specific coffee machine.

o The programs/run entity describes a single fact of running a program on
a coffee machine. A run might be:

= Initialized (created)
= Checked for its status
= Canceled.

3. Runtime-level entities.

o A runtime describes a specific execution data context, i.e., the state of
each variable. A runtime can be:

= Initialized (created)
= Checked for its status
= Terminated.

If we look closely at the entities, we may notice that each entity turns out to be a
composite. For example, a program operates high-level data (recipe and coffee-
machine), enhancing them with its subject area terms (program_run_id for instance).
This is totally fine as connecting contexts is what APIs do.

Use Case Scenarios

At this point, when our API is in general clearly outlined and drafted, we must put
ourselves in the developer's shoes and try writing code. Our task is to look at the
entity nomenclature and make some guesses regarding their future usage.

So, let us imagine we've got a task to write an app for ordering coffee based on our
API. What code would we write?

Obviously, the first step is to offer a choice to the user, to make them point out what
they want. And this very first step reveals that our API is quite inconvenient. There
are no methods allowing for choosing something. Developers have to implement
these steps:

o Retrieve all possible recipes from the GET /v1/recipes endpoint

e Retrieve a list of all available coffee machines from the GET /v1/coffee-
machines endpoint

e Write code that traverses all this data.



If we try writing pseudocode, we will get something like this:

// Retrieve all possible recipes

let recipes =
api.getRecipes();

// Retrieve a list of

// all available coffee machines

let coffeeMachines =
api.getCoffeeMachines();

// Build a spatial index

let coffeeMachineRecipesIndex =
buildGeoIndex(recipes, coffeeMachines);

// Select coffee machines

// matching user's needs

let matchingCoffeeMachines =
coffeeMachineRecipesIndex.query(

parameters, { "sort_by": "distance" }

)

// Finally, show offers to the user

app.display(matchingCoffeeMachines);

As you see, developers are to write a lot of redundant code (to say nothing about the
complexity of implementing spatial indexes). Besides, if we take into consideration
our Napoleonic plans to cover all coffee machines in the world with our API, then
we need to admit that this algorithm is just a waste of computational resources on
retrieving lists and indexing them.

The necessity of adding a new endpoint for searching becomes obvious. To design
such an interface we must imagine ourselves being UX designers, and think about
how an app could try to arouse users' interest. Two scenarios are evident:

¢ Display all cafes in the vicinity and the types of coffee they offer (a “service
discovery” scenario) — for new users or just users with no specific
preferences

¢ Display nearby cafes where a user could order a particular type of coffee —
for users seeking a certain beverage type.

Then our new interface would look like this:



POST /v1/offers/search
{
// optional
"recipes": ["lungo", "americano"],
"position": <geographical coordinates>,
"sort_by": [
{ "field": "distance" }
I,
"limit": 1@
}
{
"results": [
{
"coffee_machine",
"place”,
"distance",
"offer"
}
1,
"cursor"
}
Here:

e An offer is a marketing bid: on what conditions a user could have the
requested coffee beverage (if specified in the request), or some kind of
marketing offer — prices for the most popular or interesting products (if no
specific preference was set).

e A place is a spot (café, restaurant, street vending machine) where the coffee
machine is located. We never introduced this entity before, but it's quite
obvious that users need more convenient guidance to find a proper coffee
machine than just geographical coordinates.

NB: We could have enriched the existing /coffee-machines endpoint instead of
adding a new one. Although this decision looks less semantically viable, coupling
different modes of listing entities in one interface, by relevance and by order, is
usually a bad idea because these two types of rankings imply different features and



usage scenarios. Furthermore, enriching the search with “offers” pulls this
functionality out of the coffee-machines namespace: the fact of getting offers to
prepare specific beverages in specific conditions is a key feature for users, with
specifying the coffee machine being just a part of an offer. In reality, users rarely
care about coffee machine models.

NB: Having the coffee_machine_id in the interface is to some extent violating the
abstraction separation principle. It should be organized in a more complex way:
coffee shops should somehow map incoming orders against available coffee
machines, and only the type of the coffee machine (if a coffee shop really operates
several of them) is something meaningful in the context of order creation. However,
we deliberately simplified our study by making a coffee machine selectable in the
API to keep our API example readable.

Coming back to the code developers write, it would now look like that:

// Searching for offers

// matching a user's intent

let offers = api.search(parameters);
// Display them to a user
app.display(offers);

Helpers

Methods similar to the newly invented offers/search one are called helpers. The
purpose of their existence is to generalize known API usage scenarios and facilitate
their implementation. By “facilitating,” we mean not only reducing wordiness
(getting rid of “boilerplates”) but also helping developers avoid common problems
and mistakes.

For instance, let's consider the problem of the monetary value of an order. Our
search function returns some “offers” with prices. However, the price is volatile;
coffee could cost less during “happy hours,” for example. Developers could make a
mistake three times while implementing this functionality:

e Cache search results on a client device for too long (as a result, the price will
always be outdated).

¢ Contrary to the previous point, call the search endpoint excessively just to
actualize prices, thus overloading the network and the API servers.



e Create an order with an invalid price (thereby deceiving a user, displaying
one sum, and debiting another).

To solve the third problem we could demand that the displayed price be included in
the order creation request and return an error if it differs from the actual one. (In
fact, any API working with money must do so.) However, this solution does not help
with the first two problems, and also deteriorates the user experience. Displaying
the actual price is always a much more convenient behavior than displaying errors
upon pressing the “place an order” button.

One solution is to provide a special identifier to an offer. This identifier must be
specified in an order creation request:

"results": [
{

"coffee_machine",

"place”,

"distance",

"offer": {
"id",
"price",
"currency_code",
// Date and time
// when the offer expires

"valid_until"

}
1,

"cursor”

By doing so we're not only helping developers grasp the concept of getting the
relevant price but also solving a UX task of informing users about “happy hours.”

As an alternative, we could split the endpoints: one for searching, and one for
obtaining offers. The second endpoint would only be needed to actualize prices if
necessary.



Error Handling

And one more step towards making developers' lives easier: what would an “invalid
price” error look like?

POST /v1/orders

{ "offer_id", ..}
-~ 409 Conflict
{ "message": "Invalid price" }

Formally speaking, this error response is sufficient: users get the “Invalid price”
message, and they have to repeat the order. But from a UX point of view, this would
be a terrible decision: the user hasn't made any mistakes, and this message isn't
helpful at all.

The main rule of error interfaces in APIs is that an error response must help a client
understand what to do with the error. An error response's content must address the
following questions:

1. Which party is the source of the problem: the client or the server? For
example, HTTP APIs traditionally employ the 4xx status codes to indicate
client problems and 5xx to indicate server problems (with the exception of the
404 code, which is an uncertainty status).

2.If the error is caused by the server, is there any sense in repeating the
request? If yes, then when?

3.If the error is caused by the client, is it resolvable or not?
For example, the invalid price error is resolvable: a client could obtain a new
price offer and create a new order with it. But if the error occurred because of
a mistake in the client code, then eliminating the cause is impossible, and
there is no need to make the user press the “place an order” button again: this
request will never succeed.

NB: Here and throughout we indicate resolvable problems with the 4609
Conflict code and unresolvable ones with the 400 Bad Request code.



4.1f the error is resolvable then what kind of problem is it? Obviously,
application engineers couldn't resolve a problem they are unaware of. For
every resolvable problem, developers must write some code (re-obtaining the
offer in our case), so there must be a list of possible error reasons and the
corresponding fields in the error response to tell one problem from another.

5.1f passing invalid values in different parameters arises the same kind of error,
then how to learn which parameter value is wrong exactly?

6.Finally, if some parameter value is unacceptable, then what values are
acceptable?

In our case, the price mismatch error should look like this:

409 Conflict
{
// Error kind
"reason": "offer_invalid",
"localized_message":
"Something went wrong.<
Try restarting the app.”
"details": {
// What's wrong exactly?
// Which validity checks failed?
"checks_failed": [
"offer_lifetime"

After receiving this error, a client should check the error's kind (“some problem
with the offer”) and the specific error reason (“order lifetime expired”), and send the
offer retrieval request again. If the checks_failed field indicated a different error
reason (for example, the offer isn't bound to the specified user), client actions would
be different (re-authorize the user, then get a new offer). If there was no error
handler for this specific reason, a client should show the localized_message to the
user and invoke the standard error recovery procedure.



It is also worth mentioning that unresolvable errors are useless to a user at the time
of the error occurrence (since the client couldn't react meaningfully to unknown
errors). Still, providing extended error data is not excessive as a developer will read
it while fixing the issue in their code.

Decomposing Interfaces. The “7+2” Rule

From our own API development experience, we can tell without a doubt that the
greatest final interface design mistake (and the greatest developer's pain
accordingly) is the excessive overloading of entities' interfaces with fields, methods,
events, parameters, and other attributes.

Meanwhile, there is the “Golden Rule” of interface design (applicable not only to
APIs but almost to anything): humans can comfortably keep 7+2 entities in short-
term memory. Manipulating a larger number of chunks complicates things for most
humans. The rule is also known as Miller's Law’.

The only possible method of overcoming this law is decomposition. Entities should
be grouped under a single designation at every concept level of the API so that
developers never have to operate on more than a reasonable amount of entities (let's
say, ten) at a time.

Let's take a look at the coffee machine search function response in our API. To
ensure an adequate UX of the app, quite bulky datasets are required:



"results": [{

// Coffee machine data
"coffee_machine_id", "coffee_machine_type",
"coffee_machine_brand",
// Place data
"place_name": "The Chamomile",
"place_location_latitude",
"place_location_longitude"”,
"place_open_now", "working_hours",
// Walking route parameters
"walking_distance", "walking_time"
// How to find the place
"location_tip",
// Offers
"offers": [{

// Recipe data

"recipe", "recipe_name",

"recipe_description”,

// Order parameters

"volume",

// Offer data

"offer_id", "offer_valid_until",

"price": "19.00",

"localized_price":

"Just $19 for a large coffee cup",

"currency_code", "estimated_waiting_time"

This approach is regretfully quite common and could be found in almost every API.
Fields are mixed into one single list and often prefixed to indicate the related ones.

In this situation, we need to split this structure into data domains by grouping fields
that are logically related to a single subject area. In our case, we may identify at least
7 data clusters:



¢ Data regarding the place where the coffee machine is located
o Properties of the coffee machine itself

¢ Route data

e Recipe data

e Order options

e Offer data

e Pricing data.

Let's group them together:

"results": [{
// Place data
"place": { "name", "location" },
// Coffee machine properties
"coffee-machine": { "id", "brand", "type" },
// Route data
"route": {
"distance", "duration", "location_tip"
I
"offers": [{
// Recipe data
"recipe": { "id", "name", "description" },
// Order options
"options": { "volume" },
// Offer metadata
"offer": { "id", "valid_until" },
// Pricing
"pricing": {
"currency_code", "price"
"localized_price"
I

"estimated_waiting_time"




Such a decomposed API is much easier to read than a long list of different attributes.
Furthermore, it's probably better to group even more entities in advance. For
example, a place and a route could be nested fields under a synthetic location
property, or offer and pricing fields might be combined into some generalized
object.

It is important to say that readability is achieved not only by merely grouping the
entities. Decomposing must be performed in such a manner that a developer, while
reading the interface, instantly understands, “Here is the place description of no
interest to me right now, no need to traverse deeper.” If the data fields needed to
complete some action are scattered all over different composites, the readability
doesn't improve and even degrades.

Proper decomposition also helps with extending and evolving an API. We'll discuss
the subject in Section III.
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Chapter 13. Describing Final Interfaces

When all entities, their responsibilities, and their relations to each other are
defined, we proceed to the development of the API itself. We need to describe the
objects, fields, methods, and functions nomenclature in detail. In this chapter, we
provide practical advice on making APIs usable and understandable.

One of the most important tasks for an API developer is to ensure that code written
by other developers using the API is easily readable and maintainable. Remember
that the law of large numbers always works against you: if a concept or call
signature can be misunderstood, it will be misunderstood by an increasing number
of partners as the API's popularity grows.

NB: The examples in this chapter are meant to illustrate the consistency and
readability problems that arise during API development. We do not provide specific
advice on designing REST APIs (such advice will be given in the corresponding
section of this book) or programming languages' standard libraries. The focus is o
the idea, not specific syntax.

An important assertion number one:

1. Rules Must Not Be Applied Unthinkingly

Rules are simply formulated generalizations based on one's experience. They are
not to be applied unconditionally, and they do not make thinking redundant. Every
rule has a rational reason to exist. If your situation does not justify following a rule,
then you should not do it.

This idea applies to every concept listed below. If you end up with an unusable,
bulky, or non-obvious API because you followed the rules, it's a motivation to revise
the rules (or the API).

It is important to understand that you can always introduce your own concepts. For
example, some frameworks intentionally reject paired set_entity / get_entity
methods in favor of a single entity() method with an optional argument. The
crucial part is being systematic in applying the concept. If it is implemented, you
must apply it to every single API method or at the very least develop a naming rule
to distinguish such polymorphic methods from regular ones.

2. Explicit Is Always Better Than Implicit



The entity name should explicitly indicate what the entity does and what side
effects to expect when using it.

Bad:

// Cancels an order
order.canceled = true;

It is not obvious that a state field might be modified, and that this operation will
cancel the order.

Better:

// Cancels an order
order.cancel();

Bad:

// Returns aggregated statistics
// since the beginning of time

orders.getStats()

Even if the operation is non-modifying but computationally expensive, you should
explicitly indicate that, especially if clients are charged for computational resource
usage. Furthermore, default values should not be set in a way that leads to
maximum resource consumption.

Better:



// Calculates and returns
// aggregated statistics
// for a specified period of time
orders.calculateAggregatedStats({
begin_date,
end_date

3

Try to design function signatures that are transparent about what the function does,
what arguments it takes, and what the outcome is. When reading code that works
with your API, it should be easy to understand what it does without referring to the
documentation.

Two important implications:

LI If the operation is modifying, it must be obvious from the signature. In
particular, there should not be modifying operations named getSomething or using
the GET HTTP verb.

1.2. If your API's nomenclature contains both synchronous and asynchronous
operations, then (a)synchronicity must be apparent from signatures, or a naming
convention must exist.

3. Specify Which Standards Are Used
Regrettably, humanity is unable to agree on even the most trivial things, like which
day starts the week, let alone more sophisticated standards.

Therefore, always specify exactly which standard is being used. Exceptions are
possible if you are 100% sure that only one standard for this entity exists in the
world and every person on Earth is totally aware of it.

Bad: "date”: "11/12/2028" — there are numerous date formatting standards. It is
unclear which number represents the day and which number represents the month.

Better: "iso_date": "2020-11-12".

Bad: "duration": 5000 — five thousand of what?



Better:
"duration_ms": 5000

or
"duration"”: "5000ms"

or

"iso_duration": "PT5S"

or

"duration”: {"unit": "ms", "value": 5000}.

One particular implication of this rule is that money sums must always be
accompanied by a currency code.

It is also worth mentioning that in some areas the situation with standards is so
spoiled that no matter what you do, someone will be upset. A “classical” example is
the order of geographical coordinates (latitude-longitude vs longitude-latitude).
Unfortunately, the only effective method to address the frustration in such cases is
the Serenity Notepad which will be discussed in the corresponding chapter.

4. Entities Must Have Concrete Names

”u "«

Avoid using single amoeba-like words, such as “get,” “apply,” “make,” etc.
Bad: user.get() — it is difficult to guess what is actually returned.

Better: user.get_id().

5. Don't Spare the Letters

In the 21st century, there's no need to shorten entities' names.

Bad: order.getTime() — it is unclear what time is actually returned: order creation
time, order preparation time, order waiting time, or something else.

Better: order.getEstimatedDeliveryTime().

Bad:



// Returns a pointer to the first occurrence
// in str1 of any of the characters

// that are part of str2

strpbrk(str1, str2)

Possibly, the author of this API thought that the abbreviation pbrk would mean
something to readers, but that is clearly mistaken. It is also hard to understand
from the signature which string (str1 or str2) represents a character set.

Better:

str_search_for_characters(
str,

lookup_character_set

— though it is highly debatable whether this function should exist at all; a feature-
rich search function would be much more convenient. Also, shortening a string to
str bears no practical sense, unfortunately being a common practice in many
subject areas.

NB: Sometimes field names are shortened or even omitted (e.g., a heterogeneous
array is passed instead of a set of named fields) to reduce the amount of traffic. In
most cases, this is absolutely meaningless as the data is usually compressed at the
protocol level.

6. Naming Implies Typing
A field named recipe must be of type Recipe. A field named recipe_id must contain

arecipe identifier that can be found within the Recipe entity.

The same applies to basic types. Arrays must be named in the plural form or as
collective nouns, e.g., objects, children. If it is not possible, it is better to add a
prefix or a postfix to avoid ambiguity.

Bad: GET /news — it is unclear whether a specific news item is returned, or a list of
them.



Better: GET /news-1list.

Similarly, if a Boolean value is expected, entity naming must describe a qualitative
state, e.g., is_ready, open_now.

Bad: "task.status": true
— statuses are not explicitly binary. Additionally, such an API is not extendable.

Better: "task.is_finished": true.

Specific platforms imply specific additions to this rule depending on the first-class
citizen types they provide. For example, JSON doesn't have a Date object type, so
dates are typically passed as numbers or strings. In this case, it's convenient to
mark dates somehow, for example, by adding _at or _date postfixes, i.e. created_at,
occurred_at.

If an entity name is a polysemantic term itself, which could confuse developers, it is
better to add an extra prefix or postfix to avoid misunderstanding.

Bad:

// Returns a list of
// coffee machine builtin functions
GET /coffee-machines/{id}/functions

The word “function” is ambiguous. It might refer to built-in functions, but it could
also mean “a piece of code,” or a state (machine is functioning).

Better:

GET /v1/coffee-machines/{id}«
/builtin-functions-1list

7. Matching Entities Must Have Matching Names and Behave Alike

Bad: begin_transition/stop_transition
— The terms begin and stop don't match; developers will have to refer to the
documentation to find a paired method.



Better: either begin_transition / end_transition or start_transition /
stop_transition.

Bad:

// Find the position of the first occurrence
// of a substring in a string
strpos(haystack, needle)

// Replace all occurrences

// of the search string

// with the replacement string

str_replace(needle, replace, haystack)

Several rules are violated:

¢ The usage of an underscore is not consistent

e Functionally close methods have different needle/haystack argument
ordering

e The first function finds the first occurrence while the second one finds all
occurrences, and there is no way to deduce that fact from the function
signatures.

Improving these function signatures is left as an exercise for the reader.

8. Avoid Double Negations

Bad: "dont_call_me": false
— humans are bad at perceiving double negation and can make mistakes.

Better: "prohibit_calling": trueor "avoid_calling": true
— this is easier to read. However, you should not deceive yourself: it is still a double
negation, even if you've found a “negative” word without a “negative” prefix.

It is also worth mentioning that mistakes in using De Morgan's laws! are even more
common. For example, if you have two flags:



GET /coffee-machines/{id}/stocks

{
"has_beans": true,
"has_cup": true

The condition “coffee might be prepared” would look like has_beans && has_cup —
both flags must be true. However, if you provide the negations of both flags:

"no_beans": false,

"no_cup": false

— then developers will have to evaluate the !no_beans && !no_cup flag which is
equivalent to the ! (no_beans || no_cup) condition. In this transition, people tend
to make mistakes. Avoiding double negations helps to some extent, but the best
advice is to avoid situations where developers have to evaluate such flags.

9. Avoid Implicit Type Casting

This advice contradicts the previous one, ironically. When developing APIs you
frequently need to add a new optional field with a non-empty default value. For
example:

let orderParams = {
contactless_delivery: false

I

let order = api.createOrder(
orderParams

)




This new contactless_delivery option isn't required, but its default value is true. A
question arises: how should developers discern the explicit intention to disable the
option (false) from not knowing if it exists (the field isn't set)? They would have to
write something like:

let value = orderParams.contactless_delivery;
if (Type(value) == 'Boolean' && value == false) {

This practice makes the code more complicated, and it's quite easy to make mistakes
resulting in effectively treating the field as the opposite. The same can happen if
special values (e.g., null or -1) are used to denote value absence.

If the protocol does not support resetting to default values as a first-class citizen,
the universal rule is to make all new Boolean flags false by default.

Better

let orderParams = {
force_contact_delivery: true

b

let order = api.createOrder(
orderParams

)

If a non-Boolean field with a specially treated absence of value is to be introduced,
then introduce two fields.

Bad:



// Creates a user

POST /v1/users

{ -}

// Users are created with a monthly
// spending limit set by default

{
"spending_monthly_limit_usd": "160",

}

// To cancel the limit null value is used
PUT /v1/users/{id}

{

"spending_monthly_limit_usd": null,

Better

POST /v1/users

{
// true - user explicitly cancels
// monthly spending limit
// false — limit isn't canceled
//  (default value)
"abolish_spending_limit": false,
// Non-required field
// Only present if the previous flag
// is set to false
"spending_monthly_limit_usd": "100",




NB: The contradiction with the previous rule lies in the necessity of introducing
“negative” flags (the “no limit” flag), which we had to rename to
abolish_spending_limit. Though it's a decent name for a negative flag, its
semantics is still not obvious, and developers will have to read the documentation.
This is the way.

10. Declare Technical Restrictions Explicitly

Every field in your API comes with restrictions: the maximum allowed text length,
the size of attached documents, the allowed ranges for numeric values, etc. Often,
describing those limits is neglected by API developers — either because they
consider it obvious, or because they simply don't know the boundaries themselves.
This is of course an antipattern: not knowing the limits automatically implies that
partners' code might stop working at any moment due to reasons they don't control.

Therefore, first, declare the boundaries for every field in the API without any
exceptions, and, second, generate proper machine-readable errors describing the
exact boundary that was violated should such a violation occur.

The same reasoning applies to quotas as well: partners must have access to the
statistics on which part of the quota they have already used, and the errors in the
case of exceeding quotas must be informative.

11. All Requests Must Be Limited

The restrictions should apply not only to field sizes but also to list sizes or
aggregation intervals.

Bad: getOrders() — what if a user made a million orders?

Better: getOrders({ limit, parameters }) — there must be a cap on the amount of
processed and returned data. This also implies providing the possibility to refine
the query if a partner needs more data than what is allowed to be returned in one
request.

12. Describe the Retry Policy



One of the most significant performance-related challenges that nearly any API
developer encounters, regardless of whether the API is internal or public, is service
denial due to a flood of re-requests. Temporary backend API issues, such as
increased response times, can lead to complete server failure if clients rapidly
repeat requests after receiving an error or a timeout, resulting in generating a
significantly larger workload than usual in a short period of time.

