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INTRODUCTION

CHAPTER 1. ON THE STRUCTURE OF THIS BOOK

The book you're holding in your hands comprises this Introduction and three large
sections.

In Section I we'll discuss designing APIs as a concept: how to build the architecture
properly, from a high-level planning down to �nal interfaces.

Section II is dedicated to an API's lifecycle: how interfaces evolve over time, and how
to elaborate the product to match users' needs.

Finally, Section III is more about un-engineering sides of the API, like API
marketing, organizing support, and working with a community.

First two sections are interesting to engineers mostly, while the third section is more
relevant to both engineers and product managers. However, we insist that the third
section is the most important for the API software developer. Since an API is a
product for engineers, you cannot simply pronounce non-engineering team
responsible for product planning and support. Nobody but you understands more
about your API's product features.

Let's start.



CHAPTER 2. THE API DEFINITION

Before we start talking about the API design, we need to explicitly de�ne what the
API is. Encyclopedia tells us that ‘API’ is an acronym for ‘Application Program
Interface’. This de�nition is �ne, but useless. Much like ‘Man’ de�nition by Plato:
Man stood upright on two legs without feathers. This de�nition is �ne again, but it
gives us no understanding what's so important about a Man. (Actually, not ‘�ne’
either. Diogenes of Sinope once brought a plucked chicken, saying ‘That's Plato's
Man’. And Plato had to add ‘with broad nails’ to his de�nition.)

What API means apart from the formal de�nition?

You're possibly reading this book using a Web browser. To make the browser display
this page correctly, a bunch of stuff must work correctly: parsing the URL according
to the speci�cation; DNS service; TLS handshake protocol; transmitting the data
over HTTP protocol; HTML document parsing; CSS document parsing; correct
HTML+CSS rendering.

But those are just a tip of an iceberg. To make HTTP protocol work you need the
entire network stack (comprising 4-5 or even more different level protocols) work
correctly. HTML document parsing is being performed according to hundreds of
different speci�cations. Document rendering calls the underlying operating system
API, or even directly graphical processor API. And so on: down to modern CISC
processor commands being implemented on top of the microcommands API.

In other words, hundreds or even thousands of different APIs must work correctly to
make basic actions possible, like viewing a webpage. Modern internet technologies
simply couldn't exist without these tons of API working �ne.

An API is an obligation. A formal obligation to connect different programmable
contexts.

When I'm asked of an example of a well-designed API, I usually show the picture of a
Roman aqueduct:
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it interconnects two areas;
backwards compatibility being broken not a single time in two thousand years.

What differs between a Roman aqueduct and a good API is that APIs presume a
contract being programmable. To connect two areas some coding is needed. The goal
of this book is to help you in designing APIs which serve their purposes as solidly as
a Roman aqueduct does.

An aqueduct also illustrates another problem of the API design: your customers are
engineers themselves. You are not supplying water to end-users: suppliers are
plugging their pipes to you engineering structure, building their own structures
upon it. From one side, you may provide an access to the water to much more people
through them, not spending your time on plugging each individual house to your
network. But from other side, you can't control the quality of suppliers' solutions,
and you are to be blamed every time there is a water problem caused by their
incompetence.

https://pixabay.com/photos/pont-du-gard-france-aqueduct-bridge-3909998/


That's why designing the API implies a larger area of responsibility. API is a
multiplier to both your opportunities and mistakes.



CHAPTER 3. API QUALITY CRITERIA

Before we start laying out the recommendations, we ought to specify what API we
consider ‘�ne’, and what's the pro�t of having a ‘�ne’ API.

Let's discuss second question �rst. Obviously, API ‘�nesse’ is �rst of all de�ned
through its capability to solve developers' problems. (One may reasonably say that
solving developers' problem might not be the main purpose of offering the API of
ours to developers. However, manipulating public opinion is out of this book's author
interest. Here we assume that APIs exist primarily to help developers in solving their
problems, not for some other covertly declared purposes.)