The best practice in such a situation is to require clients to retry API endpoints with
increasing intervals (for example, the first retry occurs after one second, the second
after two seconds, the third after four seconds, and so on, up to a maximum of, let's
say, one minute). Of course, in the case of a public API, no one is obliged to comply
with such a requirement, but its presence certainly won't make things worse for
you. At the very least, some partners will read the documentation and follow your
recommendations.

Moreover, you can develop a reference implementation of the retry policy in your
public SDKs and ensure it is correctly implemented in open-source modules for
your APL

13. Count the Amount of Traffic

Nowadays the amount of traffic is rarely taken into account as the Internet
connection is considered unlimited almost universally. However, it is not entirely
unlimited: with some degree of carelessness, it's always possible to design a system
that generates an uncomfortable amount of traffic even for modern networks.

There are three obvious reasons for inflating network traffic:

¢ Clients query the data too frequently or cache it too little

¢ No data pagination is provided

¢ No limits are set on the data fields, or too large binary data (graphics, audio,
video, etc.) is transmitted.

All these problems must be addressed by setting limitations on field sizes and
properly decomposing endpoints. If an entity comprises both “lightweight” data
(such as the name and description of a recipe) and “heavy” data (such as the
promotional picture of a beverage which might easily be a hundred times larger
than the text fields), it's better to split endpoints and pass only a reference to the
“heavy” data (e.g., a link to the image). This will also allow for setting different cache
policies for different kinds of data.



As a useful exercise, try modeling the typical lifecycle of a partner's app's main
functionality (e.g., making a single order) to count the number of requests and the
amount of traffic it requires. It might turn out that the high number of requests or
increased network traffic consumption is due to a mistake in the design of state
change notification endpoints. We will discuss this issue in detail in the
“Bidirectional Data Flow” chapter of “The API Patterns” section of this book.

14. No Results Is a Result

If a server processes a request correctly and no exceptional situation occurs, there
should be no error. Unfortunately, the antipattern of throwing errors when no
results are found is widespread.

Bad
POST /v1/coffee-machines/search
{
"query": "lungo",
"location": <customer's location>
}
— 4084 Not Found
{
"localized_message":
"No one makes lungo nearby"
}

The response implies that a client made a mistake. However, in this case, neither the
customer nor the developer made any mistakes. The client cannot know beforehand
whether lungo is served in this location.

Better:



POST /v1/coffee-machines/search
{
"query": "lungo",
"location": <customer's location>
}
- 200 0K
{
"results": []
}

This rule can be summarized as follows: if an array is the result of the operation,
then the emptiness of that array is not a mistake, but a correct response. (Of course,
this applies if an empty array is semantically acceptable; an empty array of

coordinates, for example, would be a mistake.)

NB: This pattern should also be applied in the opposite case. If an array of entities is
an optional parameter in the request, the empty array and the absence of the field

must be treated differently. Let's consider the example:

// Finds all coffee recipes

// that contain no milk

POST /v1/recipes/search

{ "filter": { "no_milk": true } }

- 200 0K
{
"results": [
{ "recipe": "espresso", ..},
{ "recipe": "lungo", ..}

¥
// Finds offers for
// the given recipes
POST /v1/offers/search
{
"location"”,
"recipes": ["espresso", "lungo"]




Now let's imagine that the first request returned an empty array of results meaning
there are no known recipes that satisfy the condition. Ideally, the developer would
have expected this situation and installed a guard to prevent the call to the offer
search function in this case. However, we can't be 100% sure they did. If this logic is
missing, the application will make the following call:

POST /v1/offers/search
{

"location"”,
"recipes": []

Often, the endpoint implementation ignores the empty recipe array and returns a
list of offers as if no recipe filter was supplied. In our case, it means that the
application seemingly ignores the user's request to show only milk-free beverages,
which we consider unacceptable behavior. Therefore, the response to such a request
with an empty array parameter should either be an error or an empty result.

15. Validate Inputs

The decision of whether to use an exception or an empty response in the previous
example depends directly on what is stated in the contract. If the specification
specifies that the recipes parameter must not be empty, an error should be
generated (otherwise, you would violate your own spec).

This rule applies not only to empty arrays but to every restriction specified in the
contract. “Silently” fixing invalid values rarely makes practical sense.

Bad:



POST /v1/offers/search

{

"location": {
"longitude": 20,
"latitude": 100

}

}
- 200 0K
{

// Offers for the
// [0, 98] point
"offers"

As we can see, the developer somehow passed the wrong latitude value (100
degrees). Yes, we can “fix” it by reducing it to the closest valid value, which is 90
degrees, but who benefits from this? The developer will never learn about this
mistake, and we doubt that coffee offers in the Northern Pole vicinity are relevant
to users.

Better:

POST /v1/coffee-machines/search
{
"location": {
"longitude": 20,
"latitude"”: 100

}
- 400 Bad Request

{

// Error description

It is also useful to proactively notify partners about behavior that appears to be a
mistake:



POST /v1/coffee-machines/search

{

"location": {
"latitude": 9,
"longitude": @

}

}
{

"results": [],
"warnings": [{
"type": "suspicious_coordinates"”,
"message": "Location [0, @]¢
is probably a mistake"
boA
"type": "unknown_field",
"message”: "unknown field:<
“force_convact_delivery . Did you«
mean “force_contact_delivery ?"

}H

If it is not possible to add such notices, we can introduce a debug mode or strict
mode in which notices are escalated:



POST /v1/coffee-machines/searche«
?strict_mode=true

"location": {
"latitude": O,
"longitude": @

}
— 404 Bad Request
{
"errors": [{
"type": "suspicious_coordinates"”,
"message": "Location [0, @]¢
is probably a mistake"

M

If the [0, o] coordinates are not an error, it makes sense to allow for manual
bypassing of specific errors:

POST /v1/coffee-machines/searche¢
?strict_mode=true¢
&disable_errors=suspicious_coordinates

16. Default Values Must Make Sense

Setting default values is one of the most powerful tools that help avoid verbosity
when working with APIs. However, these values should help developers rather than
hide their mistakes.

Bad:



POST /v1/coffee-machines/search
{
"recipes": ["lungo"]

// User location is not set

¥
{
"results": [
// Results for some default
// location
]
}

Formally speaking, having such behavior is feasible: why not have a “default
geographical coordinates” concept? However, in reality, such policies of “silently”
fixing mistakes lead to absurd situations like “the null island” — the most visited
place in the world?. The more popular an API becomes, the higher the chances that
partners will overlook these edge cases.

Better:

POST /v1/coffee-machines/search
{
"recipes": ["lungo"]
// User location is not set
}
- 400 Bad Request
{

// Error description

17. Errors Must Be Informative



It is not enough to simply validate inputs; providing proper descriptions of errors is
also essential. When developers write code, they encounter problems, sometimes
quite trivial, such as invalid parameter types or boundary violations. The more
convenient the error responses returned by your API, the less time developers will
waste struggling with them, and the more comfortable working with the API will be
for them.

Bad:

POST /v1/coffee-machines/search
{
"recipes": ["lngo"],
"position": {
"latitude": 110,
"longitude": 55

}
- 400 Bad Request

{}

— of course, the mistakes (typo in "1ngo", wrong coordinates) are obvious. But the
handler checks them anyway, so why not return readable descriptions?

Better:



"reason": "wrong_parameter_value",
"localized_message":

"Something is wrong.<

Contact the developer of the app.",

"details": {
"checks_failed": [
{
"field": "recipe"
"error_type": "wrong_value",
"message” :

"Unknown value: 'lngo'.¢
Did you mean 'lungo'?"

I
{
"field": "position.latitude"
"error_type":
"constraint_violation",
"constraints": {
"min": -90,
"max": 90
I
"message” :
"'position.latitude’ value<
must fall withine
the [-90, 90] interval"
}

It is also a good practice to return all detectable errors at once to save developers
time.

18. Return Unresolvable Errors First



POST /v1/orders

{
"recipe": "lngo",
"offer"”
}
- 409 Conflict
{ "reason": "offer_expired" }

// Request repeats
// with the renewed offer
POST /v1/orders

{
"recipe": "lngo",
"offer"”
}
- 400 Bad Request
{ "reason": "recipe_unknown" }

— what was the point of renewing the offer if the order cannot be created anyway?
For the user, it will look like meaningless efforts (or meaningless waiting) that will
ultimately result in an error regardless of what they do. Yes, maintaining error
priorities won't change the result — the order still cannot be created. However, first,
users will spend less time (also make fewer mistakes and contribute less to the error
metrics) and second, diagnostic logs for the problem will be much easier to read.

19. Prioritize Significant Errors

If the errors under consideration are resolvable (i.e., the user can take some actions
and still get what they need), you should first notify them of those errors that will
require more significant state updates.

Bad:



POST /v1/orders

{

"items": [{
"item_id": "123"
"price": "@.10"

H

}

409 Conflict
{
// Error: while the user
// was making an order,
// the product price has changed
"reason": "price_changed",
"details": [{
"item_id": "123"
"actual_price": "0.20"

}H




// Repeat the request
// to get the actual price
POST /v1/orders

{

"items": [{
"item_id": "123",
"price": "0.20"

H

}

409 Conflict
{
// Error: the user already has
// too many parallel orders,
// creating a new one
// is prohibited
"reason": "order_limit_exceeded",
"localized_message":
"Order limit exceeded”

— what was the point of showing the price changed dialog, if the user still can't
make an order, even if the price is right? When one of the concurrent orders has
finished, and the user is able to commit another one, prices, item availability, and
other order parameters will likely need another correction.

20. Analyze Potential Error Deadlocks

In complex systems, it might happen that resolving one error leads to another one,
and vice versa.



// Create an order
// with paid delivery
POST /v1/orders

{
"items": 3,
"item_price": "3000.00"
"currency_code": "MNT",

"delivery_fee": "1000.00",
"total": "10000.00"
}
- 4089 Conflict
// Error: if the order sum
// is more than 9000 togrogs,
// delivery must be free
{

"reason": "delivery_is_free"

// Create an order
// with free delivery
POST /v1/orders

{
"items": 3,
"item_price": "3000.00"
"currency_code": "MNT",

"delivery_fee": "0.00"
"total": "9000.00"

}

- 409 Conflict

// Error: the minimal order sum

// is 10000 togrogs

{
"reason": "below_minimal_sum",
"currency_code": "MNT",
"minimal_sum": "10000.00"




You may note that in this setup the error can't be resolved in one step: this situation
must be elaborated on, and either order calculation parameters must be changed
(discounts should not be counted against the minimal order sum), or a special type
of error must be introduced.

21. Specify Caching Policies and Lifespans of Resources

In modern systems, clients usually have their own state and almost universally
cache results of requests. Every entity has some period of autonomous existence,
whether session-wise or long-term. So it's highly desirable to provide clarifications:
it should be understandable how the data is supposed to be cached, if not from
operation signatures, but at least from the documentation.

Let's emphasize that we understand “cache” in the extended sense: which variations
of operation parameters (not just the request time, but other variables as well)
should be considered close enough to some previous request to use the cached
result?

Bad:

// Returns lungo prices including

// delivery to the specified location

GET /price?recipe=lungo¢
&longitude={longitude}«
&latitude={latitude}

{ "currency_code", "price" }

Two questions arise:

e Until when is the price valid?
¢ In what vicinity of the location is the price valid?

Better: you may use standard protocol capabilities to denote cache options, such as
the Cache-Control header. If you need caching in both temporal and spatial
dimensions, you should do something like this:



GET /price?recipe=lungo¢
&longitude={longitude}d
&latitude={latitude}

"offer": {

"id",

"currency_code",

"price",

"conditions": {
// Until when the price is valid
"valid_until"
// In what vicinity
// the price is valid
// * city
// * geographical object
/] * .
"valid_within"

NB: Sometimes, developers set very long caching times for immutable resources,
spanning a year or even more. It makes little practical sense as the server load will
not be significantly reduced compared to caching for, let's say, one month. However,
the cost of a mistake increases dramatically: if wrong data is cached for some reason
(for example, a 404 error), this problem will haunt you for the next year or even
more. We would recommend selecting reasonable cache parameters based on how
disastrous invalid caching would be for the business.

22. Keep the Precision of Fractional Numbers Intact

If the protocol allows, fractional numbers with fixed precision (such as money
sums) must be represented as a specially designed type like Decimal or its
equivalent.

If there is no Decimal type in the protocol (for instance, JSON doesn't have one), you
should either use integers (e.g., apply a fixed multiplier) or strings.



If converting to a float number will certainly lead to a loss of precision (for example,
if we translate “20 minutes” into hours as a decimal fraction), it's better to either
stick to a fully precise format (e.g., use 06:20 instead of ©.33333..), or provide an
SDK to work with this data. As a last resort, describe the rounding principles in the
documentation.

23. ALl API Operations Must Be ldempotent

Let us remind the reader that idempotency is the following property: repeated calls
to the same function with the same parameters won't change the resource state.
Since we are primarily discussing client-server interaction, repeating requests in
case of network failure is not something exceptional but a common occurrence.

If an endpoint's idempotency can not be naturally assured, explicit idempotency
parameters must be added in the form of a token or a resource version.

Bad:

// Creates an order
POST /orders

A second order will be produced if the request is repeated!

Better:

// Creates an order
POST /v1/orders
X-Idempotency-Token: <token>

The client must retain the X-Idempotency-Token in case of automated endpoint
retrying. The server must check whether an order created with this token already
exists.

Alternatively:



// Creates order draft
POST /v1/orders/drafts

{ "draft_id" }

// Confirms the draft

PUT /v1/orders/draftse
/{draft_id}/confirmation

{ "confirmed": true }

Creating order drafts is a non-binding operation as it doesn't entail any
consequences, so it's fine to create drafts without the idempotency token.
Confirming drafts is a naturally idempotent operation, with the draft_id serving as
its idempotency key.

Another alternative is implementing optimistic concurrency control, which we will
discuss in the “Synchronization Strategies” chapter.

It is also worth mentioning that adding idempotency tokens to naturally
idempotent handlers is not meaningless. It allows distinguishing between two
situations:

e The client did not receive the response due to network issues and is now
repeating the request.
o The client made a mistake by posting conflicting requests.

Consider the following example: imagine there is a shared resource, characterized
by a revision number, and the client tries to update it.

POST /resource/updates
{
"resource_revision": 123

"updates”




The server retrieves the actual resource revision and finds it to be 124. How should
it respond correctly? Returning the 469 Conflict code will force the client to try to
understand the nature of the conflict and somehow resolve it, potentially confusing
the user. It is also unwise to fragment the conflict-resolving algorithm and allow
each client to implement it independently.

The server can compare request bodies, assuming that identical requests mean
retrying. However, this assumption might be dangerously wrong (for example if the
resource is a counter of some kind, repeating identical requests is routine).

Adding the idempotency token (either directly as a random string or indirectly in
the form of drafts) solves this problem.

POST /resource/updates
X-Idempotency-Token: <token>
{
"resource_revision": 123
"updates”

}
- 201 Created

— the server determined that the same token was used in creating revision 124
indicating the client is retrying the request.

Or:

POST /resource/updates
X-Idempotency-Token: <token>
{
"resource_revision": 123
"updates”
}
- 4089 Conflict

— the server determined that a different token was used in creating revision 124
indicating an access conflict.



Furthermore, adding idempotency tokens not only fixes the issue but also enables
advanced optimizations. If the server detects an access conflict, it could attempt to
resolve it by “rebasing” the update like modern version control systems do, and
return a 200 OK instead of a 409 Conflict. This logic dramatically improves the user
experience, being fully backward-compatible, and helps avoid code fragmentation
for conflict resolution algorithms.

However, be warned: clients are bad at implementing idempotency tokens. Two
common problems arise:

¢ You can't really expect clients to generate truly random tokens. They might
share the same seed or simply use weak algorithms or entropy sources.
Therefore constraints must be placed on token checking, ensuring that tokens
are unique to the specific user and resource rather than globally.

¢ Client developers might misunderstand the concept and either generate new
tokens for each repeated request (which degrades the UX but is otherwise
harmless) or conversely use a single token in several requests (which is not
harmless at all and could lead to catastrophic disasters; this is another reason
to implement the suggestion in the previous clause). Writing an SDK and/or
detailed documentation is highly recommended.

24. Don't Invent Security Practices

If the author of this book were given a dollar each time he had to implement an
additional security protocol invented by someone, he would be retired by now. API
developers' inclination to create new signing procedures for requests or complex
schemes of exchanging passwords for tokens is both obvious and meaningless.

First, there is no need to reinvent the wheel when it comes to security-enhancing
procedures for various operations. All the algorithms you need are already
invented, just adopt and implement them. No self-invented algorithm for request
signature checking can provide the same level of protection against a Manipulator-
in-the-middle (MitM) attack3 as a mutual TLS authentication with certificate
pinning4.

Second, assuming oneself to be an expert in security is presumptuous and
dangerous. New attack vectors emerge daily, and staying fully aware of all actual
threats is a full-time job. If you do something different during workdays, the
security system you design will contain vulnerabilities that you have never heard



about — for example, your password-checking algorithm might be susceptible to a
timing attack’ or your webserver might be vulnerable to a request splitting attack®.

The OWASP Foundation compiles a list of the most common vulnerabilities in APIs
every year,” which we strongly recommend studying.

And just in case: all APIs must be provided over TLS 1.2 or higher (preferably 1.3).

25. Help Partners With Security

It is equally important to provide interfaces to partners that minimize potential
security problems for them.

Bad:

// Allows partners to set

// descriptions for their beverages

PUT /v1/partner-api/{partner-id}«
/recipes/lungo/info

"<script>alert(document.cookie)</script>"

// Returns the desciption
GET /v1/partner-api/{partner-id}«
/recipes/lungo/info

"<script>alert(document.cookie)</script>"

Such an interface directly creates a stored XSS vulnerability that potential attackers
might exploit. While it is the partners' responsibility to sanitize inputs and display
them safely, the large numbers work against you: there will always be
inexperienced developers who are unaware of this vulnerability or haven't
considered it. In the worst case, this stored XSS might affect all API consumers, not
just a specific partner.



In these situations, we recommend, first, sanitizing the data if it appears potentially
exploitable (e.g. if it is meant to be displayed in the Ul and/or is accessible through a
direct link). Second, limiting the blast radius so that stored exploits in one partner's
data space can't affect other partners. If the functionality of unsafe data input is still
required, the risks must be explicitly addressed:

Better (though not perfect):

// Allows for setting a potentially

// unsafe description for a beverage

PUT /v1/partner-api/{partner-id}¢
/recipes/lungo/info

X-Dangerously-Disable-Sanitizing: true

"<script>alert(document.cookie)</script>"

// Returns the potentially

// unsafe description

GET /v1/partner-api/{partner-id}«
/recipes/lungo/info

X-Dangerously-Allow-Raw-Value: true

—

"<script>alert(document.cookie)</script>"

One important finding is that if you allow executing scripts via the API, always
prefer typed input over unsafe input:

Bad:

POST /v1/run/sql
{
// Passes the full script
"query": "INSERT INTO data (name)
VALUES ('Robert') ;¢
DROP TABLE students;--')"




Better:

POST /v1/run/sql
{
// Passes the script template
"query": "INSERT INTO data (name)<
VALUES (?)",
// and the parameters to set
"values": [
"Robert"') ;¢
DROP TABLE students;--"

In the second case, you will be able to sanitize parameters and avoid SQL injections
in a centralized manner. Let us remind the reader that sanitizing must be
performed with state-of-the-art tools, not self-written regular expressions.

26. Use Globally Unique Identifiers

It's considered good practice to use globally unique strings as entity identifiers,
either semantic (e.g., "lungo" for beverage types) or random ones (e.g., UUID-48). It
might turn out to be extremely useful if you need to merge data from several
sources under a single identifier.

In general, we tend to advise using URN-like identifiers, e.g. urn:order :<uuid> (or
just order :<uuid>). That helps a lot in dealing with legacy systems with different
identifiers attached to the same entity. Namespaces in URNs help to quickly
understand which identifier is used and if there is a usage mistake.

One important implication: never use increasing numbers as external identifiers.
Apart from the abovementioned reasons, it allows counting how many entities of
each type there are in the system. Your competitors will be able to calculate the
precise number of orders you have each day, for example.

27. Stipulate Future Restrictions



With the growth of API popularity, it will inevitably become necessary to introduce
technical means of preventing illicit API usage, such as displaying captchas, setting
honeypots, raising “too many requests” exceptions, installing anti-DDoS$ proxies,
etc. All these things cannot be done if the corresponding errors and messages were
not described in the docs from the very beginning.

You are not obliged to actually generate those exceptions, but you might stipulate
this possibility in the docs. For example, you might describe the 429 Too Many
Requests error or captcha redirect but implement the functionality when it's
actually needed.

It is extremely important to leave room for multi-factor authentication (such as
TOTP, SMS, or 3D-secure-like technologies) if it's possible to make payments
through the API. In this case, it's a must-have from the very beginning.

NB: This rule has an important implication: always separate endpoints for different
API families. (This may seem obvious, but many API developers fail to follow it.) If
you provide a server-to-server API, a service for end users, and a widget to be
embedded in third-party apps — all these APIs must be served from different
endpoints to allow for different security measures (e.g., mandatory API keys, forced
login, and solving captcha respectively).

28. No Bulk Access to Sensitive Data

If it's possible to access the API users' personal data, bank card numbers, private
messages, or any other kind of information that, if exposed, might seriously harm
users, partners, and/or the API vendor, there must be no methods for bulk retrieval
of the data, or at least there must be rate limiters, page size restrictions, and ideally,
multi-factor authentication in front of them.

Often, making such offloads on an ad-hoc basis, ie., bypassing the API, is a
reasonable practice.

29. Localization and Internationalization

All endpoints must accept language parameters (e.g., in the form of the Accept-
Language header), even if they are not currently being used.



It is important to understand that the user's language and the user's jurisdiction are
different things. Your API working cycle must always store the user's location. It
might be stated either explicitly (requests contain geographical coordinates) or
implicitly (initial location-bound request initiates session creation which stores the
location) — but no correct localization is possible in the absence of location data. In
most cases reducing the location to just a country code is enough.

The thing is that lots of parameters that potentially affect data formats depend not
on language but on the user's location. To name a few: number formatting (integer
and fractional part delimiter, digit groups delimiter), date formatting, the first day
of the week, keyboard layout, measurement units system (which might be non-
decimal!), etc. In some situations, you need to store two locations: the user's
residence location and the user's “viewport.” For example, if a US citizen is planning
a European trip, it's convenient to show prices in the local currency but measure
distances in miles and feet.

Sometimes explicit location passing is not enough since there are lots of territorial
conflicts in the world. How the API should behave when user coordinates lie within
disputed regions is a legal matter, regretfully. The author of this book once had to
implement a “state A territory according to state B official position” concept.