So, how the API design might help the developers? Quite simple: a well-designed
API must solve their problems in the most ef�cient and comprehensible manner.
The distance from formulating the task to writing a working code must be as short as
possible. Among other things, it means that:

it must be totally obvious out of your API's structure how to solve a task;
ideally, developers at �rst glance should be able to understand, what entities are
meant to solve their problem;
the API must be readable; ideally, developers write correct code after just
looking at the method nomenclature, never bothering about details (especially
API implementation details!); it also also very important to mention, that not
only problem solution (the ‘happy path’) should be obvious, but also possible
errors and exceptions (the ‘unhappy path’);
the API must be consistent; while developing new functionality (i.e. while using
unknown API entities) developers may write new code similar to the code they
already wrote using known API concepts, and this new code will work.

However static convenience and clarity of APIs is a simple part. After all, nobody
seeks for making an API deliberately irrational and unreadable. When we are
developing an API, we always start with clear basic concepts. Providing you've got
some experience in APIs, it's quite hard to make an API core which fails to meet
obviousness, readability, and consistency criteria.

Problems begin when we start to expand our API. Adding new functionality sooner
or later result in transforming once plain and simple API into a mess of con�icting
concepts, and our efforts to maintain backwards compatibility lead to illogical,
unobvious and simply bad design solutions. It is partly related to an inability to



predict the future in details: your understanding of ‘�ne’ APIs will change over time,
both in objective terms (what problems the API is to solve, and what are the best
practices) and in subjective ones too (what obviousness, readability and consistency
really means regarding your API).

Principles we are explaining below are speci�cally oriented to making APIs evolve
smoothly over time, not being turned into a pile of mixed inconsistent interfaces. It
is crucial to understand that this approach isn't free: a necessity to bear in mind all
possible extension variants and to preserve essential growth points means interface
redundancy and possibly excessing abstractions being embedded in the API design.
Besides both make developers' work harder. Providing excess design complexities
being reserved for future use makes sense only when this future actually exists for
your API. Otherwise it's simply an overengineering.



CHAPTER 4. BACKWARDS COMPATIBILITY

Backwards compatibility is a temporal characteristics of your API. An obligation to
maintain backwards compatibility is the crucial point where API development differs
form software development in general.

Of course, backwards compatibility isn't an absolute. In some subject areas shipping
new backwards incompatible API versions is a routine. Nevertheless, every time you
deploy new backwards incompatible API version, the developers need to make some
non-zero effort to adapt their code to the new API version. In this sense, releasing
new API versions puts a sort of a ‘tax’ on customers. They must spend quite real
money just to make sure their product continue working.

Large companies, which occupy �rm market positions, could afford implying such a
taxation. Furthermore, they may introduce penalties for those who refuse to adapt
their code to new API versions, up to disabling their applications.

From our point of view such practice cannot be justi�ed. Don't imply hidden taxes
on your customers. If you're able to avoid breaking backwards compatibility — never
break it.

Of course, maintaining old API versions is a sort of a tax either. Technology changes,
and you cannot foresee everything, regardless of how nice your API is initially
designed. At some point keeping old API versions results in an inability to provide
new functionality and support new platforms, and you will be forced to release new
version. But at least you will be able to explain to your customers why they need to
make an effort.

We will discuss API lifecycle and version policies in Section II.



CHAPTER 5. ON VERSIONING

Here and throughout we �rmly stick to semver principles of versioning:

1. API versions are denoted with three numbers, i.e. 1.2.3.
2. First number (major version) increases when backwards incompatible changes

in the API are shipped.
3. Second Number (minor version) increases when new functionality is added to

the API, keeping backwards compatibility intact.
4. Third number (patch) increases when new API version contains bug �xes only.

Sentences ‘major API version’ and ‘new API version, containing backwards
incompatible changes’ are therefore to be considered as equivalent ones.

In Section II we will discuss versioning policies in more details. In Section I we will
just use semver versions designation, speci�cally v1, v2, etc.

https://semver.org/


CHAPTER 6. TERMS AND NOTATION KEYS

Software development is being characterized, among other things, by an existence of
many different engineering paradigms, whose adepts sometimes are quite aggressive
towards other paradigms' adepts. While writing this book we are deliberately
avoiding using terms like ‘method’, ‘object’, ‘function’, and so on, using a neutral
term ‘entity’ instead. ‘Entity’ means some atomic functionality unit, like class,
method, object, monad, prototype (underline what you think right).

As for an entity's components, we regretfully failed to �nd a proper term, so we will
use words ‘�elds’ and ‘methods’.

Most of the examples of APIs will be provided in a form of JSON-over-HTTP
endpoints. This is some sort of notation which, as we see it, helps to describe
concepts in the most comprehensible manner. GET /v1/orders endpoint call could
easily be replaced with orders.get() method call, local or remote; JSON could easily
be replaced with any other data format. The meaning of assertions shouldn't change.

Let's take a look at the following example:

// Method description 
POST /v1/bucket/{id}/some-resource 
X-Idempotency-Token: <idempotency token> 
{ 
  … 
  // This is a single-line comment 
  "some_parameter": "example value", 
  … 
} 
→ 404 Not Found 
Cache-Control: no-cache 
{ 
  /* And this is 
     a multiline comment */ 
  "error_message" 
} 

It should be read like this:

a client performs a POST request to a /v1/bucket/{id}/some-resource resource,
where {id} is to be replaced with some bucket's identi�er ({something}



notation refers to the nearest term from the left, unless explicitly speci�ed
otherwise);
a speci�c X-Idempotency-Token header is added to the request alongside with
standard headers (which we omit);
terms in angle brackets (<idempotency token>) describe the semantics of an
entity value (�eld, header, parameter);
a speci�c JSON, containing a some_parameter �eld and some other unspeci�ed
�elds (indicated by ellipsis) is being sent as a request body payload;
in response (marked with arrow symbol →) server returns a 404 Not Founds
status code; the status might be omitted (treat it like 200 OK if no status is
provided);
the response could possibly contain additional notable headers;
the response body is a JSON comprising single error_message �eld; �eld value
absence means that �eld contains exactly what you expect it should contain —
some error message in this case.

Term ‘client’ here stands for an application being executed on a user's device, either
native of web one. Terms ‘agent’ and ‘user agent’ are synonymous to ‘client’.

Some request and response parts might be omitted if they are irrelevant to a topic
being discussed.

Simpli�ed notation might be used to avoid redundancies, like POST /some-resource
{…, "some_parameter", …} → { "operation_id" }; request and response bodies
might also be omitted.

We will be using sentences like ‘POST /v1/bucket/{id}/some-resource method’ (or
simply ‘bucket/some-resource method’, ‘some-resource’ method — if there are no
other some-resources in the chapter, so there is no ambiguity) to refer to such
endpoint de�nitions.

Apart from HTTP API notation, we will employ C-style pseudocode, or, to be more
precise, JavaScript-like or Python-like since types are omitted. We assume such
imperative structures being readable enough to skip detailed grammar explanations.



SECTION I. THE API DESIGN

CHAPTER 7. THE API CONTEXTS PYRAMID

The approach we use to design APIs comprises four steps:

de�ning an application �eld;
separating abstraction levels;
isolating responsibility areas;
describing �nal interfaces.

This four-step algorithm actually builds an API from top to bottom, from common
requirements and use case scenarios down to a re�ned entity nomenclature. In fact,
moving this way will eventually conclude with a ready-to-use API — that's why we
value this approach highly.

It might seem that the most useful pieces of advice are given in the last chapter, but
that's not true. The cost of a mistake made at certain levels differs. Fixing the
naming is simple; revising the wrong understanding of what the API stands for is
practically impossible.

NB. Here and throughout we will illustrate API design concepts using a hypothetical
example of an API allowing for ordering a cup of coffee in city cafes. Just in case: this
example is totally synthetic. If we were to design such an API in a real world, it
would probably have very few in common with our �ctional example.



CHAPTER 8. DEFINING AN APPLICATION FIELD

Key question you should ask yourself looks like that: what problem we solve? It
should be asked four times, each time putting an emphasis on an another word.