Important: mark a difference between localization for end users and localization for
developers. In the examples above, the localized_message field is meant for the
user; the app should show it if no specific handler for this error exists in the client
code. This message must be written in the user's language and formatted according
to the user's location. But the details.checks_failed[ ] .message is meant to be read
by developers examining the problem. So it must be written and formatted in a
manner that suits developers best — which usually means “in English,” as English is
a de facto standard in software development.

It is worth mentioning that the localized_ prefix in the examples is used to
differentiate messages to users from messages to developers. A concept like that
must be, of course, explicitly stated in your API docs.

And one more thing: all strings must be UTF-8, no exclusions.
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Chapter 14. Annex to Section I. Generic APl Example

Let's summarize the current state of our API study.

1. Offer Search



POST /v1/offers/search

{
// optional
"recipes": ["lungo", "americano"],
"position": <geographical coordinates>,
"sort_by": [ { "field": "distance" } ],
"limit": 1@

}
{
"results": [{
// Place data
"place": { "name", "location" },
// Coffee machine properties
"coffee-machine": { "id", "brand", "type"
// Route data
"route": {
"distance", "duration", "location_tip"
I
"offers": [{
// Recipe data
"recipe":
{ "id", "name", "description" },
// Recipe specific options
"options": { "volume" },
// Offer metadata
"offer": { "id", "valid_until" },
// Pricing
"pricing": {
"currency_code", "price",
"localized_price"
h
"estimated_waiting_time"
bl
ool
"cursor"




2. Working with Recipes

// Returns a list of recipes
// Cursor parameter is optional
GET /v1/recipes?cursor=<cursor>

{ "recipes", "cursor" }

// Returns the recipe by its id
GET /v1/recipes/{id}

-

{
"recipe_id",
"name",
"description”
¥

3. Working with Orders



// Creates an order
POST /v1/orders
X-Idempotency-Token: <token>
{
"coffee_machine_id",
"currency_code",
"price",
"recipe": "lungo",
// Optional
"offer_id",
// Optional
"volume": "806ml"

~

"order_id" }

// Returns the order by its id
GET /v1/orders/{id}

{ "order_id", "status" }

// Cancels the order
POST /v1/orders/{id}/cancel

4. Working with Programs



// Returns an identifier of the program
// corresponding to specific recipe

// on specific coffee-machine

POST /v1/program-matcher

{ "recipe", "coffee-machine" }

{ "program_id" }

// Return program description
// by its id
GET /v1/programs/{id}
{
"program_id",
"api_type",
"commands": [
{
"sequence_id",
"type": "set_cup",
"parameters"

h

5. Running Programs



// Runs the specified program
// on the specified coffee-machine
// with specific parameters
POST /v1/programs/{id}/run
X-Idempotency-Token: <token>
{
"order_id",
"coffee_machine_id",
"parameters”: [
{
"name": "volume",
"value": "806ml"

{ "program_run_id" }

// Stops program running
POST /v1/runs/{id}/cancel

6. Managing Runtimes

// Creates a new runtime
POST /v1/runtimes
X-Idempotency-Token: <token>
{
"coffee_machine_id",
"program_id",

"parameters"

{ "runtime_id", "state" }




// Returns the state

// of the specified runtime

GET /v1/runtimes/{runtime_id}/state

{
"status": "ready_waiting",
// Command being currently executed
// (optional)
"command_sequence_id",
"resolution”: "success",
"variables"

// Terminates the runtime
POST /v1/runtimes/{id}/terminate




SECTION II. THE APl PATTERNS

Chapter 15. On Design Patterns in the API Context

The concept of “patterns” in the field of software engineering was introduced by
Kent Beck and Ward Cunningham in 1987 and popularized by “The Gang of Four”
(Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides) in their book
“Design Patterns: Elements of Reusable Object-Oriented Software,” which was
published in 19942. According to the most widespread definition, a software design
pattern is a “general, reusable solution to a commonly occurring problem within a
given context.

If we talk about APIs, especially those to which developers are end users (e.g.,
frameworks or operating system interfaces), the classical software design patterns
are well applicable to them. Indeed, many examples in the previous Section of this
book are just about applying some design patterns.

However, if we try to extend this approach to include API development in general,
we will soon find that many typical API design issues are high-level and can't be
reduced to basic software patterns. Let's say, caching resources (and invalidating the
cache) or organizing paginated access are not covered in classical writings.

In this Section, we will specify those API design problems that we see as the most
important ones. We are not aiming to encompass every problem, let alone every
solution, and rather focus on describing approaches to solving typical problems
with their pros and cons. We do understand that readers familiar with the works of
“The Gang of Four,” Grady Booch, and Martin Fowler might expect a more
systematic approach and greater depth of outreach from a section called “The API
Patterns,” and we apologize to them in advance.

NB: The first such pattern we need to mention is the API-first approach to software
engineering, which we described in the corresponding chapter.

The Fundamentals of Solving Typical APl Design Problems

Before we proceed to the patterns, we need to understand first, how developing
APIs differs from developing other kinds of software. Below, we will formulate
three important concepts, which we will be referring to in the subsequent chapters.



1.The more distributed and multi-faceted systems are built and the more
general-purpose channels of communication are used, the more errors occur
in the process of interaction. In the most interesting case of distributed
many-layered client-server systems, raising an exception on the side of a
client (like losing context as a result of app crash and restart), server (the
pipeline of executing a query threw at some stage), communication channel
(connection fully or partially lost), or any other interim agent (intermediate
web-server hasn't got a response from backend and returned a gateway error)
is a norm of life, and all systems must be designed in a manner that in a case
of an exception of any kind, API clients must be able to restore their state and
continue operating normally.

2.The more partners use the API, the more chance is that some of the
mechanisms of the expected workflow are implemented wrongly. In other
words, not only genuine errors related to network or server overload should
be expected, but also logical ones caused by improper API usage (and, in
particular, there should be safeguards to avoid errors in one partner's code
leading to a denial of service for other partners).

3. Any part of the system might introduce unpredictable latencies when serving
requests, and these latencies could be quite high, up to seconds and tens of
seconds. Even if you have full control over the execution environment and
network, client apps may hinder themselves due to suboptimal code or
execution on low-performing or overloaded devices. As a result, it is
important to ensure that proper API design does not rely on critical
operations being executed quickly. This includes:

o If carrying out a task through the API requires making a sequence of
calls, there should be a mechanism in place to resume the operation
from the current step if needed, instead of restarting it from the
beginning.

o Operations that affect shared resources should have locking
mechanisms in place for the duration of the operation.
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Chapter 16. Authenticating Partners and Authorizing API Calls

Before we proceed further to discussing technical matters, we feel obliged to
provide an overview of the problems related to authorizing API calls and
authenticating clients. Based on the main principle that “an API serves as a
multiplier to both your opportunities and mistakes,” organizing authorization and
authentication (AA) is one of the most important challenges that any API vendor
faces, especially when it comes to public APIs. It is rather surprising that there is no
standard approach to this issue, as every big vendor develops its own interface to
solve AA problems, and these interfaces are often quite archaic.

If we set aside implementation details (for which we strongly recommend not
reinventing the wheel and using standard techniques and security protocols), there
are basically two approaches to authorizing an API call:

¢ Introducing a special “robot” type of account into the system, and carrying
out the operations on behalf of the robot account.

e Authorizing the caller system (backend or client application) as a single
entity, using API keys, signatures, or certificates for the purpose of
authenticating such calls.

The difference between the two approaches lies in the access granularity:

e Ifan API client is making requests as a regular user of the system, then it can
only perform operations allowed for a specific user, which often means it
might have access only to a partial dataset within the API endpoint.

o If the caller system is authorized, it implies that it has full access to the
endpoint and can supply any parameters, i.e., might operate the full dataset
exposed through the endpoint.

Therefore, the first approach is more granular (the robot might be a “virtual
employee” with access only to a limited dataset) and is a natural choice for APIs that
are supplemental to an existing service for end users (and thus can reuse the
existing AA solutions). However, this approach has some disadvantages:

¢ The need to develop a process for securely fetching authorization tokens for
the robot user (e.g., via having a real user generate tokens in the web UI), as
regular login-password authentication (especially multi-factored) is not well-
suited for API clients.



e The need to make exceptions for robot users in almost every security
protocol:

o Robots might make many more requests per second than real users and
might perform several queries in parallel (possibly from different IP
addresses located in different availability zones).

o Robots do not accept cookies and cannot solve captchas.

o Robots should not be logged out or have their token invalidated (as it
would impact the partner's business processes), so it is usually
necessary to invent specific long-lived tokens for robots and/or token
renewal procedures.

¢ Finally, you may encounter significant challenges if you need to allow robots
to perform operations on behalf of other users (as you will have to either
expose this functionality to all users or, vice versa, hide its existence from
them).

If the API is not about providing additional access to a service for end users, it is
usually much easier to opt for the second approach and authorize clients with API
keys. In this case, per-endpoint granularity can be achieved (i.e., allowing partners
to regulate the set of permitted endpoints for a key), while developing more
granular access can be much more complex and because of that rarely see
implementations.

Both approaches can be morphed into each other (e.g., allowing robot users to
perform operations on behalf of any other users effectively becomes API key-based
authorization; allowing binding of a limited dataset to an API key effectively
becomes a user account), and there are some hybrid systems in the wild (where the
request must be signed with both an API key and a user token).



Chapter 17. Synchronization Strategies

Let's proceed to the technical problems that API developers face. We begin with the
last one described in the introductory chapter: the necessity to synchronize states.
Let us imagine that a user creates a request to order coffee through our API. While
this request travels from the client to the coffee house and back, many things might
happen. Consider the following chain of events:

1. The client sends the order creation request

2. Because of network issues, the request propagates to the server very slowly,
and the client gets a timeout

o Therefore, the client does not know whether the query was served or
not.

3.The client requests the current state of the system and gets an empty
response as the initial request still hasn't reached the server:

let pendingOrders = await
api.getOngoingOrders(); // - []

4.The server finally gets the initial request for creating an order and serves it.

5. The client, being unaware of this, tries to create an order anew.

As the operations of reading the list of ongoing orders and of creating a new order
happen at different moments of time, we can't guarantee that the system state
hasn't changed in between. If we do want to have this guarantee, we must
implement some synchronization strategy’. In the case of, let's say, operating
system APIs or client frameworks we might rely on the primitives provided by the
platform. But in the case of distributed client-server APIs, we would need to
implement such a primitive of our own.

There are two main approaches to solving this problem: the pessimistic one
(implementing locks in the API) and the optimistic one (resource versioning).

NB: Generally speaking, the best approach to tackling an issue is not having the
issue at all. Let's say, if your API is idempotent, the duplicating calls are not a
problem. However, in the real world, not every operation is idempotent; for
example, creating new orders is not. We might add mechanisms to prevent



automatic retries (such as client-generated idempotency tokens) but we can't forbid
users from just creating a second identical order.

API Locks

The first approach is to literally implement standard synchronization primitives at
the API level. Like this, for example:

let lock;

try {

// Capture the exclusive

// right to create new orders

lock = await api.
acquireLock (ORDER_CREATION) ;

// Get the list of current orders

// known to the system

let pendingOrders = await
api.getPendingOrders();

// If our order is absent,

// create it

if (pendingOrders.length == @) {
let order = await api

.createOrder(..)

}

catch (e) {

// Deal with errors

finally {

// Unblock the resource

-~

-

await lock.release();

Rather unsurprisingly, this approach sees very rare use in distributed client-server
APIs because of the plethora of related problems:

1. Waiting for acquiring a lock introduces new latencies to the interaction that
are hardly predictable and might potentially be quite significant.



2. The lock itself is one more entity that constitutes a subsystem of its own, and
quite a demanding one as strong consistency? is required for implementing
locks: the getPendingOrders function must return the up-to-date state of the
system otherwise the duplicate order will be anyway created.

3.As it's partners who develop client code, we can't guarantee it works with
locks always correctly. Inevitably, “lost” locks will occur in the system, and
that means we need to provide some tools to partners so they can find the
problem and debug it.

4. A certain granularity of locks is to be developed so that partners can't affect
each other. We are lucky if there are natural boundaries for a lock — for
example, if it's limited to a specific user in the specific partner's system. If we
are not so lucky (let's say all partners share the same user profile), we will
have to develop even more complex systems to deal with potential errors in
the partners' code — for example, introduce locking quotas.

Optimistic Concurrency Control

A less implementation-heavy approach is to develop an optimistic concurrency
control3 system, i.e., to require clients to pass a flag proving they know the actual
state of a shared resource.



// Retrieve the state
let orderState =
await api.getOrderState();
// The version is a part
// of the state of the resource
let version =
orderState.latestVersion;
// An order might only be created
// if the resource version hasn't
// changed since the last read
try {
let task = await api
.createOrder(version, ..);
} catch (e) {
// If the version is wrong, i.e.,
// another client changed the
// resource state, an error occurs
if (Type(e) == INCORRECT_VERSION) {
// Which should be handled..

NB: An attentive reader might note that the necessity to implement some
synchronization strategy and strongly consistent reading has not disappeared:
there must be a component in the system that performs a locking read of the
resource version and its subsequent change. It's not entirely true as
synchronization strategies and strongly consistent reading have disappeared from
the public API. The distance between the client that sets the lock and the server that
processes it became much smaller, and the entire interaction now happens in a
controllable environment. It might be a single subsystem in the form of an ACID-
compatible4 database or even an in-memory solution.

Instead of a version, the date of the last modification of the resource might be used
(which is much less reliable as clocks are not ideally synchronized across different
system nodes; at least save it with the maximum possible precision!) or entity
identifiers (ETags).



The advantage of optimistic concurrency control is therefore the possibility to hide
under the hood the complexity of implementing locking mechanisms. The
disadvantage is that the versioning errors are no longer exceptional situations —
it's now a regular behavior of the system. Furthermore, client developers must
implement working with them otherwise the application might render inoperable
as users will be infinitely creating an order with the wrong version.

NB: Which resource to select for making versioning is extremely important. If in
our example we create a global system version that is incremented after any order
comes, users' chances to successfully create an order will be close to zero.
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Chapter 18. Eventual Consistency

The approach described in the previous chapter is in fact a trade-off: the API
performance issues are traded for “normal” (i.e., expected) background errors that
happen while working with the API. This is achieved by isolating the component
responsible for controlling concurrency and only exposing read-only tokens in the
public API. Still, the achievable throughput of the API is limited, and the only way
of scaling it up is removing the strict consistency from the external API and thus
allowing reading system state from read-only replicas:

// Reading the state,
// possibly from a replica
let orderState =
await api.getOrderState();
let version =
orderState.latestVersion;
try {
// The request handler will
// read the actual version
// from the master data
let task = await api
.createOrder(version, ..);
} catch (e) {

As orders are created much more rarely than read, we might significantly increase
the system performance if we drop the requirement of returning the most recent
state of the resource from the state retrieval endpoints. The versioning will help us
avoid possible problems: creating an order will still be impossible unless the client
has the actual version. In fact, we transited to the eventual consistency' model: the
client will be able to fulfill its request sometime when it finally gets the actual data. In
modern microservice architectures, eventual consistency is rather an industrial
standard, and it might be close to impossible to achieve the opposite, i.e., strict
consistency.



NB: Let us stress that you might choose the approach only in the case of exposing
new APIs. If you're already providing an endpoint implementing some consistency
model, you can't just lower the consistency level (for instance, introduce eventual
consistency instead of the strict one) even if you never documented the behavior.
This will be discussed in detail in the “On the Waterline of the Iceberg” chapter of
“The Backward Compatibility” section of this book.

Choosing weak consistency instead of a strict one, however, brings some
disadvantages. For instance, we might require partners to wait until they get the
actual resource state to make changes — but it is quite unobvious for partners (and
actually inconvenient) they must be prepared to wait for changes they made
themselves to propagate.

// Creates an order
let api = await api
.createOrder(..)

// Returns a list of orders
let pendingOrders = await api.
getOngoingOrders(); // — []

// The list is empty

If strict consistency is not guaranteed, the second call might easily return an empty
result as it reads data from a replica, and the newest order might not have hit it yet.

An important pattern that helps in this situation is implementing the “read-your-
writes2” model, i.e., guaranteeing that clients observe the changes they have just
made. The consistency might be lifted to the read-your-writes level by making
clients pass some token that describes the last changes known to the client.



let der = await api
.createOrder(..);
let pendingOrders = await api.
getOngoingOrders({
// Pass the identifier of the
// last operation made by
// the client
last_known_order_id: order.id

)

Such a token might be:

¢ An identifier (or identifiers) of the last modifying operations carried out by
the client

e The last known resource version (modification date, ETag) known to the
client.

Upon getting the token, the server must check that the response (e.g., the list of
ongoing operations it returns) matches the token, i.e., the eventual consistency
converged. If it did not (the client passed the modification date / version / last order
id newer than the one known to the server), one of the following policies or their
combinations might be applied:

o The server might repeat the request to the underlying DB or to the other kind
of data storage in order to get the newest version (eventually)

o The server might return an error that requires the client to try again later

e The server queries the main node of the DB, if such a thing exists, or
otherwise initiates retrieving the master data.

The advantage of this approach is client development convenience (compared to the
absence of any guarantees): by preserving the version token, client developers get
rid of the possible inconsistency of the data got from API endpoints. There are two
disadvantages, however:

e It is still a trade-off between system scalability and a constant inflow of
background errors:



o If youre querying master data or repeating the request upon the
version mismatch, the load on the master storage is increased in poorly
a predictable manner
o Ifyoureturn a client error instead, the number of such errors might be
considerable, and partners will need to write some additional code to
deal with the errors.
e This approach is still probabilistic, and will only help in a limited number of
use cases (to be discussed below).

There is also an important question regarding the default behavior of the server if
no version token was passed. Theoretically, in this case, master data should be
returned, as the absence of the token might be the result of an app crash and
subsequent restart or corrupted data storage. However, this implies an additional
load on the master node.

Evaluating the Risks of Switching to Eventual Consistency

Let us state an important assertion: the methods of solving architectural problems
we're discussing in this section are probabilistic. Abolishing strict consistency
means that even if all components of the system work perfectly, client errors will
still occur. It might appear that they could be simply ignored, but in reality, doing so
means introducing risks.

Imagine that because of eventual consistency, users of our API sometimes cannot
create orders with their first attempt. For example, a customer adds a new payment
method in the application, but their subsequent order creation request is routed to a
replica that hasn't yet received the information regarding the newest payment
method. As these two actions (adding a bank card and making an order) often go in
conjunction, there will be a noticeable percentage of errors — let's say, 1%. At this
stage, we could disregard the situation as it appears harmless: in the worst-case
scenario, the client will repeat the request.

But let's go a bit further and imagine there is an error in a new version of the
application, and 0.1% of end users cannot make an order at all because the client
sends a wrong payment method identifier. In the absence of this 1% background
noise of consistency-bound errors, we would find the issue very quickly. However,
amidst this constant inflow of errors, identifying problems like this one could be
very challenging as it requires configuring monitoring systems to reliably exclude
the data consistency errors, and this could be very complicated or even impossible.
The author of this book, in his job, has seen several situations when critical
mistakes that affect a small percentage of users were not noticed for months.



Therefore, the task of proactively lowering the number of these background errors
is crucially important. We may try to reduce their occurrence for typical usage
profiles.

NB: The “typical usage profile” stipulation is important: an API implies the
variability of client scenarios, and API usage cases might fall into several groups,
each featuring quite different error profiles. The classical example is client APIs
(where it's an end user who makes actions and waits for results) versus server APIs
(where the execution time is per se not so important — but let's say mass parallel
execution might be). If this happens, it's a strong signal to make a family of API
products covering different usage scenarios, as we will discuss in “The API Services
Lineup” chapter of “The API Product” section of this book.

Let's return to the coffee example, and imagine we implemented the following
scheme:

e Optimistic concurrency control (through, let's say, the id of the last user's
order)

e The “read-your-writes” policy of reading the order list (again with passing
the last known order id as a token)

e Retrieving master data in the case the token is absent.

In this case, the order creation error might only happen in one of the two cases:

e The client works with the data incorrectly (does not preserve the identifier of
the last order or the idempotency key while repeating the request)

o The client tries to create an order from two different instances of the app that
do not share the common state.

The first case means there is a bug in the partner's code; the second case means that
the user is deliberately testing the system's stability — which is hardly a frequent
case (or, let's say, the user's phone went off and they quickly switched to a tablet —
rather rare case as well, we must admit).

Let's now imagine that we dropped the third requirement — i.e., returning the
master data if the token was not provided by the client. We would get the third case
when the client gets an error:

¢ The client application lost some data (restarted or corrupted), and the user
tries to replicate the last request.



NB: The repeated request might happen without any automation involved if, let's
say, the user got bored of waiting, killed the app and manually re-orders the coffee
again.

Mathematically, the probability of getting the error is expressed quite simply. It's
the ratio between two durations: the time period needed to get the actual state to the
time period needed to restart the app and repeat the request. (Keep in mind that the
last failed request might be automatically repeated on startup by the client.) The
former depends on the technical properties of the system (for instance, on the
replication latency, i.e., the lag between the master and its read-only copies) while
the latter depends on what client is repeating the call.

If we talk about applications for end users, the typical restart time there is
measured in seconds, which normally should be much less than the overall
replication latency. Therefore, client errors will only occur in case of data
replication problems / network issues / server overload.

If, however, we talk about server-to-server applications, the situation is totally
different: if a server repeats the request after a restart (let's say because the process
was killed by a supervisor), it's typically a millisecond-scale delay. And that means
that the number of order creation errors will be significant.

As a conclusion, returning eventually consistent data by default is only viable if an
API vendor is either ready to live with background errors or capable of making the
lag of getting the actual state much less than the typical app restart time.
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Chapter 19. Asynchronicity and Time Management

Let's continue working with the previous example: the application retrieves some
system state upon start-up, perhaps not the most recent one. What else does the
probability of collision depend on, and how can we lower it?

We remember that this probability is equal to the ratio of time periods: getting an
actual state versus starting an app and making an order. The latter is almost out of
our control (unless we deliberately introduce additional waiting periods in the API
initialization function, which we consider an extreme measure). Let's then talk
about the former.

Our usage scenario looks like this:

let pendingOrders = await api.
getOngoingOrders();
if (pendingOrders.length == 8) {
let order = await api
.createOrder(..);

// App restart happens here,

// and all the same requests

// are repeated

let pendingOrders = await api.
getOngoingOrders(); // — []

if (pendingOrders.length == 8) {
let order = await api

.createOrder(..);

Therefore, we're trying to minimize the following interval: network latency to
deliver the createOrder call plus the time of executing the createOrder plus the
time needed to propagate the newly created order to the replicas. We don't control
the first summand (but we might expect the network latencies to be more or less
constant during the session duration, so the next getOngoingOrders call will be



delayed for roughly the same time period). The third summand depends on the
infrastructure of the backend. Let's talk about the second one.