1. What problem we solve? Could we clearly outline the situation in which our
hypothetical API is needed by developers?

2. What problem we solve? Are we sure that abovementioned situation poses a
problem? Does someone really want to pay (literally or �guratively) to automate
a solution for this problem?

3. What problem we solve? Do we actually possess an expertise to solve the
problem?

4. What problem we solve? Is it true that the solution we propose solves the
problem indeed? Aren't we creating another problem instead?

So, let's imagine that we are going to develop an API for automated coffee ordering
in city cafes, and let's apply the key question to it.

1. Why would someone need an API to make a coffee? Why ordering a coffee via
‘human-to-human’ or ‘human-to-machine’ interface is inconvenient, why have
‘machine-to-machine’ interface?

Possibly, we're solving knowledge and selection problems? To provide
humans with a full knowledge what options they have right now and right
here.
Possibly, we're optimizing waiting times? To save the time people waste
waiting their beverages.
Possibly, we're reducing the number of errors? To help people get exactly
what they wanted to order, stop losing information in imprecise
conversational communication or in dealing with unfamiliar coffee
machine interfaces?

‘Why’ question is the most important of all questions you must ask yourself.
And not only about global project goals, but also locally about every single piece
of functionality. If you can't brie�y and clearly answer the question ‘what for
this entity is needed’, then it's not needed.



Here and throughout we assume, to make our example more complex and
bizarre, that we are optimizing all three factors.

2. Do the problems we outlined really exist? Do we really observe unequal coffee-
machines utilization in mornings? Do people really suffer from inability to �nd
nearby a toffee nut latte they long for? Do they really care about minutes they
spend in lines?

3. Do we actually have a resource to solve a problem? Do we have an access to
suf�cient number of coffee machines and users to ensure system's ef�ciency?

4. Finally, will we really solve a problem? How we're going to quantify an impact
our API makes?

In general, there are no simple answers to those questions. Ideally, you should give
answers having all the relevant metrics measured: how much time is wasted exactly,
and what numbers we're going to achieve providing we have such coffee machines
density? Let us also stress that in a real life obtaining these numbers is only possible
if you're entering a stable market. If you try to create something new, your only
option is to rely on your intuition.

Why an API?

Since our book is dedicated not to software development per se, but to developing
APIs, we should look at all those questions from a different angle: why solving those
problems speci�cally requires an API, not simply a specialized software application?
In terms of our �ctional example we should ask ourselves: why provide a service to
developers, allowing for brewing coffee to end users, instead of just making an app?

In other words, there must be a solid reason to split two software development
domains: there are the operators which provide APIs; and there are the operators
which develop services for end users. Their interests are somehow different to such
an extent, that coupling this two roles in one entity is undesirable. We will talk about
the motivation to speci�cally provide APIs in more details in Section III.

We should also note, that you should try making an API when and only when you
wrote ‘because that's our area of expertise’ in question 2. Developing APIs is sort of
meta-engineering: you're writing some software to allow other companies to develop
software to solve users' problems. You must possess an expertise in both domains
(APIs and user products) to design your API well.



As for our speculative example, let us imagine that in the near future some tectonic
shift happened within coffee brewing market. Two distinct player groups took shape:
some companies provide a ‘hardware’, i.e. coffee machines; other companies have an
access to customer auditory. Something like the �ights market looks like: there are
air companies, which actually transport passengers; and there are trip planning
services where users are choosing between trip variants the system generates for
them. We're aggregating a hardware access to allow app vendors for ordering the
fresh brewed coffee.

What and How

After �nishing all these theoretical exercises, we should proceed right to designing
and developing the API, having a decent understanding regarding two things:

what we're doing, exactly;
how we're doing it, exactly.

In our coffee case, we are:

providing an API to services with larger audience, so their users may order a cup
of coffee in the most ef�cient and convenient manner;
abstracting an access to coffee machines ‘hardware’ and delivering methods to
select a beverage kind and some location to brew — and to make an order.



CHAPTER 9. SEPARATING ABSTRACTION LEVELS

‘Separate abstraction levels in your code’ is possibly the most general advice to
software developers. However, we don't think it would be a grave exaggeration to say
that abstraction levels separation is also the most dif�cult task to API developers.

Before proceeding to the theory, we should formulate clearly why abstraction levels
are so important, and what goals we're trying to achieve by separating them.

Let us remember that software product is a medium connecting two outstanding
contexts, thus transforming terms and operations belonging to one subject area into
another area's concepts. The more these areas differ, the more interim connecting
links we have to introduce.

Back to our coffee example. What entity abstraction levels we see?

1. We're preparing an order via the API: one (or more) cup of coffee, and receive
payments for this.

2. Each cup of coffee is being prepared according to some recipe, which implies
the presence of different ingredients and sequences of preparation steps.

3. Each beverage is being prepared on some physical coffee machine, occupying
some position in space.

Every level presents a developer-facing ‘facet’ in our API. While elaborating
abstractions hierarchy, we �rst of all trying to reduce the interconnectivity of
different entities. That would help us to reach several goals.

1. Simplifying developers' work and the learning curve. At each moment of time a
developer is operating only those entities which are necessary for the task
they're solving right now. And conversely, badly designed isolation leads to the
situation when developers have to keep in mind lots of concepts mostly
unrelated to the task being solved.

2. Preserving backwards compatibility. Properly separated abstraction levels allow
for adding new functionality while keeping interfaces intact.

3. Maintaining interoperability. Properly isolated low-level abstraction help us to
adapt the API to different platforms and technologies without changing high-
level entities.



Let's say we have the following interface:

// Returns lungo recipe 
GET /v1/recipes/lungo 

// Posts an order to make a lungo 
// using specified coffee-machine, 
// and returns an order identifier 
POST /v1/orders 
{ 
  "coffee_machine_id", 
  "recipe": "lungo" 
} 

// Returns order state 
GET /v1/orders/{id} 

Let's consider the question: how exactly developers should determine whether the
order is ready or not? Let's say we do the following:

add a reference beverage volume to the lungo recipe;
add currently prepared volume of beverage to the order state.

Then a developer just needs to compare two numbers to �nd out whether the order
is ready.

This solution intuitively looks bad, and it really is: it violates all abovementioned
principles.

In �rst, to solve the task ‘order a lungo’ a developer needs to refer to the ‘recipe’
entity and learn that every recipe has an associated volume. Then they need to
embrace the concept that an order is ready at that particular moment when the
prepared beverage volume becomes equal to the reference one. This concept is
simply unguessable, and knowing it is mostly useless.

In second, we will have automatically got problems if we need to vary the beverage
size. For example, if one day we decide to offer a choice to a customer, how many
milliliters of lungo they desire exactly, then we have to perform one of the following
tricks.



Variant I: we have a list of possible volumes �xed and introduce bogus recipes like
/recipes/small-lungo or recipes/large-lungo. Why ‘bogus’? Because it's still the
same lungo recipe, same ingredients, same preparation steps, only volumes differ.
We will have to start the mass production of recipes, only different in volume, or
introduce some recipe ‘inheritance’ to be able to specify the ‘base’ recipe and just
rede�ne the volume.

Variant II: we modify an interface, pronouncing volumes stated in recipes being just
the default values. We allow to set different volume when placing an order:

POST /v1/orders 
{ 
  "coffee_machine_id", 
  "recipe":"lungo", 
  "volume":"800ml" 
} 

For those orders with an arbitrary volume requested, a developer will need to obtain
the requested volume not from GET /v1/recipes, but GET /v1/orders. Doing so we're
getting a whole bunch of related problems:

there is a signi�cant chance that developers will make mistakes in this
functionality implementation, if they add arbitrary volume support in the code
working with the POST /v1/orders handler, but forget to make corresponding
changes in the order readiness check code;
the same �eld (coffee volume) now means different things in different
interfaces. In GET /v1/recipes context volume �eld means ‘a volume to be
prepared if no arbitrary volume is speci�ed in POST /v1/orders request’; and it
cannot be renamed to ‘default volume’ easily, we now have to live with that.