As we can see if the order creation itself takes a lot of time (meaning that it is
comparable to the app restart time) then all our previous efforts were useless. The
end user must wait until they get the server response back and might just restart
the app to make a second createOrder call. It is in our best interest to ensure this
never happens.

However, what we could do to improve this timing remains unclear. Creating an
order might indeed take a lot of time as we need to carry out necessary checks and
wait for the payment gateway response and confirmation from the coffee shop.

What could help us here is the asynchronous operations pattern. If our goal is to
reduce the collision rate, there is no need to wait until the order is actually created as
we need to quickly propagate the knowledge that the order is accepted for creation. We
might employ the following technique: create a task for order creation and return its
identifier, not the order itself.

let pendingOrders = await api.
getOngoingOrders();
if (pendingOrders.length == @) {
// Instead of creating an order,
// put the task for the creation
let task = await api
.putOrderCreationTask(..);

// App restart happens here,
// and all the same requests
// are repeated
let pendingOrders = await api.
getOngoingOrders();
// - { tasks: [task] }




Here we assume that task creation requires minimal checks and doesn't wait for any
lingering operations, and therefore, it is carried out much faster. Furthermore, this
operation (of creating an asynchronous task) might be isolated as a separate
backend service for performing abstract asynchronous tasks. By having the
functionality of creating tasks and retrieving the list of ongoing tasks we can
significantly narrow the “gray zones” when clients can't learn the actual system
state precisely.

Thus we naturally came to the pattern of organizing asynchronous APIs through
task queues. Here we use the term “asynchronous” logically meaning the absence of
mutual logical locks: the party that makes a request gets a response immediately and
does not wait until the requested procedure is fully carried out being able to
continue to interact with the API. Technically in modern application environments,
locking (of both the client and server) almost universally doesn't happen during
long-responding calls. However, logically allowing users to work with the API while
waiting for a response from a modifying endpoint is error-prone and leads to
collisions like the one we described above.

The asynchronous call pattern is useful for solving other practical tasks as well:

e Caching operation results and providing links to them (implying that if the
client needs to reread the operation result or share it with another client, it
might use the task identifier to do so)

¢ Ensuring operation idempotency (through introducing the task confirmation
step we will actually get the draft-commit system as discussed in the
“Describing Final Interfaces” chapter)

¢ Naturally improving resilience to peak loads on the service as the new tasks
will be queuing up (possibly prioritized) in fact implementing the “token
bucket” technique!

e Organizing interaction in the cases of very long-lasting operations that
require more time than typical timeouts (which are tens of seconds in the
case of network calls) or can take unpredictable time.

Also, asynchronous communication is more robust from a future API development
point of view: request handling procedures might evolve towards prolonging and
extending the asynchronous execution pipelines whereas synchronous handlers
must retain reasonable execution times which puts certain restrictions on possible
internal architecture.



NB: In some APIs, an ambivalent decision is implemented where endpoints feature
a double interface that might either return a result or a link to a task. Although from
the API developer's point of view, this might look logical (if the request was
processed “quickly”, e.g., served from cache, the result is to be returned
immediately; otherwise, the asynchronous task is created), for API consumers, this
solution is quite inconvenient as it forces them to maintain two execution branches
in their code. Sometimes, a concept of providing a double set of endpoints
(synchronous and asynchronous ones) is implemented, but this simply shifts the
burden of making decisions onto partners.

The popularity of the asynchronicity pattern is also driven by the fact that modern
microservice architectures “under the hood” operate in asynchronous mode
through event queues or pub/sub middleware. Implementing an analogous
approach in external APIs is the simplest solution to the problems caused by
asynchronous internal architectures (the unpredictable and sometimes very long
latencies of propagating changes). Ultimately, some API vendors make all API
methods asynchronous (including the read-only ones) even if there are no real
reasons to do so.

However, we must stress that excessive asynchronicity, though appealing to API
developers, implies several quite objectionable disadvantages:

1.If a single queue service is shared by all endpoints, it becomes a single point
of failure for the system. If unpublished events are piling up and/or the event
processing pipeline is overloaded, all the API endpoints start to suffer.
Otherwise, if there is a separate queue service instance for every functional
domain, the internal architecture becomes much more complex, making
monitoring and troubleshooting increasingly costly.

2. For partners, writing code becomes more complicated. It is not only about the
physical volume of code (creating a shared component to communicate with
queues is not that complex of an engineering task) but also about anticipating
every endpoint to possibly respond slowly. With synchronous endpoints, we
assume by default that they respond within a reasonable time, less than a
typical response timeout (which, for client applications, means that just a
spinner might be shown to a user). With asynchronous endpoints, we don't
have such a guarantee as it's simply impossible to provide one.

3.Employing task queues might lead to some problems specific to the queue
technology itself, i.e., not related to the business logic of the request handler:

o Tasks might be “lost” and never processed



o Events might be received in the wrong order or processed twice, which
might affect public interfaces

o Under the task identifier, wrong data might be published
(corresponding to some other task) or the data might be corrupted.

These issues will be totally unexpected by developers and will lead to bugs in
applications that are very hard to reproduce.

4.As a result of the above, the question of the viability of such an SLA level
arises. With asynchronous tasks, it's rather easy to formally make the API
uptime 100.00% — just some requests will be served in a couple of weeks
when the maintenance team finds the root cause of the delay. Of course, that's
not what API consumers want: their users need their problems solved now or
at least in a reasonable time, not in two weeks.

Therefore, despite all the advantages of the approach, we tend to recommend
applying this pattern only to those cases when they are really needed (as in the
example we started with when we needed to lower the probability of collisions) and
having separate queues for each case. The perfect task queue solution is the one that
doesn't look like a task queue. For example, we might simply make the “order
creation task is accepted and awaits execution” state a separate order status and
make its identifier the future identifier of the order itself:

let pendingOrders = await api.
getOngoingOrders();
if (pendingOrders.length == 8) {
// Don't call it a “task”,
// just create an order
let order = await api
.createOrder(..);




// App restart happens here,
// and all the same requests
// are repeated
let pendingOrders = await api.
getOngoingOrders();
/* — { orders: [{
order_id: <task identifier>,

status: "new

Y o*/

NB: Let us also mention that in the asynchronous format, it's possible to provide not
only binary status (task done or not) but also execution progress as a percentage if
needed.
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Chapter 20. Lists and Accessing Them

In the previous chapter, we concluded with the following interface that allows
minimizing collisions while creating orders:

let pendingOrders = await api
.getOngoingOrders();
{ orders: [{
order_id: <task identifier>,

status: "new

o1}

However, an attentive reader might notice that this interface violates the
recommendation we previously gave in the “Describing Final Interfaces” chapter:
the returned data volume must be limited, but there are no restrictions in our
design. This problem was already present in the previous versions of the endpoint,
but abolishing asynchronous order creation makes it much worse. The task creation
operation must work as quickly as possible, and therefore, almost all limit checks
are to be executed asynchronously. As a result, a client might easily create a large
number of ongoing tasks which would potentially inflate the size of the
getOngoingOrders response.

NB: Having no limit at all on order task creation is unwise, and there must be some
(involving as lightweight checks as possible). Let us, however, focus on the response
size issue in this chapter.

Fixing this problem is rather simple: we might introduce a limit for the items
returned in the response, and allow passing filtering and sorting parameters, like
this:



api.getOngoingOrders({

// The “limit’ parameter

// is optional, but there is

// a reasonable default value

limit: 100,

parameters: {

order_by: [{

field: "created_iso_time",
direction: "desc"

}H

})

However, introducing limits leads to another issue: if the number of items to return
is higher than the limit, how would clients access them?

The standard approach is to add an offset parameter or a page number:

api.getOngoingOrders({
// The "limit" parameter
// is optional, but there is
// a reasonable default value
limit: 100,
// The default value is @
offset: 100,
parameters

)

With this approach, however, other problems arise. Let us imagine three orders are
being processed on behalf of the user:



{
"id": 3,
"created_iso_time":

"status": "new

oA
"id": 2,
"created_iso_time":

"status": "new"

oA
"id": 1,
"created_iso_time":

" "

"status": "new

}

"2022-12-22T715:35",

"2022-12-22T15:34",

"2022-12-22T715:33",

A partner application requested the first page of the list:

api.getOrders({
limit: 2,
parameters: {
order_by: [{
field:
direction:

}H

)

"orders": [{
"id": 3,
hoA
"id": 2,
H

"created_iso_time",
"desc"




Then the application requests the second page ("limit": 2, "offset": 2) and
expects to retrieve the order with "id": 1. However, during the interval between
the requests, another order, with "id": 4, happened.

{
"id": 4,
"created_iso_time": "2022-12-22T15:36",
"status": "new"

oA
"id": 3,
"created_iso_time": "2022-12-22T15:35",
"status": "new"

boA
"id": 2,
"created_iso_time": "2022-12-22T15:34",
"status": "ready"

oA
"id": 1,
"created_iso_time": "2022-12-22T15:33",
"status": "new"

3]

Then upon requesting the second page of the order list, instead of getting exactly
one order with "id": 1, the application will get the "id": 2 order once again:



api.getOrders({
limit: 2,
offset: 2
parameters
1)
{
"orders": [{
"id": 2,
oA
"id": 1,
3
}

These permutations are rather inconvenient in user interfaces (if let's say, the
partner's accountant is requesting orders to calculate fees, they might easily
overlook the duplicate identifiers and process one order twice). But in the case of
programmable integrations, the situation becomes even more complicated: the
application developer needs to write rather unobvious code (which preserves the
information regarding which pages were already processed) to carry out this
enumeration correctly.

The problem might easily become even more sophisticated. For example, if we add
sorting by two fields, creation date and order status:



api.getOrders({
limit: 2,
parameters: {
order_by: [{
field: "status",
direction: "desc"
BoA
field: "created_iso_time",

direction: "desc"

3]

}

3
{

"orders": [{
"id": 3,
"status": "new"

oA
"id": 2,
"status": "new"

H

}

Imagine, that in between requesting the first and the second pages, the "id": 1
order changed its status and moved to the top of the list. Upon requesting the

second page, the partner application will only receive the "id": 2 order (for the

second time) and miss the "id": 1 completely — and there is no method to learn

this fact!

Let us reiterate: this approach works poorly with visual interfaces, but with
program ones, it inevitably leads to mistakes. An API must provide methods of
traversing large lists that guarantee clients can retrieve the full and consistent

dataset.

If we don't go into implementation details, we can identify three main patterns of

realizing such traversing, depending on how the data itself is organized.

Immutable Lists



The easiest case is with immutable lists, i.e., when the set of items never changes.
The 1imit/offset scheme then works perfectly and no additional tricks are needed.
Unfortunately, this rarely happens in real subject areas.

Additive Lists, Inmutable Data

The case of a list with immutable items and the operation of adding new ones is
more typical. Most notably, we talk about event queues containing, for example,
new messages or notifications. Let's imagine there is an endpoint in our coffee API
that allows partners to retrieve the history of offers:

GET /v1/partners/{id}/offers/history«
?limit=<limit>
{
"offer_history": [{
// A list item identifier
"id",
// An identifier of the user
// that got the offer
"user_id",
// Date and time of the search
"occurred_at",
// The search parameter values
// set by the user
"search_parameters”,
// The offers that the user got
"offers"
H
}

The data returned from this endpoint is naturally immutable because it reflects a
completed action: a user searched for offers and received a response. However, new
items are continuously added to the list, potentially in large chunks, as users might
make multiple searches in succession.

Partners can utilize this data to implement various features, such as:



I.Real-time user behavior analysis (e.g., sending push notifications with
discount codes to encourage users to convert offers to orders)
2. Statistical analysis (e.g., calculating conversion rates per hour).

To enable these scenarios, we need to expose through the API two operations with
the offer history:

1. For the first task, the real-time fetching of new offers that were made since
the last request.

2. For the second task, traversing the list, i.e., retrieving all queries until some
condition is reached (possibly, the end of the list).

Both scenarios are covered with the 1imit/offset approach but require significant
effort to write code properly as partners need to somehow align their requests with
the rate of incoming queries. Additionally, note that using the limit/offset scheme
makes caching impossible as repeating requests with the same limit/offset values
will emit different results.

To solve this issue, we need to rely not on an attribute that constantly changes (such
as the item position in the list) but on other anchors. The important rule is that this
attribute must provide the possibility to unambiguously tell which list elements are
“newer” compared to the given one (i.e., precede it in the list) and which are “older”.

If the data storage we use for keeping list items offers the possibility of using
monotonically increased identifiers (which practically means two things: (1) the DB
supports auto-incremental columns and (2) there are insert locks that guarantee
inserts are performed sequentially), then using the monotonous identifier is the
most convenient way of organizing list traversal:

// Retrieve the records that precede

// the one with the given id

GET /v1/partners/{id}/offers/history«
?newer_than=<item_id>&limit=<limit>

// Retrieve the records that follow

// the one with the given id

GET /v1/partners/{id}/offers/history<
?0lder_than=<item_id>&limit=<limit>




The first request format allows for implementing the first scenario, i.e., retrieving
the fresh portion of the data. Conversely, the second format makes it possible to
consistently iterate over the data to fulfill the second scenario. Importantly, the
second request is cacheable as the tail of the list never changes.

NB: In the “Describing Final Interfaces” chapter we recommended avoiding
exposing incremental identifiers in publicly accessible APIs. Note that the scheme
described above might be augmented to comply with this rule by exposing some
arbitrary secondary identifiers. The requirement is that these identifiers might be
unequivocally converted into monotonous ones.

Another possible anchor to rely on is the record creation date. However, this
approach is harder to implement for the following reasons:

o Creation dates for two records might be identical, especially if the records are
mass-generated programmatically. In the worst-case scenario, it might
happen that at some specific moment, more records were created than one
request page contains making it impossible to traverse them.

e If the storage supports parallel writing to several nodes, the most recently
created record might have a slightly earlier creation date than the second-
recent one because clocks on different nodes might tick slightly differently,
and it is challenging to achieve even microsecond-precision coherence.! This
breaks the monotonicity invariant, which makes it poorly fit for use in public
APIs. If there is no other choice but relying on such storage, one of two evils is
to be chosen:

o Introducing artificial delays, i.e., returning only items created earlier
than N seconds ago, selecting this N to be certainly less than the clock
irregularity. This technique also works in the case of asynchronously
populated lists. Keep in mind, however, that this solution is
probabilistic, and wrong data will be served to clients in case of
backend synchronization problems.

o Describe the instability of ordering list items in the docs (and thus
make partners responsible for solving arising issues).

Often, the interfaces of traversing data through stating boundaries are generalized
by introducing the concept of a “cursor”:



// Initiate list traversal
POST /v1/partners/{id}/offers/history

/search
{

"order_by": [{
"field": "created",
"direction": "desc"

H

}
{

"cursor": "TmluZSBQcmluY2VzIGLuIEFtYmVy"

// Get the next data chunk

GET /v1/partners/{id}/offers/history«
?cursor=TmluZSBQcmluY2VzIGLuIEFtYmVy«<
&limit=100

"items": [..],
// Pointer to the next data chunk
"cursor": "R3VucyBvZiBBdmFsb24"

A cursor might be just an encoded identifier of the last record or it might comprise
all the searching parameters. One advantage of using cursors instead of exposing
raw monotonous fields is the possibility to change the underlying technology. For
example, you might switch from using an auto-incremental key to using the date of
the last known record's creation without breaking backward compatibility. (That's
why cursors are usually opaque strings: providing readable cursors would mean
that you now have to maintain the cursor format even if you never documented it.
It's better to return cursors encrypted or at least coded in a form that will not arise
the desire to decode it and experiment with parameters.)



The cursor-based approach also allows adding new filters and sorting directions in
a backward-compatible manner — provided you organize the data in a way that
cursor-based traversal will continue working.

// Initialize list traversal
POST /v1/partners/{id}/offers/history+

/search
{
// Add a filter by the recipe
"filter": {
"recipe": "americano"
I

// Add a new sorting mode
// by the distance from some
// location
"order_by": [{
"mode": "distance",
"location": [-86.2, 39.8]

H
}
{
"items": [..],
"cursor":
"Q29mZmV1IGFuUZCBDb256ZW1wbGFBaWou"
}

A small footnote: sometimes, the absence of the next-page cursor in the response is
used as a flag to signal that iterating is over and there are no more elements in the
list. However, we would rather recommend not using this practice and always
returning a cursor even if it points to an empty page. This approach allows for
adding the functionality of dynamically inserting new items at the end of the list.

NB: In some articles, organizing list traversals through monotonous identifiers /
creation dates / cursors is not recommended because it is impossible to show a page
selection to the end user and allow them to choose the desired result page. However,
we should consider the following:



¢ This case, of showing a pager and selecting a page, makes sense for end-user
interfaces only. It's unlikely that an API would require access to random data
pages.

o If we talk about the internal API for an application that provides the Ul
control element with a pager, the proper approach is to prepare the data for
this control element on the server side, including generating links to pages.

e The boundary-based approach doesn't mean that using limit/offset
parameters is prohibited. It is quite possible to have a double interface that
would respond to both GET /items?cursor=.. and GET /items?offset=..
&limit=..queries.

o Finally, if the need to have access to an arbitrary data page in the Ul exists, we
need to ask ourselves a question: what is the user's problem that we're solving
with this UI? Most likely, users are searching for something, such as a specific
list item or where they were the last time they worked with the list. Specific
Ul control elements to help them will be likely more convenient than a pager.

The General Case

Unfortunately, it is not universally possible to organize the data in a way that would
not require mutable lists. For example, we cannot paginate the list of ongoing
orders consistently because orders change their status and randomly enter and
leave this list. In these general scenarios, we need to focus on the use cases for
accessing the data.

Sometimes, the task can be reduced to an immutable list if we create a snapshot of
the data. In many cases, it is actually more convenient for partners to work with a
snapshot that is current for a specific date as it eliminates the necessity of taking
ongoing changes into account. This approach works well with accessing “cold” data
storage by downloading chunks of data and putting them into “hot” storage upon
request.



POST /v1/orders/archive/retrieve
{
"created_iso_date": {
"from": "1980-01-01",
"to": "1990-01-01"
}
}
{
"task_id": <an identifier of
a task to retrieve the data>
}

The disadvantage of this approach is also clear: it requires additional (sometimes
quite considerable) computational resources to create and store a snapshot (and
therefore requires a separate tariff). And we actually haven't solved the problem:
though we don't expose the real-time traversal functionality in public APIs, we still
need to implement it internally to be able to make a snapshot.

The inverse approach to the problem is to never provide more than one page of data,
meaning that partners can only access the “newest” data chunk. This technique is
viable in one of three cases:

o If the endpoint features a search algorithm that fetches the most relevant
data. As we are well aware, nobody needs a second search result page.

o If the endpoint is needed to modify data. For example, the partner's service
retrieves all “new” orders to transit them into the “accepted” status; then
pagination is not needed at all as with each request the partner is removing
items from the top of the list.

o The important case for such modifications is marking the received data
as “read”.

¢ Finally, if the endpoint is needed to access only real-time “raw” data while the
processed and classified data are available through other interfaces.

If none of the approaches above works, our only solution is changing the subject
area itself. If we can't consistently enumerate list elements, we need to find a facet
of the same data that we can enumerate. In our example with the ongoing orders we
might make an ordered list of the events of creating new orders:



// Retrieve all the events older

// than the one with the given id

GET /v1/orders/created-history«
?o0lder_than=<item_id>&limit=<limit>

"orders_created_events": [{
"id": <event id>,
"occured_at",

"order_id"

bl

Events themselves and the order of their occurrence are immutable. Therefore, it's
possible to organize traversing the list. It is important to note that the order
creation event is not the order itself: when a partner reads an event, the order might
have already changed its status. However, accessing all new orders is ultimately
doable, although not in the most efficient manner.

NB: In the code samples above, we omitted passing metadata for responses, such as
the number of items in the list, the has_more_itenms flag, etc. Although this metadata
is not mandatory (i.e., clients will learn the list size when they retrieve it fully),
having it makes working with the API more convenient for developers. Therefore
we recommend adding it to responses.
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Chapter 21. Bidirectional Data Flows. Push and Poll Models

In the previous chapter, we discussed the following scenario: a partner receives
information about new events occuring in the system by periodically requesting an
endpoint that supports retrieving ordered lists.

GET /v1/orders/created-history«

?0lder_than=<item_id>&limit=<limit>

"orders_created_events": [{
"id",
"occured_at",
"order_id"

J -

This pattern (known as polling) is the most common approach to organizing two-
way communication in an API when a partner needs not only to send data to the
server but also to receive notifications from the server about changes in some state.

Although this approach is quite easy to implement, polling always requires a
compromise between responsiveness, performance, and system throughput:

o The longer the interval between consecutive requests, the greater the delay
between the change of state on the server and receiving the information
about it on the client, and the potentially larger the traffic volume that needs
to be transmitted in one iteration.

¢ On the other hand, the shorter this interval, the more requests will be made
in vain, as no changes in the system have occurred during the elapsed time.

In other words, polling always generates some background traffic in the system but
never guarantees maximum responsiveness. Sometimes, this problem is solved by
using the so-called “long polling?,” which intentionally delays the server's response
for a prolonged period (seconds, tens of seconds) until some state change occurs.
However, we do not recommend using this approach in modern systems due to

associated technical problems, particularly in unreliable network conditions where



the client has no way of knowing that the connection is lost, and a new request
needs to be sent.

If regular polling is insufficient to solve the user's problem, you can switch to a
reverse model (push) in which the server itself informs the client that changes have
occurred in the system.

Although the problem and the ways to solve it may appear similar, completely
different technologies are currently used to deliver messages from the backend to
the backend and from the backend to the client device.

Delivering Notifications to Client Devices

As various mobile platforms currently constitute a major share of all client devices,
this implies significant limitations in terms of battery and partly traffic savings on
the technologies for data exchange between the server and the end user. Many
platform and device manufacturers monitor the resources consumed by the
application and can send it to the background or close open connections. In such a
situation, frequent polling should only be used in active phases of the application
work cycle (i.e., when the user is directly interacting with the UI) or in controlled
environments (for example, if employees of a partner company use the application
in their work and can add it to system exceptions).

Three alternatives to polling might be proposed:

1. Duplex Connections

The most obvious option is to use technologies that can transmit messages in both
directions over a single connection. The best-known example of such technology is
WebSockets3. Sometimes, the Server Push functionality of the HTTP/2 protocol4 is
used for this purpose; however, we must note that the specification formally does
not allow such usage. There is also the WebRTC5 protocol; its main purpose is a peer-
to-peer exchange of media data, and it's rarely used in client-server interaction.

Although the idea looks simple and attractive, its applicability to real-world use
cases is limited. Popular server software and frameworks do not support server-
initiated message sending (for instance, gRPC does support streamed responses®,
but the client should initiate the exchange; using gRPC server streams to send
server-initiated events is essentially employing HTTP/2 server pushes for this
purpose, and it's the same technique as in the long polling approach, just a bit more

modern), and the existing specification definition standards do not support it — as



WebSocket is a low-level protocol, and you will need to design the interaction
format on your own.

Duplex connections still suffer from the unreliability of the network and require
implementing additional tricks to tell the difference between a network problem
and the absence of new messages. All these issues result in limited applicability of
the technology; it's mostly used in web applications.

2. Separate Callback Channels

Instead of a duplex connection, two separate connections might be used: one for
sending requests to the server and one to receive notifications from the server. The
most popular technology of this kind is MQTT’. Although it is considered very
effective because of utilizing low-level protocols, its disadvantages follow from its
advantages:

e The technology is meant to implement the pub/sub pattern, and its main
value is that the server software (MQTT Broker) is provided alongside the
protocol itself. Applying it to other tasks, especially bidirectional
communication, might be challenging.

e The low-level protocols force you to develop your own data formats.

There is also a Web standard for sending server notifications called Server-Sent
Events® (SSE). However, it's less functional than WebSocket (only text data and
unidirectional flow are allowed) and rarely used.

3. Third-Party Push Notifications

One of the notorious problems with the long polling / WebSocket / SSE / MQTT
technologies is the necessity to maintain an open network connection between the
client and the server, which might be a problem for mobile applications and IoT
devices from in terms of performance and battery life. One option that allows for
mitigating the issue is delegating sending push notifications to a third-party service
(the most popular choice today is Google's Firebase Cloud Messaging) that delivers
notifications through the built-in mechanisms of the platform. Using such
integrated services takes most of the load of maintaining open connections and
checking their status off the developer's shoulders. The disadvantages of using
third-party services are the necessity to pay for them and strict limits on message
sizes.



Also, sending push notifications to end-user devices suffers from one important
issue: the percentage of successfully delivered messages never reaches 100%; the
message drop rate might be tens of percent. Taking into account the message size
limitations, it's actually better to implement a mixed model than a pure push
model: the client continues polling the server, just less frequently, and push
notifications just trigger ahead-of-time polling. (This problem is actually applicable
to any notification delivery technology. Low-level protocols offer more options to
set delivery guarantees; however, given the situation with forceful closing of open
connections by OSes, having low-frequency polling as a precaution in an
application is almost never a bad thing.)

Using Push Technologies in Public APIs

As a consequence of the fragmentation of client technologies described above, it's
virtually impossible to use any of them but polling in public APIs. Requiring
partners to implement receiving notifications through WebSocket, MQTT, or SSE
channels raises the bar for adopting the API as working with low-level protocols,
which are poorly covered by existing IDLs and code-generation tools, requires a
significant amount of effort and is prone to implementation errors. If you decide to
provide ready-to-use SDKs to ease working with the API, you will need to develop
them for every applicable platform (which is, let us reiterate, quite labor-
consuming). Given that HTTP polling is much easier to implement and its
disadvantages play their role only in situations when one really needs to think about
saving traffic and computational resources, we would rather recommend exposing
additional channels for receiving server-sent notifications as an addition to polling,
not instead of it.

Using platform pushes might be a fine solution for public APIs, but there another
problem arises: application developers are not eager to allow other third-party
services send push notifications, and that's for a list of reasons, starting with the
costs of sending pushes and ending with security considerations.

In fact, the most convenient way of organizing message delivery from the public
API backend to a partner service's user is by delivering messages backend-to-
backend. This way, the partner service can relay it further using push notifications
or any other technology that the partner selected for developing their applications.

Delivering Backend-to-Backend Notifications



Unlike client applications, server-side integrations universally utilize a single
approach to implementing a bidirectional data flow, apart from polling (which is as
applicable to server-to-server integrations as to client-server ones, and bears the
same pros and cons). The approach is using a separate communication channel for
callbacks. In the case of public APIs, the dominating practice is using callback URLs,
also known as “webhooks.”

Although long polling, WebSocket, HTTP/2 Push, and other technologies discussed
above are also applicable to realizing backend-to-backend communication, we find
it difficult to name a popular API that utilizes any of them. We assume that the
reasons for this are:

e Server-to-server integrations are less susceptible to performance issues
(servers rarely hit any limits on network bandwidth, and keeping an open
connection is not a problem as well)

e There are higher expectations regarding message delivery guarantees

e A broad choice of ready-to-use components to develop a webhook service (as
it's basically a regular webserver) is available

e It is possible to have a specification covering the communication format and
use the advantages of code-generation.

To integrate via a webhook, a partner specifies a URL of their own message
processing server, and the API provider calls this endpoint to notify about status
changes.

Let us imagine that in our coffee example the partner has a backend capable of
processing newly created orders to be processed by partner's coffee shops, and we
need to organize such communication. Realizing this task comprise several steps:

1. Negotiate a Contract

Depending on how important the partner is for our business, different options are
possible:

e The API vendor might develop the functionality of calling the partner's
webhook utilizing a protocol proposed by the partner

¢ Contrary to the previous, it's partner's job to develop an endpoint to support
a format proposed by the API developers

¢ Any combination of the above



What is important is that the must be a formal contract (preferably in a form of a
specification) for webhook's request and response formats and all the errors that
might happen.

2. Agree on Authorization and Authentication Methods

As a webhook is a callback channel, you will need to develop a separate authorization
system to deal with it as it's partners duty to check that the request is genuinely
coming from the API backend, not vice versa. We reiterate here our strictest
recommendation to stick to existing standard techniques, for example, mTLS9;
though in the real world, you will likely have to use archaic methods like fixing the
caller server's IP address.

3. Develop an Interface for Setting the URL of aWebhook

As the callback endpoint is developed by partners, we do not know its URL
beforehand. It implies some interface must exist for setting this URL and
authorized public keys (probably in a form of a control panel for partners).

Importantly, the operation of setting a webhook URL is to be treated as a potentially
hazardous one. It is highly desirable to request a second authentication factor to
authorize the operations as a potential attacker wreak a lot of havoc if there is a
vulnerability in the procedure:

e By setting an arbitrary URL, the perpetrator might get access to all partner's
orders (and the partner might lose access)

e This vulnerability might be used for organizing DoS attacks on third parties

e If an internal URL might be set as a webhook, a SSRF attack’® might be
directed toward the API vendor's own infrastructure.

Typical Problems of Webhook-Powered Integrations

Bidirectional data flows (both client-server and server-server ones, though the
latter to a greater extent) bear quite undesirable risks for an API provider. In
general, the quality of integration primarily depends on the API developers. In the
callback-based integration, it's vice versa: the integration quality depends on how
partners implemented the webhook. We might face numerous problems with the
partners' code:



o Webhook might return false-positive responses meaning the notification was
not actually processed but the success status was returned by the partner's
server

¢ Onother hand, false-negative responses are also possible if the operation was
actually accepted but erroneously returned an error (or just responded in
invalid format)

e Webhook might be processing incoming requests very slowly — up to a point
when the requesting server will be just unable to deliver subsequent
messages on time

e Partner's developers might make a mistake in implementing the
idempotency policies, and repeated requests to the webhook will lead to errors
or data inconsistency on the partner's side

o The size of the message body might exceed the limit set in the partner's
webserver configuration

e On the partner's side, authentication token checking might be missing or
flawed so some malefactor might be able to issue requests pretending they
come from the genuine API server

¢ Finally, the endpoint might simply be unavailable because of many reasons,
starting from technical issues in the data center where partner's servers are
located and ending with a human error in setting webhook's URL.

Obviously, we can't guarantee partners don't make any of these mistakes. The only
thing we can do is to minimize the impact radius:

1.The system state must be restorable. If the partner erroneously responded
that messages are processed while they are not, there must be a possibility
for them to redeem themselves and get the list of missed events and/or the
full system state and fix all the issues
2. Help partners to write proper code by describing in the documentation all
unobvious subtleties that inexperienced developers might be unaware of:
o Idempotency keys for every operation
o Delivery guarantees (“at least once,” “exactly ones,” etc.; see the
reference description’’ on the example of Apache Kafka API)
o Possibility of the server generating parallel requests and the maximum
number of such requests at a time
o Guarantees of message ordering (i.e., the notifications are always
delivered ordered from the oldest one to the newest one) or the absence
of such guarantees
o The sizes of all messages and message fields in bytes
o The retry policy in case an error is returned by the partner's server



3.Implement a monitoring system to check the health of partners' endpoints:

o If a large number of errors or timeouts occurs, it must be escalated
(including notifying the partner about the problem), probably with
several escalation tiers,

o If too many un-processed notifications are stuck, there must be a
mechanism of controllable degradation (limiting the number of
requests toward the partner, e.g. cutting the demand by disallowing
some users to make an order) up to fully disconnecting the partner
from the platform.

Message Queues

As for internal APIs, the webhook technology (i.e., the possibility to
programmatically define a callback URL) is either not needed at all or is replaced
with the Service Discovery'? protocol as services comprising a single backend are
symmetrically able to call each other. However, the problems of callback-based
integration discussed above are equally actual for internal calls. Requesting an
internal API might result in a false-negative mistake, internal clients might be
unaware that ordering is not guaranteed, etc.

To solve these problems, and also to ensure better horizontal scalability, message
queues’3  were developed, most notably numerous pub/sub pattern’4
implementations. At present moment, pub/sub-based architectures are very
popular in enterprise software development, up to switching any inter-service
communication to message queues.

NB: Let us note that everything comes with a price, and these delivery guarantees
and horizontal scalability are not an exclusion:

e All communication becomes eventually consistent with all the implications

e Decent horizontal scalability and cheap message queue usage are only
achievable with at least once/at most once policies and no ordering guarantee

¢ Queues might accumulate unprocessed events, introducing increasing delays,
and solving this issue on the subscriber's side might be quite non-trivial.

Also, in public APIs both technologies are frequently used in conjunction: the API
backend sends a task to call the webhook in the form of publishing an event which
the specially designed internal service will try to process by making the call.



Theoretically, we can imagine an integration that exposes directly accessible
message queues in one of the standard formats for partners to subscribe. However,
we are unaware of any examples of such APIs.
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Chapter 22. Multiplexing Notifications. Asynchronous Event Processing

One of the vexing restrictions of almost every technology mentioned in the
previous chapter is the limited size of messages. With client push notifications the
situation is the most problematic: Google Firebase Messaging at the moment this
chapter is being written allowed no more than 4000 bytes of payload. In backend
development, the restrictions are also notable; let's say, Amazon SQS limits the size
of messages to 256 KiB. While developing webhook-based integrations, you risk
hitting the maximum body size allowed by the partner's webserver (for example, in
nginx the default value is IMB). This leads us to the necessity of making two
technical decisions regarding the notification formats:

o Whether a message contains all data needed to process it or just notifies some
state change has happened

o If we choose the latter, whether a single notification contains data on a single
change, or it might bear several such events.

On the example of our coffee API:

// Option #1: the message
// contains all the order data
POST /partner/webhook
Host: partners.host
{
"event_id",
"occurred_at",
"order": {
"id",
"status",
"recipe_id",
"volume",
// Other data fields




// Option #2: the message body
// contains only the notification
// of the status change
POST /partner/webhook
Host: partners.host
{
"event_id",
// Message type: a notification
// about a new order
"event_type": "new_order",
"occurred_at",
// Data sufficient to
// retrieve the full state,
// in our case, the order identifier
"order_id"
}
// To process the event, the partner
// must request some endpoint
// on the API vendor's side,
// possibly asynchronously
GET /v1/orders/{id}
{ /* full data regarding
the order */ }




// Option #3: the API vendor
// notifies partners that
// several orders await their
// reaction
POST /partner/webhook
Host: partners.host
{
// The system state revision
// and/or a cursor to retrieve
// the orders might be provided
"occurred_at",
"pending_order_count":
<the number of pending orders>
}
// In response to such a call
// partners should retrieve the list
// of ongoing orders
GET /v1/orders/pending
{
"orders",

"cursor"

Which option to select depends on the subject area (and on the allowed message
sizes in particular) and on the procedure of handling messages by partners. In our
case, every order must be processed independently and the number of messages
during the order life cycle is low, so our natural choice would be either option #1 (if
order data cannot contain unpredictably large fields) or #2. Option #3 is viable if:

o The API generates a lot of notifications for a single logical entity
e Partners are interested in fresh state changes only
¢ Or events must be processed sequentially, and no parallelism is allowed.

NB: The approach #3 (and partly #2) naturally leads us to the scheme that is typical
for client-server integration: the push message itself contains almost no data and is
only a trigger for ahead-of-time polling.



The technique of sending only essential data in the notification has one important
disadvantage, apart from more complicated data flows and increased request rate.
With option #1 implemented (i.e., the message contains all the data), we might
assume that returning a success response by the subscriber is equivalent to
successfully processing the state change by the partner (although it's not
guaranteed if the partner uses asynchronous techniques). With options #2 and #3,
this is certainly not the case: the partner must carry out additional actions (starting
from retrieving the actual order state) to fully process the message. This implies
that two separate statuses might be needed: “message received” and “message
processed.” Ideally, the latter should follow the logic of the API work cycle, i.e., the
partner should carry out some follow-up action upon processing the event, and this
action might be treated as the “message processed” signal. In our coffee example, we
can expect that the partner will either accept or reject an order after receiving the
“new order” message. Then the full message processing flow will look like this:

// The API vendor

// notifies the partner that
// several orders await their
// reaction

POST /partner/webhook

Host: partners.host

{
"occurred_at",
"pending_order_count":
<the number of pending orders>
}

// In response, the partner
// retrieves the list of
// pending orders
GET /v1/orders/pending
{
"orders",

"cursor”




// After the orders are processed,
// the partners notify about this
// by calling the specific API
// endpoint
POST /v1/orders/bulk-status-change
{
"status_changes": [{
"order_id",
"new_status": "accepted",
// Other relevant information
// e.g. the preparation time
// estimates
boA
"order_id",
"new_status": "rejected",
"reason"
F -
}

If there is no genuine follow-up call expected during our API work cycle, we can
introduce an endpoint to explicitly mark notifications as processed. This step is not
mandatory as we can always stipulate that it is the partner's responsibility to
process notifications and we do not expect any confirmations. However, we will lose
an important monitoring tool if we do so, as we can no longer track what's
happening on the partner's side, i.e., whether the partner is able to process
notifications on time. This, in turn, will make it harder to develop the degradation
and emergency shutdown mechanisms we talked about in the previous chapter.



Chapter 23. Atomicity of Bulk Changes

Let's transition from webhooks back to developing direct-call APIs. The design of the
orders/bulk-status-change endpoint, as described in the previous chapter, raises
an interesting question: what should we do if some changes were successfully
processed by our backend while others were not?

Let's consider a scenario where the partner notifies us about status changes that
have occurred for two orders:

POST /v1/orders/bulk-status-change
{
"status_changes": [{
"order_id": "1",
"new_status": "accepted",
// Other relevant data,
// such as estimated

// preparation time

oA
"order_id": "2",
"new_status": "rejected",
"reason"
H
}

500 Internal Server Error

In this case, if changing the status of one order results in an error, how should we
organize this “umbrella” endpoint (which acts as a proxy to process a list of nested
sub-requests)? We can propose at least four different options:

¢ A.Guarantee atomicity and idempotency. If any of the sub-requests fail, none
of the changes are applied.

e B. Guarantee idempotency but not atomicity. If some sub-requests fail,
repeating the call with the same idempotency key results in no action and
leaves the system exactly in the same state (i.e., unsuccessful calls will never
be executed, even if the obstacles are resolved, until a new call with a new



idempotency key is made).

e C. Guarantee neither idempotency nor atomicity and process the sub-
requests independently.

¢ D. Do not guarantee atomicity and completely prohibit retries by requiring
the inclusion of the actual resource revision in the request (see the
“Synchronization Strategies” chapter).

From a general standpoint, it appears that the first option is most suitable for public
APIs: if you can guarantee atomicity (despite it potentially poses scalability
challenges), it is advisable to do so. In the first revision of this book, we
unconditionally recommended adhering to this solution.

However, if we consider the situation from the partner's perspective, we realize that
the decision is not as straightforward as one might initially think. Let's imagine
that the partner has implemented the following functionality:

1. The partner's backend processes notifications about incoming orders through
a webhook.

2.The backend makes inquiries to coffee shops regarding whether they can
fulfill the orders.

3. Periodically, let's say once every 10 seconds, the partner collects all the status
changes (i.e., responses from the coffee shops) and calls the bulk-status-
change endpoint with the list of changes.

Now, let's consider a scenario where the partner receives an error from the API
endpoint during the third step. What would developers do in such a situation? Most
probably, one of the following solutions might be implemented in the partner's
code:

1. Unconditional retry of the request:



// Retrieve the ongoing orders

let pendingOrders = await api
.getPendingOrders();

// The partner checks the status of every

// order in its system and prepares

// the list of changes to perform

let changes =
await prepareStatusChanges(

pendingOrders

let result;
let tryNo = ©;
let timeout = DEFAULT_RETRY_TIMEOUT;
while (result && tryNo++ < MAX_RETRIES) {
try
// Send the list of changes
result = await api.bulkStatusChange(
changes,
// Provide the newest known revision
pendingOrders.revision

catch (e) {

// If there is an error, repeat

// the request with some delay
logger.error(e);

await wait(timeout);

timeout = min(timeout*2, MAX_TIMEOUT);

~
-

NB: In the code sample above, we provide the “right” retry policy with
exponentially increasing delays and a total limit on the number of retries, as
we recommended earlier in the “Describing Final Interfaces” chapter.
However, be warned that real partners' code may frequently lack such
precautions. For the sake of readability, we will skip this bulky construct in
the following code samples.

2. Retrying only failed sub-requests:



let pendingOrders = await api
.getPendingOrders();
let changes =
await prepareStatusChanges(
pendingOrders

let result;
while (changes.length) {
let failedChanges = [];
try {
result = await api.bulkStatusChange(
changes, pendingOrders.revision

)

catch (e) {

// Assuming that the “e.changes’

// field contains the errors breakdown

~

let 1 = 0;
for (; i < e.changes.length; i++) {
if (e.changes[i].status == 'failed') {

failedChanges.push(changes[i]);
}

// Prepare a new request

// comprising only the failed
// sub-requests

changes = failedChanges;

3.Restarting the entire pipeline. In this case, the partner retrieves the list of
pending orders anew and forms a new bulk change request:

do {
let pendingOrders = await api
.getPendingOrders();
let changes =
await prepareStatusChanges(
pendingOrders

// Request changes,
// if there are any
if (changes.length) {
await api.bulkStatusChange(
changes,
pendingOrders.revision

’

}
} while (pendingOrders.length);

If we examine the possible combinations of client and server implementation
options, we will discover that approaches (B) and (D) are incompatible with solution
(1). Retrying the same request after a partial failure will never succeed, and the
server will repeatedly attempt the failing request until it exhausts the remaining



retry attempts.

Now, let's introduce another crucial condition to the problem statement: imagine
that certain issues with a sub-request can not be resolved by retrying it. For
example, if the partner attempts to confirm an order that has already been canceled
by the customer. If a bulk status change request contains such a sub-request, the
atomic server that implements paradigm (A) will immediately “penalize” the
partner. Regardless of how many times and in what order the set of sub-requests is
repeated, valid sub-requests will never be executed if there is even a single invalid one. On the
other hand, a non-atomic server will at least continue processing the valid parts of
bulk requests.

This leads us to a seemingly paradoxical conclusion: in order to ensure the partners'
code continues to function somehow and to allow them time to address their invalid
sub-requests we should adopt the least strict non-idempotent non-atomic
approach to the design of the bulk state change endpoint. However, we consider this
conclusion to be incorrect: the “zoo” of possible client and server implementations
and the associated problems demonstrate that bulk state change endpoints are inherently
undesirable. Such endpoints require maintaining an additional layer of logic in both
server and client code, and the logic itself is quite non-obvious. The non-atomic
non-idempotent bulk state changes will very soon result in nasty issues:



// A partner issues a refund
// and cancels the order
POST /v1/bulk-status-change
{

"changes": [{

"operation": "refund",
"order_id"

boA
"operation": "cancel",
"order_id"

H
}

// During bulk change execution,
// the user was able to walk in
// and fetch the order
{

"changes": [{

// The refund is successful..

"status": "success"
oA
// .while canceling the order
// is not
"status": "fail",
"reason": "already_served"
H

If sub-operations in the list depend on each other (as in the example above: the
partner needs both refunding and canceling the order to succeed as there is no sense
to fulfill only one of them) or the execution order is important, non-atomic
endpoints will constantly lead to new problems. And if you think that in your
subject area, there are no such problems, it might turn out at any moment that you
have overlooked something.

So, our recommendations for bulk modifying endpoints are:



1.If you can avoid creating such endpoints — do it. In server-to-server
integrations, the profit is marginal. In modern networks that support QUIC!
and request multiplexing, it's also dubious.

2. If you can not, make the endpoint atomic and provide SDKs to help partners
avoid typical mistakes.

3.1f implementing an atomic endpoint is not possible, elaborate on the API
design thoroughly, keeping in mind the caveats we discussed.

4.Whichever option you choose, it is crucially important to include a
breakdown of the sub-requests in the response. For atomic endpoints, this
entails ensuring that the error message contains a list of errors that
prevented the request execution, ideally encompassing the potential errors as
well (i.e., the results of validity checks for all the sub-requests). For non-
atomic endpoints, it means returning a list of statuses corresponding to each
sub-request along with errors that occurred during the execution.

One of the approaches that helps minimize potential issues is developing a “mixed”
endpoint, in which the operations that can affect each other are grouped:



POST /v1/bulk-status-change
{
"changes": [{
"order_id": <first id>
// Operations related
// to a specific endpoint
// are grouped in a single
// structure and executed
// atomically
"operations”: [
"refund”,
"cancel"
1
boA
// Operation sets for
// different orders might
// be executed in parallel
// and non-atomically

"order_id": <second id>

}H

Let us also stress that nested operations (or sets of operations) must be idempotent
per se. If they are not, you need to somehow deterministically generate internal
idempotency tokens for each operation. The simplest approach is to consider the
internal token equal to the external one if it is possible within the subject area.
Otherwise, you will need to employ some constructed tokens — in our case, let's
say, in the <order_id>:<external_token> form.
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Chapter 24. Partial Updates

The case of partial application of the list of changes described in the previous
chapter naturally leads us to the next typical API design problem. What if the

operation involves a low-level overwriting of several data fields rather than an
atomic idempotent procedure (as in the case of changing the order status)? Let's

take a look at the following example:

// Creates an order
// consisting of two beverages
POST /v1/orders/
X-Idempotency-Token: <token>
{

"delivery_address"”,

"items": [{

"recipe": "lungo"
oA
"recipe": "latte",

"milk_type": "oat"
3
}

{ "order_id" }




// Partially updates the order
// by changing the volume
// of the second beverage
PATCH /v1/orders/{id}
{
"items": [
// “null’ indicates
// no changes for the
// first beverage
null,
// list of properties
// to change for
// the second beverage
{"volume": "800ml"}

}

{ /* Changes accepted */ }

This signature is inherently flawed as its readability is dubious. What does the
empty first element in the array mean, deletion of an element or absence of
changes? What will happen with fields that are not passed (delivery_address,
milk_type)? Will they reset to default values or remain unchanged?

The most notorious thing here is that no matter which option you choose, your
problems have just begun. Let's say we agree that the "items":[null, {.}]}
construct means the first array element remains untouched. So how do we delete it
if needed? Do we invent another “nullish” value specifically to denote removal? The
same issue applies to field values: if skipping a field in a request means it should
remain unchanged, then how do we reset it to the default value?

Partially updating a resource is one of the most frequent tasks that API developers
have to solve, and unfortunately, it is also one of the most complicated. Attempts to
take shortcuts and simplify the implementation often lead to numerous problems
in the future.



A trivial solution is to always overwrite the requested entity completely, which
means requiring the passing of the entire object to fully replace the current state
and return the new one. However, this simple solution is frequently dismissed due
to several reasons:

¢ Increased request sizes and, consequently, higher traffic consumption

e The necessity to detect which fields were actually changed in order to
generate proper signals (events) for change listeners

e The inability to facilitate collaborative editing of the object, meaning
allowing two clients to edit different properties of the object in parallel as
clients send the full object state as they know it and overwrite each other's
changes as they are unaware of them.

To avoid these issues, developers sometimes implement a naive solution:
e Clients only pass the fields that have changed
e To reset the values of certain fields and to delete or skip array elements some

“special” values are used.

A full example of an APl implementing the naive approach would look like this:



//
/1
/1
!/
/1
//

{

PATCH /v1/orders/{id}

// reset the field

Partially rewrites the order:
* Resets the delivery address
to the default values
* Leaves the first beverage
intact
* Removes the second beverage.

// "Special” value #1:

"delivery_address": null
"items": [

// “Special” value #2:

// do nothing to the entity

{

// “Special” value #3:

// delete the entity

false

This solution allegedly solves the aforementioned problems:

Traffic consumption is reduced as only the changed fields are transmitted,
and unchanged entities are fully omitted (in our case, replaced with the
special value {}).

Notifications regarding state changes will only be generated for the fields and
entities passed in the request.

If two clients edit different fields, no access conflict is generated and both sets
of changes are applied.

However, upon closer examination all these conclusions seem less viable:

We have already described the reasons for increased traffic consumption
(excessive polling, lack of pagination and/or field size restrictions) in the
“Describing Final Interfaces” chapter, and these issues have nothing to do
with passing extra fields (and if they do, it implies that a separate endpoint
for “heavy” data is needed).



e The concept of passing only the fields that have actually changed shifts the
burden of detecting which fields have changed onto the client developers'
shoulders:

o Not only does the complexity of implementing the comparison
algorithm remain unchanged but we also run the risk of having several
independent realizations.

o The capability of the client to calculate these diffs doesn't relieve the
server developers of the duty to do the same as client developers might
make mistakes or overlook certain aspects.

¢ Finally, the naive approach of organizing collaborative editing by allowing
conflicting operations to be carried out if they don't touch the same fields
works only if the changes are transitive. In our case, they are not: the result of
simultaneously removing the first element in the list and editing the second
one depends on the execution order.

o Often, developers try to reduce the outgoing traffic volume as well by
returning an empty server response for modifying operations.
Therefore, two clients editing the same entity do not see the changes
made by each other until they explicitly refresh the state, which
further increases the chance of yielding highly unexpected results.

The solution could be enhanced by introducing explicit control sequences instead of
relying on “magical” values and adding meta settings for the operation (such as a
field name filter as it's implemented in gRPC over Protobuf’). Here's an example:



// Partially rewrites the order:
//  * Resets the delivery address
/1 to the default values
// * Leaves the first beverage
// intact
// * Removes the second beverage.
PATCH /v1/orders/{id}¢
// A meta filter: which fields
// are allowed to be modified

?field_mask=delivery_address, items

// “Special” value #1: reset the field
"delivery_address": {
// The “__" prefix is needed to avoid
// collisions with real field names
"__operation": "reset"
I
"items": [
// “Special” value #2:
// do nothing to the entity

{ "__operation": "skip" },
// “Special” value #3: delete the entity
{ "__operation": "delete" }

While this approach may appear more robust, it doesn't fundamentally address the
problems:

e “Magical” values are replaced with “magical” prefixes
e The fragmentation of algorithms and the non-transitivity of operations
persist.

Given that the format becomes more complex and less intuitively understandable,
we consider this enhancement dubious.



A more consistent solution is to split an endpoint into several idempotent sub-
endpoints, each having its own independent identifier and/or address (which is
usually enough to ensure the transitivity of independent operations). This approach
aligns well with the decomposition principle we discussed in the “Isolating
Responsibility Areas” chapter.

// Creates an order
// comprising two beverages
POST /v1/orders/
{
"parameters": {
"delivery_address”
I
"items": [{
"recipe": "lungo"
boA
"recipe": "latte",
"milk_type": "oats"
H
}
{
"order_id",
"created_at",
"parameters": {
"delivery_address"
I
"items": [
{ "item_id", "status"},
{ "item_id", "status"}
]
}




// Changes the parameters

// of the second order

PUT /v1/orders/{id}/parameters
{ "delivery_address" }

{ "delivery_address" }

// Partially changes the order
// by rewriting the parameters
// of the second beverage
PUT /v1/orders/{id}/items/{item_id}
{
// All the fields are passed,
// even if only one has changed
"recipe”, "volume", "milk_type"

}

{ "recipe", "volume", "milk_type" }

// Deletes one of the beverages
DELETE /v1/orders/{id}/items/{item_id}

Now to reset the volume field it is enough not to pass it in the PUT items/{item_id}.
Also note that the operations of removing one beverage and editing another one

became transitive.

This approach also allows for separating read-only and calculated fields (such as
created_at and status) from the editable ones without creating ambivalent
situations (such as what should happen if the client tries to modify the created_at

field).



Applying this pattern is typically sufficient for most APIs that manipulate
composite entities. However, it comes with a price as it sets high standards for
designing the decomposed interfaces (otherwise a once neat API will crumble with
further API expansion) and the necessity to make many requests to replace a
significant subset of the entity's fields (which implies exposing the functionality of
applying bulk changes, the undesirability of which we discussed in the previous
chapter).

NB: While decomposing endpoints, it's tempting to split editable and read-only
data. Then the latter might be cached for a long time and there will be no need for
sophisticated list iteration techniques. The plan looks great on paper; however, with
API expansion, immutable data often ceases to be immutable which is only solvable
by creating new versions of the interfaces. We recommend explicitly pronouncing
some data non-modifiable in one of the following two cases: either (1) it really
cannot become editable without breaking backward compatibility or (2) the
reference to the resource (such as, let's say, a link to an image) is fetched via the API
itself and you can make these links persistent (i.e., if the image is updated, a new
link is generated instead of overwriting the content the old one points to).

Resolving Conflicts of Collaborative Editing

The idea of applying changes to a resource state through independent atomic
idempotent operations looks attractive as a conflict resolution technique as well. As
subcomponents of the resource are fully overwritten, it is guaranteed that the result
of applying the changes will be exactly what the user saw on the screen of their
device, even if they had observed an outdated version of the resource. However, this
approach helps very little if we need a high granularity of data editing as it's
implemented in modern services for collaborative document editing and version
control systems (as we will need to implement endpoints with the same level of
granularity, literally one for each symbol in the document).

To make true collaborative editing possible, a specifically designed format for
describing changes needs to be implemented. It must allow for:

e Ensuring the maximum granularity (each operation corresponds to one
distinct user's action)

¢ Implementing conflict resolution policies.

In our case, we might take this direction:



POST /v1/order/changes
X-Idempotency-Token: <token>
{

// The revision the client

// observed when making

// the changes

"known_revision",

"changes": [{
"type": "set",
"field": "delivery_address",

"value": <new value>

oA
"type": "unset_item_field",
"item_id",
"field": "volume"

L

This approach is much more complex to implement, but it is the only viable
technique for realizing collaborative editing as it explicitly reflects the exact actions
the client applied to an entity. Having the changes in this format also allows for
organizing offline editing with accumulating changes on the client side for the
server to resolve the conflict later based on the revision history.

NB: One approach to this task is developing a set of operations in which all actions
are transitive (i.e., the final state of the entity does not change regardless of the
order in which the changes were applied). One example of such a nomenclature is a
conflict-free replicated data type (CRDT).>2 However, we consider this approach
viable only in some subject areas, as in real life, non-transitive changes are always
possible. If one user entered new text in the document and another user removed
the document completely, there is no way to automatically resolve this conflict that
would satisfy both users. The only correct way of resolving this conflict is explicitly
asking users which option for mitigating the issue they prefer.
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Chapter 25. Degradation and Predictability

In the previous chapters, we repeatedly discussed that the background level of
errors is not just unavoidable, but in many cases, APIs are deliberately designed to
tolerate errors to make the system more scalable and predictable.

But let's ask ourselves a question: what does a “more predictable system” mean? For
an API vendor, the answer is simple: the distribution and number of errors are both
indicators of technical problems (if the numbers are growing unexpectedly) and
KPIs for technical refactoring (if the numbers are decreasing after the release).

However, for partner developers, the concept of “API predictability” means
something completely different: how solidly they can cover the API use cases (both
happy and unhappy paths) in their code. In other words, how well one can
understand based on the documentation and the nomenclature of API methods
what errors might arise during the API work cycle and how to handle them.

Why is optimistic concurrency control better than acquiring locks from the
partner's point of view? Because if the revision conflict error is received, it's
obvious to a developer what to do about it: update the state and try again (the easiest
approach is to show the new state to the end user and ask them what to do next). But
if the developer can't acquire a lock in a reasonable time then... what useful action
can they take? Retrying most certainly won't change anything. Show something to
the user... but what exactly? An endless spinner? Ask the user to make a decision —
give up or wait a bit longer?

While designing the API behavior, it's extremely important to imagine yourself in
the partner developer's shoes and consider the code they must write to solve the
arising issues (including timeouts and backend unavailability). This book comprises
many specific tips on typical problems; however, you need to think about atypical
ones on your own.

Here are some general pieces of advice that might come in handy:

e If you can include recommendations on resolving the error in the error
response itself, do it unconditionally (but keep in mind there should be two
sets of recommendations, one for the user who will see the message in the
application and one for the developer who will find it in the logs)



e Iferrors emitted by some endpoint are not critical for the main functionality
of the integration, explicitly describe this fact in the documentation.
Developers may not guess to wrap the corresponding code in a try-catch
block. Providing code samples and guidance on what default value or
behavior to use in case of an error is even better.

¢ Remember that no matter how exquisite and comprehensive your error
nomenclature is, a developer can always encounter a transport-level error or
a network timeout, which means they need to restore the application state
when the tips from the backend are not available. There should be an obvious
default sequence of steps to handle unknown problems.

¢ Finally, when introducing new types of errors, don't forget about old clients
that are unaware of these new errors. The aforementioned “default reaction”
to obscure issues should cover these new scenarios.

In an ideal world, to help partners “degrade properly,” a meta-API should exist,
allowing for determining the status of the endpoints of the main API. This way,
partners would be able to automatically enable fallbacks if some functionality is
unavailable. In the real world, alas, if a widespread outage occurs, APIs for checking
the status of APIs are commonly unavailable as well.



SECTION Ill. THE BACKWARD COMPATIBILITY

Chapter 26. The Backward Compatibility Problem Statement
As usual, let's conceptually define “backward compatibility” before we start.

Backward compatibility is a feature of the entire API system to be stable in time. It
means the following: the code that developers have written using your API
continues to work functionally correctly for a long period of time. There are two
important questions regarding this definition and two explanations:

1. What does “functionally correctly” mean?

It means that the code continues to serve its intended function which is to
solve users' problems. It does not necessarily mean that it continues to work
indistinguishably from the previous version. For example, if you're
maintaining a Ul library, making functionally insignificant design changes
like adjusting shadow depth or border stroke type would still be considered
backward-compatible unlike changing the sizes of the visual components.

2. What does “a long period of time” mean?

From our point of view, the backward compatibility maintenance period
should be aligned with the typical lifetime of applications in the subject area.
Platform LTS (Long-Term Support) periods can serve as helpful guidelines in
most cases. Since applications will be rewritten when the platform
maintenance period ends, it is reasonable to expect developers to transition
to the new API version as well. In mainstream subject areas such as desktop
and mobile operating systems, this period typically spans several years.

The definition makes it evident why maintaining backward compatibility is crucial,
including taking necessary measures at the API design stage. An outage, whether
full or partial, caused by an API vendor, is an extremely inconvenient situation for
every developer, if not a disaster — especially if they are paying for the API usage.

But let's take a look at the problem from another angle: why does the problem of
maintaining backward compatibility exist in the first place? Why would anyone
want to break it? This question, though it may seem trivial, is much more
complicated than the previous one.



We could say that we break backward compatibility to introduce new features to the API.
However, this would be deceiving since new features are called “new” for a reason —
they cannot affect existing implementations that do not use them. We must admit
that there are several associated problems that lead to the aspiration to rewrite our
code, the code of the APl itself, and ship a new major version:

e The codebase eventually becomes outdated making it impractical to
introduce changes or even new functionality

o The old interfaces are not suited to accommodate new features. We would
love to extend existing functionality with new properties, but we simply
cannot

¢ Finally, with years passing since the initial release, we have gained a better
understanding of the subject area and API best practices. We would
implement many things differently now.

These arguments can be summarized frankly as “API vendors do not want to
support old code.” However, this explanation is still incomplete. If you're not
planning to rewrite the API code to add new functionality or even if you're not
planning to add it at all, you still need to release new API versions, both minor and
major.

NB: In this chapter, we don't make any difference between minor versions and
patches. “Minor version” means any backward-compatible API release.

Let us remind the reader that an API is a bridge, a means of connecting different
programmable contexts. No matter how strong our desire is to keep the bridge
intact, our capabilities are limited: we can lock the bridge, but we cannot command
the rifts and the canyon itself. That's the source of the problem: we can't guarantee
that our own code won't change. So at some point, we will have to ask the clients to
rewrite their code.

Apart from our aspirations to change the API architecture, three other tectonic
processes are happening at the same time: user agents, subject areas, and the
erosion of underlying platforms.

1. The Fragmentation of Consumer Applications

When you shipped the very first API version, and the initial clients started using it,
the situation was perfect. However, this perfection doesn't last, and two scenarios
are possible.



1.If the platform allows for fetching code on-demand, like the good old Web
does, and you weren't too lazy to implement that code-on-demand feature (in
the form of a platform SDK, such as JS API), then the evolution of your API is
more or less under your control. Maintaining backward compatibility
effectively means keeping the client library backward-compatible. As for client-
server interaction, you have freedom.

This doesn't mean that you can't break backward compatibility. You can still
make a mistake with cache-control headers or simply overlook a bug in the
code. Additionally, even code-on-demand systems don't get updated
instantly. The author of this book faced a situation where users deliberately
kept a browser tab open for weeks to avoid updates. However, in general, you
usually don't have to support more than two API versions — the latest one
and the penultimate one. Furthermore, you may consider rewriting the
previous major version of the library, implementing it on top of the actual
API version.

2.If the code-on-demand feature isn't supported or is prohibited by the
platform, as is the case with modern mobile operating systems, the situation
becomes more severe. Each client effectively borrows a snapshot of the code
that works with your API, frozen at the moment of compilation. Client
application updates are scattered over time to a much greater extent than
Web application updates. The most painful aspect is that some clients will never
be up to date, due to one of three reasons:

o Developers simply don't want to update the app, i.e., its development
has stopped.

o Users do not want to get updates (sometimes because they believe that
developers “spoiled” the app in new versions)

o Users cannot get updates because their devices are no longer
supported.

In modern times these three categories combined could easily constitute a
significant portion (tens of percent) of the audience. This implies that
discontinuing support for any API version could be a nightmare experience
— especially if partners' apps continue supporting a broader range of
platforms than the API does.

If you have never issued an SDK, providing only server-side APIs, for
example in the form of HTTP endpoints, you might think that the backward
compatibility problem is mitigated, although your API is less competitive on
the market due to the lack of SDKs. However, that's not what will happen. If



you don't provide an SDK, developers will either adopt an unofficial one (if
someone bothered to create it) or write a framework themselves,
independently. The “your framework — your problems” strategy, fortunately
or unfortunately, works poorly. If developers write low-quality code on top of
your API, then your API itself is of low quality — definitely in the view of
developers and possibly in the view of end-users if the API's performance
within the app is visible to them.

Certainly, if you provide stateless APIs that don't require client SDKs or can be auto-
generated from the spec, these problems will be much less noticeable. However,
they are not fully avoidable unless you never issue any new API versions. If you do,
you will still have to deal with some fragmentation of users by API and SDK
versions.

2. Subject Area Evolution

The other side of the canyon is the underlying functionality that you expose via the
API. It is, of course, not static and evolves in the following ways:

e New functionality emerges
e Older functionality shuts down
o Interfaces change.

As usual, the API provides an abstraction to a much more granular subject area. In
the case of our coffee machine API example, one might reasonably expect new
machine models to emerge, which will need to be supported by the platform. New
models often come with new APIs, making it challenging to ensure their adoption
while preserving the same high-level API In any case, the API's code needs to be
altered, which may lead to incompatibility, albeit unintentionally.

Let us also emphasize that vendors of low-level APIs are not always as committed to
maintaining backward compatibility for their APIs (or any software they provide)
as we hope you are. It is important to be aware that keeping your API in an
operational state, which involves writing and supporting facades to the shifting
subject area landscape, will be your responsibility, sometimes posing quite sudden
challenges.

3. Platform Drift



Finally, there is a third aspect to consider — the “canyon” you are crossing over with
a bridge of your API. Developers write code that is executed in an environment
beyond your control, and it evolves. New versions of operating systems, browsers,
protocols, and programming language SDKs emerge. New standards are being
developed and new arrangements are made, some of which are backward-
incompatible, and there is nothing that can be done about that.

Older platform versions contribute to fragmentation just like older app versions as
developers (including the API developers) struggle to support older platforms. At
the same time, users face challenges with platform updates. In many cases, they are
unable to update their devices to newer platform versions since newer platform
versions require newer devices.

The most challenging aspect here is that not only does incremental progress, in the
form of new platforms and protocols, necessitate changes to the API, but also the
vulgar influence of trends. Several years ago realistic 3D icons were popular, but
since then, public taste has changed in favor of flat and abstract ones. Ul component
developers had to follow the fashion, rebuilding their libraries by either shipping
new icons or replacing the old ones. Similarly, the current trend of integrating the
“night mode” feature has become widespread, demanding changes in a wide range
of APIs.

Backward-Compatible Specifications

In the case of the API-first approach, the backward compatibility problem adds
another dimension: the specification and code generation based on it. It becomes
possible to break backward compatibility without breaking the spec (for example,
by introducing eventual consistency instead of strict consistency) — and vice versa,
modify the spec in a backward-incompatible manner without changing anything in
the protocol and therefore not affecting existing integrations at all (for example, by
replacing additionalProperties: false with truein OpenAPI).

The question of whether two specification versions are backward-compatible or not
belongs to a gray zone, as specification standards themselves do not define this.
Generally speaking, the statement “specification change is backward-compatible” is
equivalent to “any client code written or generated based on the previous version of
the spec continues to work correctly after the API vendor releases the new API
version implementing the new version of the spec.” Practically speaking, following
this definition seems quite unrealistic for two reasons: it is impossible to learn the
behavior of every piece of code-generating software out there (for instance, it's
rather hard to say whether code generated based on a specification that includes the



parameter additionalProperties: false will still function properly if the server
starts returning additional fields).

Thus, using IDLs to describe APIs with all the advantages they undeniably bring to
the field, leads to having one aspect of the technology drift problem: the IDL version
and, more importantly, versions of helper software based on it, are constantly and
sometimes unpredictably evolving. If an API vendor employs the “code-first”
approach, meaning that the spec is generated based on the actual API code, the
occurrence of backward-incompatible changes in the server code — spec — code-
generated SDK — client app chain is only a matter of time.

NB: We recommend sticking to reasonable practices such as not using functionality
that is controversial from a backward compatibility point of view (including the
above-mentioned additionalProperties: false)and when evaluating the safety of
changes, considering spec-generated code behaves just like manually written code.
If you find yourself in a situation of unresolvable doubts, your only option is to
manually check every code generator to determine whether its output continues to
work with the new version of the API.

Backward Compatibility Policy
To summarize the points discussed above:

¢ You will have to deploy new API versions because of the evolution of apps,
platforms, and subject areas. Different areas evolve at different paces but
never stop doing so.

e This will result in the fragmentation of the API versions across different
platforms and apps.

¢ You have to make decisions that greatly affect the sustainability of your API
from your customers' perspective.

Let's briefly describe these decisions and the key factors to consider while making
them.

1. How often should new major API versions be released?

This is primarily a product question. A new major API version should be
released when a critical mass of functionality is reached, meaning a critical
mass of features that couldn't be introduced in the previous API versions or
would be too expensive to introduce. In stable markets, this situation
typically occurs once every several years. In emerging markets, new major



API versions might be shipped more frequently, depending only on your
ability to support the zoo of the previous versions. However, it is important to
note that deploying a new version before stabilizing the previous one, which
commonly takes several months up to a year, is always a troubling sign to
developers, as it means they risk dealing with API glitches permanently.

2. How many major versions should be supported simultaneously?

Theoretically, all of them. Practically, you should look at the size of the audience
that continues to use older versions and develop guidelines on when the
support for those versions will end.

3. How many minor versions (within one major version) should be supported
simultaneously?

Regarding minor versions, there are two options:

o If you provide server-side APIs and compiled SDKs only, you may
basically choose not to expose minor versions at all (see below).
However, at some maturity stage, providing access to at least the two
latest versions becomes necessary.

o If you provide code-on-demand SDKs, it is considered good practice to
provide access to previous minor versions of the SDK for a period of
time sufficient for developers to test their applications and address
issues if necessary. Since minor changes do not require rewriting large
portions of code, it is acceptable to align the lifecycle of a minor version
with the app release cycle duration in your industry, which in the worst
cases may comprise several months.

Keeping Several API Versions

In modern professional software development, especially when talking about
internal APIs, a new API version usually fully replaces the previous one. If any
problems are found, it might be rolled back by releasing the previous version, but
the two builds never coexist. However, in the case of public APIs, the more partner
integrations there are, the more dangerous this approach becomes.

Indeed, with the growth in the number of users, the “rollback the API version in
case of problems” paradigm becomes increasingly destructive. For partners, the
optimal solution is rigidly referencing the specific API version — the one that had
been tested (ideally, while also having the API vendor seamlessly address security
concerns and make their software compliant with newly introduced legislation).



NB: Based on the same considerations, providing beta (or maybe even alpha)
versions of popular APIs becomes more and more desirable as well, allowing
partners to test upcoming versions and address possible issues in advance.

The important (and undeniable) advantage of the semver system is that it provides
proper version granularity:

e Stating the first digit (major version) allows obtaining a backward-
compatible version of the API

e stating two digits (major and minor versions) guarantees that functionality
added after the initial release will be available.

¢ Finally, stating all three numbers (major version, minor version, and patch)
allows fixing a concrete API release with all its specificities (and errors),
which — theoretically — means that the integration will remain operational
until this version becomes physically unavailable.

Of course, preserving minor versions indefinitely is not possible (partly because of
security and compliance issues that tend to accumulate). However, providing such
access for a reasonable period of time is considered a hygienic norm for popular
APIs.

NB: Sometimes to defend the concept of a single accessible API version, the
following argument is put forward: preserving the SDK or API application server
code is not enough to maintain strict backward compatibility as it might rely on
some unversioned services (for example, data in the DB shared between all API
versions). However, we consider this an additional reason to isolate such
dependencies (see “The Serenity Notepad” chapter) as it means that changes to
these subsystems might result in the API becoming inoperable.



Chapter 27. On the Waterline of the Iceberg

Before we start talking about extensible API design, we should discuss the hygienic
minimum. Many problems would have never occurred if API vendors had paid
more attention to clearly marking their area of responsibility.

1. Provide a Minimal Amount of Functionality

At any given moment, your API is like an iceberg: it comprises an observable (i.e.,
documented) part and a hidden undocumented one. If the API is properly designed,
these two parts correspond to each other just like the above-water and under-water
parts of a real iceberg do, i.e. one to ten. Why so? Because of two obvious reasons.

¢ Computers exist to make complicated things easy, not the other way around.
The code that developers write using your API should describe a complicated
problem's solution in neat and straightforward sentences. If developers have
to write more code than the API itself comprises, then there is something
rotten here. It's possible that this APl isn't needed at all.

e Revoking API functionality causes losses. If you have promised to provide
certain functionality, you will have to do so “forever” (or at least until the
maintenance period for that API version is over). Pronouncing some
functionality as deprecated can be tricky and may alienate your customers.

The rule of thumb is very simple: if some functionality might be withheld, then
never expose it until you really need to. It might be reformulated as follows: every
entity, every field, and every public API method is a product decision. There must be
solid product reasons why certain functionality is exposed.

2. Avoid Gray Zones and Ambiguities

Your obligations to maintain some functionality must be stated as clearly as
possible, especially when provided in environments and platforms where there is
no native capability to restrict access to undocumented functionality.
Unfortunately, developers often consider some private features they “discover” as
eligible for use, assuming the API vendor shall maintain them intact. The policy
regarding such “findings” must be explicitly articulated. At the very least, in the
case of unauthorized usage of undocumented functionality, you can refer to the
documentation and be within your rights in the eyes of the community.



However, API developers often legitimize these gray zones themselves. For
example, by:

¢ Returning undocumented fields in endpoint responses
e Using private functionality in code samples: in the documentation, responses
to support inquiries, conference talks, etc.

One cannot make a partial commitment. Either you guarantee that the code will
always work or do not slip the slightest note that such functionality exists.

3. Codify Implicit Agreements

The third principle is much less obvious. Pay close attention to the code that you're
suggesting developers write: are there any conventions that you consider self-
evident but never wrote down?

Example #1. Let's take a look at this order processing SDK example:

// Creates an order

let order = api.createOrder();

// Returns the order status

let status = api.getStatus(order.id);

Let's imagine that you're struggling with scaling your service, and at some point
switched to eventual consistency, as we discussed in the corresponding chapter.
What would be the result? The code above will stop working. A user creates an
order, then tries to get its status but receives an error instead. It's very hard to
predict what approach developers would implement to tackle this error. They
probably would not expect this to happen at all.

You may say something like, “But we've never promised strict consistency in the
first place” — and that is obviously not true. You may say that if, and only if, you
have really described the eventual consistency in the createOrder docs, and all your
SDK examples look like this:



let order = api.createOrder();
let status;
while (true) {
try {
status = api.getStatus(order.id);
} catch (e) {
if (e.httpStatusCode '= 404 ||
timeoutExceeded()) {

break;

}
if (status) {

We presume we may skip the explanations of why such code must never be written

under any circumstances. If you're really providing a non-strictly consistent API,

then either the createOrder operation must be asynchronous and return the result
when all replicas are synchronized, or the retry policy must be hidden inside the

getStatus operation implementation.

If you failed to describe the eventual consistency in the first place, then you simply
couldn't make these changes in the API You will effectively break backward
compatibility, which will lead to huge problems with your customers' apps,

intensified by the fact that they can't be simply reproduced by QA engineers.

Example #2. Take a look at the following code:

let resolve;
let promise = new Promise(
function (innerResolve) {
resolve = innerResolve;

)

resolve();




This code presumes that the callback function passed to a new Promise will be
executed synchronously, and the resolve variable will be initialized before the
resolve() function call is executed. But this assumption is based on nothing: there
are no clues indicating that the new Promise constructor executes the callback
function synchronously.

Of course, the developers of the language standard can afford such tricks; but you as
an API developer cannot. You must at least document this behavior and make the
signatures point to it. Actually, the best practice is to avoid such conventions since
they are simply not obvious when reading the code. And of course, under no
circumstances dare you change this behavior to an asynchronous one.

Example #3. Imagine you're providing an animations API, which includes two
independent functions:

// Animates object's width,
// beginning with the first value,
// ending with the second
// in the specified time frame
object.animateWidth(
'100px"', '500px', '1s'
)i
// Observes the object's width changes
object.observe(
'widthchange', observerFunction

)

A question arises: how frequently and at what time fractions will the
observerFunction be called? Let's assume in the first SDK version we emulated
step-by-step animation at 10 frames per second. Then the observerFunction will be
called 10 times, getting values '14@px', '186px ', etc., up to '500px'. But then, in a
new API version, we have switched to implementing both functions atop the
operating system's native functionality. Therefore, you simply don't know when and
how frequently the observerFunction will be called.

Just changing the call frequency might result in making some code dysfunctional.
For example, if the callback function performs some complex calculations and no
throttling is implemented because developers relied on your SDK's built-in
throttling. Additionally, if the observerFunction ceases to be called exactly when



the '500px' value is reached due to system algorithm specifics, some code will be
broken beyond any doubt.

In this example, you should document the concrete contract (how often the
observer function is called) and stick to it even if the underlying technology is
changed.

Example #4. Imagine that customer orders are passing through a specific pipeline:

GET /v1/orders/{id}/events/history
{ "event_history": [
{
"iso_datetime":
"2020-12-29T00:35:00+03:00",
"new_status": "created"
boA
"iso_datetime":
"2020-12-29T700:35:10+03:00",
"new_status": "payment_approved"”
oA
"iso_datetime":
"2020-12-29T700:35:20+03:00",
"new_status": "preparing_started"
oA
"iso_datetime":
"2020-12-29T00:35:30+03:00",
"new_status": "ready"
}
1}

Suppose at some moment we decided to allow trustworthy clients to get their coffee
in advance before the payment is confirmed. So an order will jump straight to
"preparing_started" or even "ready" without a "payment_approved" event being
emitted. It might appear to you that this modification is backward-compatible since
you've never really promised any specific event order being maintained, but it is
not.



Let's assume that a developer (probably your company's business partner) wrote
some code implementing valuable business procedures, for example, gathering
income and expenses analytics. It's quite logical to expect this code operates a state
machine that switches from one state to another depending on specific events. This
analytical code will be broken if the event order changes. In the best-case scenario,
a developer will get some exceptions and will have to cope with the error's cause. In
the worst case, partners will operate incorrect statistics for an indefinite period of
time until they find the issue.

A proper decision would be, first, documenting the event order and the allowed
states; second, continuing to generate the "payment_approved" event before the
"preparing_started" one (since you're making a decision to prepare that order, so
you're in fact approving the payment) and add extended payment information.

This example leads us to the last rule.

4. Product Logic Must Be Backward-Compatible as Well

The state transition graph, event order, possible causes of status changes, etc. —
such critical things must be documented. However, not every piece of business logic
can be defined in the form of a programmable contract; some cannot be represented
in a machine-readable form at all.

Imagine that one day you start taking phone calls. A client may contact the call
center to cancel an order. You might even make this functionality technically
backward-compatible by introducing new fields to the “order” entity. But the end-
user might simply know the number and call it even if the app wasn't suggesting
anything like that. The partner's business analytical code might be broken as well or
start displaying weather on Mars since it was written without knowing about the
possibility of canceling orders in circumvention of the partner's systems.

A technically correct decision would be to add a “canceling via call center allowed”
parameter to the order creation function. Conversely, call center operators might
only cancel those orders that were created with this flag set. But that would be a bad
decision from a product point of view because it is not obvious to users that they can
cancel some orders by phone and not others. The only “good” decision in this
situation is to foresee the possibility of external order cancellations in the first
place. If you haven't foreseen it, your only option is the “Serenity Notepad” that will
be discussed in the last chapter of this Section.



Chapter 28. Extending through Abstracting

In the previous chapters, we have attempted to outline theoretical rules and
illustrate them with practical examples. However, understanding the principles of
designing change-proof APIs requires practice above all else. The ability to
anticipate future growth problems comes from a handful of grave mistakes once
made. While it is impossible to foresee everything, one can develop a certain
technical intuition.

Therefore, in the following chapters, we will test the robustness of our study API
from the previous Section, examining it from various perspectives to perform a
“variational analysis” of our interfaces. More specifically, we will apply a “What If?”
question to every entity, as if we are to provide a possibility to write an alternate
implementation of every piece of logic.

NB: In our examples, the interfaces will be constructed in a manner allowing for
dynamic real-time linking of different entities. In practice, such integrations
usually imply writing ad hoc server-side code in accordance with specific
agreements made with specific partners. But for educational purposes, we will
pursue more abstract and complicated ways. Dynamic real-time linking is more
typical in complex program constructs like operating system APIs or embeddable
libraries; giving educational examples based on such sophisticated systems would
be too inconvenient.

Let's start with the basics. Imagine that we haven't exposed any other functionality
but searching for offers and making orders, thus providing an API with two
methods: POST /offers/search and POST /orders.

Let us take the next logical step and suppose that partners will wish to dynamically
plug their own coffee machines (operating some previously unknown types of API)
into our platform. To allow doing so, we have to negotiate a callback format that
would allow us to call partners' APIs and expose two new endpoints providing the
following capabilities:

o Registering new API types in the system
o Providing the list of the coffee machines and their API types.

For example, we might provide a second API family (the partner-bound one) with
the following methods:



// 1. Register a new API type
PUT /v1/api-types/{api_type}
{
"order_execution_endpoint": {
// Callback function description

// 2. Provide a list of coffee machines
// with their API types
PUT /v1/partners/{partnerId}/coffee-machines

{

"coffee_machines": [{
"api_type",
"location”,
"supported_recipes"

-

}

So the mechanics are like this:

e A partner registers their API types, coffee machines, and supported recipes.
e With each incoming order, our server will call the callback function,
providing the order data in the stipulated format.

Now the partners might dynamically plug their coffee machines in and get the
orders. But now we will do the following exercise:

¢ Enumerate all the implicit assumptions we have made
e Enumerate all the implicit coupling mechanisms we need to have the
platform functioning properly.

It may seem like there are no such things in our API since it's quite simple and
basically just describes making some HTTP calls, but that's not true.



1.1t is implied that every coffee machine supports every order option like
varying the beverage volume.

2. There is no need to display additional data to the end-user regarding coffee
being brewed on these new coffee machines.

3.The price of the beverage doesn't depend on the selected partner or coffee
machine type.

We have written down this list having one purpose in mind: we need to understand
how exactly we will make these implicit arrangements explicit if we need to. For
example, if different coffee machines provide different functionality — let's say,
some of them are capable of brewing fixed beverage volumes only — what would
change in our API?

The universal approach to making such amendments is to consider the existing
interface as a reduction of some more general one, as if some parameters were set to
defaults and therefore omitted. So making a change is always a three-step process:

1. Explicitly define the programmatical contract as it works right now.

2.Extend the functionality: add a new method that allows for tackling the
restrictions set in the previous paragraph.

3. Pronounce the existing interfaces (those defined in #1) as “helpers” to the new
ones (those defined in #2) that pre-fill some options with default values.

More specifically, if we talk about changing available order options, we should do
the following:

1. Describe the current state. All coffee machines, plugged via the API, must
support three options: sprinkling with cinnamon, changing the volume, and
contactless delivery.

2.Add a new “with options” endpoint:



PUT /v1/partners/{partner_id}¢
/coffee-machines-with-options

"coffee_machines": [{
"id",
"api_type",
"location",
"supported_recipes”,
"supported_options": [
{"type": "volume_change"}

Yol
}

3.Pronounce the PUT /coffee-machines endpoint as it currently stands in the
protocol as equivalent to calling PUT /coffee-machines-with-options if we
pass those three options to it (sprinkling with cinnamon, changing the
volume, contactless delivery) and therefore being a partial case — a helper to
amore general call.

Usually, just adding a new optional parameter to the existing interface is enough; in
our case, adding non-mandatory options to the PUT /coffee-machines endpoint.

NB: When we talk about defining the contract as it works right now, we're referring
to internal agreements. We must have asked partners to support those three options
while negotiating the interaction format. If we had failed to do so from the very
beginning and are now defining them during the expansion of the public AP, it's a
very strong claim to break backward compatibility, and we should never do that (see
the previous chapter).

Limits of Applicability

Though this exercise appears to be simple and universal, its consistent usage is only
possible if the hierarchy of entities is well-designed from the very beginning and,
more importantly, if the direction of further API expansion is clear. Imagine that
after some time has passed, the options list has new items, such as adding syrup or
a second espresso shot. We are fully capable of expanding the list, but not the
defaults. As a result, the “default” PUT /coffee-machines interface will eventually
become completely useless because the default set of three options will no longer be
useful and will appear ridiculous: why these three options, what are the selection
criteria? In fact, the defaults and the method list reflect the historical stages of our
API development, which is not what one would expect from the helpers and
defaults nomenclature.



Alas, this dilemma can't be easily resolved. On one hand, we want developers to
write neat and concise code, so we must provide useful helpers and defaults. On the
other hand, we can't know in advance which sets of options will be the most useful
after several years of API evolution.

NB: We might conceal this problem in the following manner: one day gather all
these oddities and re-define all the defaults with a single parameter. For example,
introduce a special method like POST /use-defaults {"version": "v2"} that would
overwrite all the defaults with more suitable values. This would ease the learning
curve, but it would make your documentation even worse.

In the real world, the only viable approach to somehow tackle the problem is weak
entity coupling, which we will discuss in the next chapter.



Chapter 29. Strong Coupling and Related Problems

To demonstrate the problems of strong coupling, let's move on to interesting topics.
Let's continue our “variation analysis”: what if partners wish to offer their own
unique coffee recipes to end users in addition to the standard beverages? The
challenge is that the partner API, as described in the previous chapter, does not
expose the very existence of the partner network to the end user, thus presenting a
simple case. However, once we start providing methods to modify the core
functionality, not just API extensions, we will soon face next-level problems.

So, let's add one more endpoint for registering the partner's own recipe:

// Adds new recipe
POST /v1/recipes
{
"id",
"product_properties": {
"name",
"description”,
"default_volume"
// Other properties to describe
// the beverage to an end user
}
}

At first glance, this appears to be a reasonably simple interface, explicitly
decomposed into abstraction levels. But let's imagine the future and consider what
would happen to this interface as our system evolves further.

The first problem is obvious to those who thoroughly read the “Describing Final
Interfaces” chapter: product properties must be localized. This leads us to the first
change:



"product_properties": {
// "118n" is the standard abbreviation

// for "localization"

"11en": [{
"language_code": "en",
"country_code": "US",
"name",

"description”

}, /* other languages and countries */ .. ]

And here arises the first big question: what should we do with the default_volume
field? On one hand, it's an objective property measured in standardized units to be
passed to the program execution engine. On the other hand, in countries like the
United States, beverage volumes are specified as “10 fl 0z” rather than “300 ml.” We
can propose two solutions:

e Either the partner provides only the corresponding number and we will
make readable descriptions ourselves, or
¢ The partner provides both the number and all its localized representations.

The flaw in the first option is that a partner might be willing to use the service in a
new country or language, but they will be unable to do so until the API is localized
to support these new territories. The flaw in the second option is that it only works
with predefined volumes, so ordering an arbitrary beverage volume will not be
possible. The very first step we've taken effectively has had us trapped.

The localization flaws are not the only problem with this API. We should ask
ourselves a question: why do we really need these name and description fields? They
are simply non-machine-readable strings with no specific semantics. At first
glance, we need them to return in the /v1/search method response, but that's not a
proper answer as it only leads to another question: why do we actually return these
strings from search?

The correct answer lies beyond this specific interface. We need them because some
representation exists. There is a Ul for choosing a beverage type. The name and
description fields are probably two designations of the beverage for the user to
read, a short one (to be displayed on the search results page) and a long one (to be
displayed in the extended product specification block). This means we are setting



the API requirements based on some specific visual design. But what if a partner is
creating their own Ul for their own app? Not only might they not actually need two
descriptions, but we are also deceiving them. The name is not “just a name” as it
implies certain restrictions: it has a recommended length that is optimal for a
specific Ul, and it must look consistent on the search results page. Indeed,
designations like “our best quality™ coffee” or “Invigorating Morning Freshness®”
would look out of place among “Cappuccino,” “Lungo,” and “Latte.”

There is also another aspect to consider. As Uls (both ours and partners') evolve,
new visual elements will eventually be introduced. For example, a picture of the
beverage, its energy value, allergen information, etc. The product_properties
entity will become a scrapyard for numerous optional fields, and learning how to
set each field and its effects in the UI will be an interesting journey filled with trial
and error.

The problems we're facing are the problems of strong coupling. Each time we offer an
interface as described above, we effectively dictate the implementation of one entity
(recipe) based on the implementations of other entities (UI layout, localization
rules). This approach disregards the fundamental principle of “top to bottom” API
design because low-level entities should not define high-level ones.

The Rule of Contexts

To exacerbate matters, let us state that the inverse principle is also true: high-level
entities should not define low-level ones as well since it is not their responsibility.
The way out of this logical labyrinth is that high-level entities should define a context
for other objects to interpret. To properly design the interfaces for adding a new
recipe we should not attempt to find a better data format. Instead, we need to
understand the explicit and implicit contexts that exist in our subject area.

We have already identified a localization context. There is a set of languages and
regions supported by our API, and there are requirements for what partners must
provide to make the API work in a new region. Specifically, there must be a
formatting function to represent beverage volume somewhere in our API code,
either internally or within an SDK:



110n.volume.format = function(
value, language_code, country_code
) { .}
/*
110n.formatVolume(
‘3e0ml', 'en', 'UK'
) -~ '300 ml'
110n.formatVolume(
‘300ml', 'en', 'US'
) - '18 f1 oz’
*/

To ensure our API works correctly with a new language or region, the partner must
either define this function or indicate which pre-existing implementation to use
through the partner API, like this:

// Add a general formatting rule
// for the Russian language
PUT /formatters/volume/ru
{
"template": "{volume} mn"
}
// Add a specific formatting rule
// for the Russian language
// in the "“US” region
PUT /formatters/volume/ru/US
{
// In the US, we need to recalculate
// the number and add a postfix
"value_transform": {
"action": "divide",
"divisor": 30
h

"template": "{volume} yH."




so the aforementioned 116n.volume.format function implementation can retrieve
the formatting rules for the new language-region pair and utilize them.

NB: We are well aware that such a simple format is not sufficient to cover real-world
localization use cases, and one would either rely on existing libraries or design a
sophisticated format for such templating, which takes into account various aspects
such as grammatical cases and rules for rounding numbers or allows defining
formatting rules in the form of function code. The example above is simplified for
purely educational purposes.

Let's address the name and description problem. To reduce the coupling level, we
need to formalize (probably just for ourselves) a “layout” concept. We request the
provision of the name and description fields not because we theoretically need
them but to present them in a specific user interface. This particular Ul might have
an identifier or a semantic name associated with it:



GET /v1/layouts/{layout_id}
{
"id",
// Since we will likely have numerous
// layouts, it's better to enable
// extensibility from the beginning
"kind": "recipe_search"
// Describe every property we require
// to have this layout rendered properly
"properties”: [{
// Since we learned that “name’
// is actually a title for a search
// result snippet, it's much more
// convenient to have an explicit
// “search_title’ instead
"field": "search_title",
"view": {
// A machine-readable description
// of how this field is rendered

"min_length": "5em",
"max_length": "20em",
"overflow": "ellipsis"
}
-

// Which fields are mandatory
"required": [
"search_title",

"search_description”

Thus, the partner can decide which option better suits their needs. They can provide
mandatory fields for the standard layout:



PUT /v1/recipes/{id}/properties/118n/{lang}
{

"search_title", "search_description”

Alternatively, they can create their own layout and provide the data fields it
requires, or they may choose to design their own Ul and not use this functionality at
all, thereby defining neither layouts nor corresponding data fields.

Ultimately, our interface would look like this:

POST /v1/recipes
ECE

{"1d" )

This conclusion might seem highly counter-intuitive, but the absence of fields in a
Recipe simply tells us that this entity possesses no specific semantics of its own. It
serves solely as an identifier of a context, a way to indicate where to find the data
needed by other entities. In the real world, we should implement a builder endpoint
capable of creating all the related contexts with a single request:



POST /v1/recipe-builder
{
"id",
// Recipe's fixed properties
"product_properties": {
"default_volume", "110n"

H
// Create all the desired layouts
"layouts": [{
"id", "kind", "properties”
M

// Add all the required formatters
"formatters": {
"volume": [
{ "language_code", "template" },
{ "language_code", "country_code",
"template" }
I
I
// Other actions needed to register

// a new recipe in the system

We should also note that providing a newly created entity identifier from the
requesting side is not the best practice. However, since we decided from the very
beginning to keep recipe identifiers semantically meaningful, we have to live on
with this convention. Obviously, there is a risk of encountering collisions with
recipe names used by different partners. Therefore, we actually need to modify this
operation: either a partner must always use a pair of identifiers (e.g., the recipe id
plus the partner's own id), or we need to introduce composite identifiers, as we
recommended earlier in the “Describing Final Interfaces” chapter.



POST /v1/recipes/custom
{

// The first part of the composite
// identifier, for example,
// the partner's own id

"namespace"”: "my-coffee-company"”,
// The second part of the identifier
"id_component”: "lungo-customato"
}
{
"id":
"my-coffee-company:lungo-customato"
}

Also note that this format allows us to maintain an important extensibility point:
different partners might have both shared and isolated namespaces. Furthermore,
we might introduce special namespaces (like common, for example) to allow editing
standard recipes (and thus organizing our own recipes backoffice).

NB: A mindful reader might have noticed that this technique was already used in
our API study much earlier in the “Separating Abstraction Levels” chapter
regarding the “program” and “program run” entities. Indeed, we can propose an
interface for retrieving commands to execute a specific recipe without the program-
matcher endpoint, and instead, do it this way:

GET /v1/recipes/{id}/run-data/{api_type}
{ /* A description of how to
execute a specific recipe

using a specified API type */ }

Then developers would have to make this trick to get the beverage prepared:

e Learn the API type of the specific coffee machine.
o Retrieve the execution description as described above.
e Based on the API type, execute specific commands.



Obviously, such an interface is completely unacceptable because, in the majority of
use cases, developers do not care at all about which API type the specific coffee
machine exposes. To avoid the need for introducing such poor interfaces we created
a new “program” entity, which serves solely as a context identifier, just like a
“recipe” entity does. Similarly, the program_run_id entity is also organized in the
same manner, without possessing any specific properties and representing just a
program run identifier.



Chapter 30. Weak Coupling

In the previous chapter, we demonstrated how breaking strong coupling of
components leads to decomposing entities and collapsing their public interfaces
down to a reasonable minimum. But let us return to the question we previously
mentioned in the “Extending through Abstracting” chapter: how should we
parametrize the order preparation process implemented via a third-party API? In
other words, what is the order_execution_endpoint required in the API type
registration handler?

PUT /v1/api-types/{api_type}
{

"order_execution_endpoint": {
/] ?7?

From general considerations, we may assume that every such API would be capable
of executing three functions: running a program with specified parameters,
returning the current execution status, and finishing (canceling) the order. An
obvious way to provide the common interface is to require these three functions to
be executed via a remote call, let's say, like this:



PUT /v1/api-types/{api_type}
{

"order_execution_endpoint": {
"program_run_endpoint": {
/* Some description of
the remote function call */
"type": "rpc"
"endpoint": <URL>,
"parameters”
I
"program_get_state_endpoint",
"program_cancel_endpoint”

NB: By doing so, we transfer the complexity of developing the API onto the plane of
developing appropriate data formats, i.e., developing formats for order parameters
to the program_run_endpoint, determining what format the
program_get_state_endpoint shall return, etc. However, in this chapter, we're
focusing on different questions.

Though this API looks absolutely universal, it's quite easy to demonstrate how a
once simple and clear API ends up being confusing and convoluted. This design
presents two main problems:

1.1t nicely describes the integrations we've already implemented (it costs
almost nothing to support the API types we already know), but it brings no
flexibility to the approach. In fact, we simply described what we had already
learned, without even trying to look at the larger picture.

2. This design is ultimately based on a single principle: every order preparation
might be codified with these three imperative commands.

We can easily disprove the second statement, which will uncover the implications
of the first. Let's imagine, for example, that as the service grows further, we decide
to allow end-users to change the order after the execution has started. For example,
they may request a contactless takeout. This would lead us to the creation of a new
endpoint, let's say, program_modify_endpoint, and new difficulties in data format



development (as new fields for contactless delivery requested and satisfied flags
need to be passed in both directions). What is important is that both the endpoint
and the new data fields would be optional due to the backward compatibility
requirement.

Now let's try to imagine a real-world example that doesn't fit into our “three
imperatives to rule them all” picture. That's quite easy as well: what if we're
plugging in a vending machine via our APl instead of a coffee house? On one hand,
it means that the modify endpoint and all related stuff are simply meaningless: the
contactless takeout requirement means nothing to a vending machine. On the other
hand, the machine, unlike the people-operated café, requires takeout approval: the
end-user places an order while being somewhere else and then walks to the
machine and pushes the “get the order” button in the app. We might, of course,
require the user to stand up in front of the machine when placing an order, but that
would contradict the entire product concept of users selecting and ordering
beverages and then walking to the takeout point.

Programmable takeout approval requires one more endpoint, let's say,
program_takeout_endpoint. And so we've lost our way in a forest of five endpoints:

e To have vending machines integrated a partner must implement the
program_takeout_endpoint but doesn't need the program_modify_endpoint.

e To have regular coffee houses integrated a partner must implement the
program_modify_endpoint but doesn't need the program_takeout_endpoint.

Furthermore, we have to describe both endpoints in the documentation. It's quite
natural that the takeout endpoint is very specific; unlike requesting contactless
delivery, which we hid under the pretty general modify endpoint, operations like
takeout approval will require introducing a new unique method every time. After
several iterations, we would have a scrapyard full of similarly looking methods,
mostly optional. However, developers would still need to study the documentation
to understand which methods are needed in their specific situation and which are
not.

NB: In this example, we assumed that having the optional
program_takeout_endpoint value filled serves as a flag to the application to display
the “get the order” button. It would be better to add something like a
supported_flow field to the PUT /api-types/ endpoint to provide an explicit flag
instead of relying on this implicit convention. However, this wouldn't change the
problematic nature of stockpiling optional methods in the interface, so we skipped
it to keep the examples concise.



We actually don't know whether in the real world of coffee machine APIs this
problem will occur or not. But we can say with confidence that regarding “bare
metal” integrations, the processes we described always happen. The underlying
technology shifts; an API that seemed clear and straightforward becomes a trash
bin full of legacy methods, half of which bear no practical sense under any specific
set of conditions. If we add technical progress to the situation, i.e., imagine that
after a while all coffee houses have become automated, we will finally end up in a
situation where most methods aren't actually needed at all, such as requesting a
contactless takeout.

It is also worth mentioning that we unwittingly violated the principle of isolating
abstraction levels. At the vending machine API level, there is no such thing as
“contactless takeout” as it is actually a product concept.

So, how would we tackle this issue? We can use one of two possible approaches:
either thoroughly study the entire subject area and its upcoming improvements for
at least several years ahead or abandon strong coupling in favor of a weak one. How
would the ideal solution look for both parties? Something like this:

e The higher-level program API level doesn't actually know how the execution
of its commands works. It formulates the tasks at its own level of
understanding: brew this recipe, send the user's requests to a partner, allow
the user to collect their order.

e The underlying program execution API level doesn't care about what other
same-level implementations exist. It just interprets those parts of the task
that make sense to it.

If we take a look at the principles described in the previous chapter, we would find
that this principle was already formulated: we need to describe informational contexts
at every abstraction level and design a mechanism to translate them between levels.
Furthermore, in a more general sense, we formulated it as early as in the “Data
Flow” paragraph of the “Separating Abstraction Levels” chapter.

In our case we need to implement the following mechanisms:

e Running a program creates a corresponding context comprising all the
essential parameters.

e There is an information stream regarding the state modifications: the
execution level may read the context, learn about all the changes and report
back its own changes.



There are different techniques to organize this data flow (see the corresponding
chapter of the “API Patterns” Section of this book). Basically, we always have two
contexts and a two-way data pipe in between. If we were developing an SDK, we
would express the idea with emitting and listening events, like this:

/* Partner's implementation of the program
run procedure for a custom API type */
registerProgramRunHandler (
apiType, (program) => {
// Initiating an execution
// on the partner's side
let execution = initExecution(..);
// Listen to parent context changes
program.context.on(
'takeout_requested’, () => {
// If a takeout is requested, initiate
// required procedures
await execution.prepareTakeout();
// When the cup is ready for takeout,
// emit the corresponding event for
// a higher-level entity to catch it
execution.context.emit('takeout_ready');
}
)i
program.context.on(
'order_canceled', () => {
await execution.cancel();
execution.context.emit('canceled');
}
)

return execution.context;

NB: In the case of an HTTP API, a corresponding example would look rather bulky
as it would require implementing several additional endpoints for the message
exchange like GET /program-run/events and GET /partner/{id}/execution/events
We would leave this exercise to the reader.



At this point, a mindful reader might begin protesting because if we take a look at
the nomenclature of the new entities, we will find that nothing changed in the
problem statement. It actually became even more complicated:

e Instead of calling the takeout method, we're now generating a pair of
takeout_requested / takeout_ready events

¢ Instead of a long list of methods that shall be implemented to integrate the
partner's API, we now have a long list of context entities and events they
generate

¢ And with regards to technological progress, we've changed nothing: now we
have deprecated fields and events instead of deprecated methods.

And this remark is totally correct. Changing API formats doesn't solve any
problems related to the evolution of functionality and underlying technology.
Changing API formats serves another purpose: to make the code written by
developers stay clean and maintainable. Why would strong-coupled integration
(i.e., making entities interact via calling methods) render the code unreadable?
Because both sides are obliged to implement functionality that is meaningless in
their corresponding subject areas. Code that integrates vending machines into the
system must respond “ok” to the contactless delivery request — so after a while,
these implementations would comprise a handful of methods that just always
return true (or false).

The difference between strong coupling and weak coupling is that the field-event
mechanism isn't obligatory for both actors. Let us remember what we sought to achieve:

¢ A higher-level context doesn't know how the low-level API works — and it
really doesn't. It describes the changes that occur within the context itself and
reacts only to those events that mean something to it.

e A low-level context doesn't know anything about alternative
implementations — and it really doesn't. It handles only those events which
mean something at its level and emits only those events that could happen
under its specific conditions.

It's ultimately possible that both sides would know nothing about each other and
wouldn't interact at all, and this might happen with the evolution of underlying
technologies.



NB: In the real world, this might not be the case as we might want the application to
know whether the takeout request was successfully served or not, i.e., listen to the
takeout_ready event and require the takeout_ready flag in the state of the execution
context. Still, the general possibility of not caring about the implementation details
is a very powerful technique that makes the application code much less complex —
of course, unless this knowledge is important to the user.

One more important feature of weak coupling is that it allows an entity to have
several higher-level contexts. In typical subject areas, such a situation would look
like an API design flaw, but in complex systems, with several system state-
modifying agents present, such design patterns are not that rare. Specifically, you
would likely face it while developing user-facing Ul libraries. We will cover this
issue in detail in the “SDK and UI Libraries” section of this book.

The Inversion of Responsibility

It becomes obvious from what was said above that two-way weak coupling means a
significant increase in code complexity on both levels, which is often redundant. In
many cases, two-way event linking might be replaced with one-way linking
without significant loss of design quality. That means allowing a low-level entity to
call higher-level methods directly instead of generating events. Let's alter our
example:



/* Partner's implementation of the program
run procedure for a custom API type */
registerProgramRunHandler (
apiType, (program) => {
// Initiating an execution
// on the partner's side
let execution = initExecution(..);
// Listen to parent context changes
program.context.on(
'takeout_requested', () => {
// If a takeout is requested, initiate
// corresponding procedures
await execution.prepareTakeout();
/* When the order is ready
for takeout, signalize that
by calling the parent context
method, not with event emitting */
// execution.context
/17 .emit('takeout_ready"')
program.context.set('takeout_ready');
// Or even more rigidly
// program.setTakeoutReady();
}
)
// Since we're modifying the parent
// context instead of emitting events,

// we don't actually need to return anything

Again, this solution might look counter-intuitive, since we efficiently returned to
strong coupling via strictly defined methods. But there is an important difference:
we're bothering ourselves with weak coupling because we expect alternative
implementations of the lower abstraction level to pop up. Situations with different
realizations of higher abstraction levels emerging are, of course, possible but quite
rare. The tree of alternative implementations usually grows from root to leaves.

Another reason to justify this solution is that major changes occurring at different
abstraction levels have different weights:



o If the technical level is under change, that must not affect product qualities
and the code written by partners.

o If the product is changing, e.g., we start selling flight tickets instead of
preparing coffee, there is literally no sense in preserving backward
compatibility at technical abstraction levels. Ironically, we may actually make
our API sell tickets instead of brewing coffee without breaking backward
compatibility, but the partners' code will still become obsolete.

In conclusion, as higher-level APIs are evolving more slowly and much more
consistently than low-level APIs, reverse strong coupling might often be acceptable
or even desirable, at least from the price-quality ratio point of view.

NB: Many contemporary frameworks explore a shared state approach, Redux being
probably the most notable example. In the Redux paradigm, the code above would
look like this:

program.context.on(

'takeout_requested’,

() => A
await execution.prepareTakeout();
// Instead of generating events
// or calling higher-level methods
// an “execution’ entity calls
// a global or quasi-global ‘dispatch’
// callback to change a global state
dispatch(takeoutReady());

Let us note that this approach in general doesn't contradict the weak coupling
principle but violates another one — abstraction levels isolation — and therefore
isn't very well suited for writing branchy APIs with high hierarchy trees. In such
systems, it's still possible to use a global or quasi-global state manager, but you need
to implement event or method call propagation through the hierarchy, i.e., ensure
that a low-level entity always interacts with its closest higher-level neighbors only,
delegating the responsibility of calling high-level or global methods to them.



program.context.on(

'takeout_requested’,

) => A
await execution.prepareTakeout();
// Instead of calling the global
// “dispatch® method, an ‘execution’
// entity invokes its superior's
// dispatch functionality
program.context.dispatch(takeoutReady());

// program.context.dispatch implementation
ProgramContext.dispatch = (action) => {
// program.context calls its own
// superior or global object
// if there are no superiors
globalContext.dispatch(
// The action itself may and
// must be reformulated
// in appropriate terms
this.generateAction(action)

)i

Delegate!

Based on what was said, one more important conclusion follows: doing a real job,
i.e., implementing concrete actions (making coffee, in our case) should be delegated
to the lower levels of the abstraction hierarchy. If the upper levels try to prescribe
implementation algorithms, then (as demonstrated in the example of
order_execution_endpoint) we will soon face a situation of inconsistent methods,
most of which have no specific meaning when applied to a particular hardware
context.



On the other hand, by following the paradigm of concretizing the contexts at each
new abstraction level, we will eventually fall into the bunny hole deep enough to
have nothing more to concretize: the context itself unambiguously matches the
functionality we can programmatically control. At that level, we should stop
detailing contexts further and focus on implementing the necessary algorithms. It's
worth mentioning that the depth of abstraction may vary for different underlying
platforms.

NB: In the “Separating Abstraction Levels” chapter we illustrated exactly this: when
we talk about the first coffee machine API type, there is no need to extend the tree of
abstractions beyond running programs. However, with the second API type, we
need one more intermediary abstraction level, namely the runtimes API.



Chapter 31. Interfaces as a Universal Pattern

Let us summarize what we have written in the three previous chapters:

1. Extending API functionality is implemented through abstracting: the entity
nomenclature is to be reinterpreted so that existing methods become partial
simplified cases of more general functionality, ideally representing the most
frequent scenarios.

2. Higher-level entities are to be the informational contexts for low-level ones,
meaning they don't prescribe any specific behavior but rather translate their
state and expose functionality to modify it, either directly through calling
some methods or indirectly through firing events.

3.Concrete functionality, such as working with “bare metal” hardware or
underlying platform APIs, should be delegated to low-level entities.

NB: There is nothing novel about these rules: one might easily recognize them as
the SOLID architecture principles!2. This is not surprising either, as SOLID focuses
on contract-oriented development, and APIs are contracts by definition. We have
simply introduced the concepts of “abstraction levels” and “informational contexts”
to these principles.

However, there remains an unanswered question: how should we design the entity
nomenclature from the beginning so that extending the API won't result in a mess
of assorted inconsistent methods from different stages of development? The
answer is quite obvious: to avoid clumsy situations during abstracting (as with the
recipe properties), all the entities must be originally considered as specific
implementations of a more general interface, even if there are no planned
alternative implementations for them.

For example, while designing the POST /search API, we should have asked
ourselves a question: what is a “search result”? What abstract interface does it
implement? To answer this question we need to decompose this entity neatly and
identify which facet of it is used for interacting with which objects.

Then we would have come to the understanding that a “search result” is actually a
composition of two interfaces:

¢ When creating an order, we need the search result to provide fields that
describe the order itself, which could be a structure like:

{coffee_machine_id, recipe_id, volume, currency_code, price},



or we can encode this data in the single offer_id.

¢ When displaying search results in the app, we need a different data set: name,
description, and formatted and localized prices.

So our interface (let's call it ISearchResult) is actually a composition of two other
interfaces: IOrderParameters (an entity that allows for creating an order) and
ISearchItemViewParameters (an abstract representation of the search result in the
UI). This interface split should naturally lead us to additional questions:

1. How will we couple the former and the latter? Obviously, these two sub-
interfaces are related: the machine-readable price must match the human-
readable one, for example. This will naturally lead us to the “formatter”
concept described in the “Strong Coupling and Related Problems” chapter.

2.And what constitutes the “abstract representation of a search result in the
UI"? Do we have other types of search? Should the
ISearchItemViewParameters interface be a subtype of some even more
general interface, or maybe a composition of several such interfaces?

Replacing specific implementations with interfaces not only allows us to respond
more clearly to many concerns that arise during the API design phase but also helps
us outline many possible directions for API evolution. This approach should assist
us in avoiding API inconsistency problems in the future.
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Chapter 32. The Serenity Notepad

Apart from the abovementioned abstract principles, let us give a list of concrete
recommendations on how to make changes in existing APIs to maintain backward
compatibility

1. Remember the Iceberg’s Waterline

If you haven't given any formal guarantee, it doesn't mean that you can violate
informal ones. Often, just fixing bugs in APIs might render some developers' code
inoperable. We can illustrate this with a real-life example that the author of this
book actually faced once:

e There was an API to place a button into a visual container. According to the
docs, it was taking its position (offsets to the container's corner) as a
mandatory argument.

¢ In reality, there was a bug: if the position was not supplied, no exception was
thrown. Buttons were simply stacked in the corner one after another.

o After the error had been fixed, we received a bunch of complaints: clients had
really used this flaw to stack the buttons in the container's corner.

If fixing an error might somehow affect real customers, you have no other choice
but to emulate this erroneous behavior until the next major release. This situation is
quite common when you develop a large API with a huge audience. For example,
operating system developers literally have to transfer old bugs to new OS versions.

2. Test the Formal Interface

Any software must be tested, and APIs are no exception. However, there are some
subtleties involved: as APIs provide formal interfaces, it's the formal interfaces that
need to be tested. This leads to several kinds of mistakes:

1. Often, requirements like “the getEntity function returns the value previously
set by the setEntity function” appear to be too trivial for both developers and
QA engineers to have a proper test. But it's quite possible to make a mistake
there, and we have actually encountered such bugs several times.



2. The interface abstraction principle must also be tested. In theory, you might
have considered each entity as an implementation of some interface; in
practice, it might happen that you have forgotten something and alternative
implementations aren't actually possible. For testing purposes, it's highly
desirable to have an alternative realization, even a provisional one, for every
interface.

3. Isolate the Dependencies

In the case of a gateway API that provides access to some underlying API or
aggregates several APIs behind a single fagade, there is a strong temptation to proxy
the original interface as is, thus not introducing any changes to it and making life
much simpler by sparing the effort needed to implement the weak-coupled
interaction between services. For example, while developing program execution
interfaces as described in the “Separating Abstraction Levels” chapter we might
have taken the existing first-kind coffee-machine API as a role model and provided
it in our API by just proxying the requests and responses as is. Doing so is highly
undesirable because of several reasons:

e Usually, you have no guarantees that the partner will maintain backward
compatibility or at least keep new versions more or less conceptually akin to
the older ones.

e Any partner's problem will automatically ricochet into your customers.

The best practice is quite the opposite: isolate the third-party API usage, i.e.,
develop an abstraction level that will allow for:

o Keeping backward compatibility intact because of extension capabilities
incorporated in the API design.
¢ Negating partner's problems by technical means:
o Limiting the partner's API usage in case of load surges
o Implementing retry policies or other methods of recovering after
failures
o Caching some data and states to have the ability to provide some (at
least partial) functionality even if the partner's API is fully unreachable
o Finally, configuring an automatic fallback to another partner or
alternative API.

4. Implement Your API Functionality Atop Public Interfaces



There is an antipattern that occurs frequently: API developers use some internal
closed implementations of some methods that exist in the public API It happens
because of two reasons:

e Often the public API is just an addition to the existing specialized software,
and the functionality, exposed via the API, isn't being ported back to the
closed part of the project, or the public API developers simply don't know the
corresponding internal functionality exists.

¢ In the course of extending the API, some interfaces become abstract, but the
existing functionality isn't affected. Imagine that while implementing the PUT
/formatters interface described in the “Strong Coupling and Related
Problems” chapter API developers have created a new, more general version
of the volume formatter but haven't changed the implementation of the
existing one, so it continues working for pre-existing languages.

There are obvious local problems with this approach (like the inconsistency in
functions' behavior or the bugs that were not found while testing the code), but also
a bigger one: your API might be simply unusable if a developer tries any non-
mainstream approach because of performance issues, bugs, instability, etc., as the
API developers themselves never tried to use this public interface for anything
important.

NB: The perfect example of avoiding this anti-pattern is the development of
compilers. Usually, the next compiler's version is compiled with the previous
compiler's version.

5. Keep a Notepad

Whatever tips and tricks described in the previous chapters you use, it's often quite
probable that you can't do anything to prevent API inconsistencies from piling up.
It's possible to reduce the speed of this stockpiling, foresee some problems, and
have some interface durability reserved for future use. But one can't foresee
everything. At this stage, many developers tend to make some rash decisions, e.g.,
releasing a backward-incompatible minor version to fix some design flaws.

We highly recommend never doing that. Remember that the API is also a multiplier
of your mistakes. What we recommend is to keep a serenity notepad — to write
down the lessons learned and not to forget to apply this knowledge when a new
major API version is released.



SECTION IV. HTTP APIS & THE REST ARCHITECTURAL PRINCIPLES

Chapter 33. On the HTTP API Concept and Terminology

The problem of designing HTTP APIs is, unfortunately, one of the most “holywar”-
inspiring issues. On one hand, it is one of the most popular technologies but, on the
other hand, it is quite complex and difficult to comprehend due to the large and
fragmented standard split into many RFCs. As a result, the HTTP specification is
doomed to be poorly understood and imperfectly interpreted by millions of
software engineers and thousands of textbook writers. Therefore, before
proceeding to the useful part of this Section, we must clarify exactly what we are
going to discuss.

It has somehow happened that the entire modern network stack used for
developing client-server APIs has been unified in two important points. One of
them is the Internet Protocol Suite, which comprises the IP protocol as a base and
an additional layer on top of it in the form of either the TCP or UDP protocol. Today,
alternatives to the TCP/IP stack are used for a very limited subset of engineeri