In third, the entire scheme becomes totally inoperable if different types of coffee
machines produce different volumes of lungo. To introduce ‘lungo volume depends
on machine type’ constraint we have to do quite a nasty thing: make recipes depend
on coffee machine id. By doing so we start actively ‘stir’ abstraction levels: one part
of our API (recipe endpoints) becomes unusable without explicit knowledge of
another part (coffee machines listing). And what is even worse, developers will have
to change the logic of their apps: previously it was possible to choose volume �rst,
then a coffee-machine; but now this step must be rebuilt from scratch.

Okay, we understood how to make things bad. But how to make them nice?



Abstraction levels separation should go alongside three directions:

1. From user scenarios to their internal representation: high-level entities and
their method nomenclature must directly re�ect API usage scenarios; low-level
entities re�ect the decomposition of scenarios into smaller parts.

2. From user subject �eld terms to ‘raw’ data subject �eld terms — in our case
from high-level terms like ‘order’, ‘recipe’, ‘café’ to low-level terms like
‘beverage temperature’, ‘coffee machine geographical coordinates’, etc.

3. Finally, from data structures suitable for end users to ‘raw’ data structures — in
our case, from ‘lungo recipe’ and ‘"Chamomile" café chain’ to raw byte data
stream from ‘Good Morning’ coffee machine sensors.

The more is the distance between programmable contexts our API connects, the
deeper is the hierarchy of the entities we are to develop.

In our example with coffee readiness detection we clearly face the situation when we
need an interim abstraction level:

from one side, an ‘order’ should not store the data regarding coffee machine
sensors;
from other side, a coffee machine should not store the data regarding order
properties (and its API probably doesn't provide such functionality).

A naïve approach to this situation is to design an interim abstraction level as a
‘connecting link’, which reformulates tasks from one abstraction level to another.
For example, introduce a task entity like that:

{ 
  … 
  "volume_requested": "800ml", 
  "volume_prepared": "200ml", 
  "readiness_policy": "check_volume", 
  "ready": false, 
  "operation_state": { 
    "status": "executing", 
    "operations": [ 
      // description of commands 
      // being executed on a physical coffee machine 
    ] 
  } 
  … 
} 



We call this approach ‘naïve’ not because it's wrong; on the contrary, that's quite a
logical ‘default’ solution if you don't know yet (or don't understand yet) how your
API will look like. The problem with this approach lies in its speculativeness: it
doesn't re�ect the subject area's organization.

An experienced developer in this case must ask: what options do exist? How we
really should determine beverage readiness? If it turns out that comparing volumes
is the only working method to tell whether the beverage is ready, then all the
speculations above are wrong. You may safely include readiness-by-volume
detection into your interfaces, since no other methods exist. Before abstracting
something we need to learn what exactly we're abstracting.

In our example let's assume that we have studied coffee machines API specs, and
learned that two device types exist:

coffee machines capable of executing programs coded in the �rmware; the only
customizable options are some beverage parameters, like desired volume, a
syrup �avor and a kind of milk;
coffee machines with builtin functions, like ‘grind speci�ed coffee volume’,
‘shed speci�ed amount of water’, etc.; such coffee machines lack ‘preparation
programs’, but provide an access to commands and sensors.

To be more speci�c, let's assume those two kinds of coffee machines provide the
following physical API.

Coffee machines with prebuilt programs:

// Returns a list of programs 
GET /programs 
→ 
{ 
  // program identifier 
  "program": 1, 
  // coffee type 
  "type": "lungo" 
} 



// Starts an execution of a specified program 
// and returns execution status 
POST /execute 
{ 
  "program": 1, 
  "volume": "200ml" 
} 
→ 
{ 
  // Unique identifier of the execution 
  "execution_id": "01-01", 
  // Identifier of the program 
  "program": 1, 
  // Beverage volume requested 
  "volume": "200ml" 
} 

// Cancels current program 
POST /cancel 

// Returns execution status. 
// The format is the same as in `POST /execute` 
GET /execution/status 

NB. Just in case: this API violates a number of design principles, starting with a
lack of versioning; it's described in such a manner because of two reasons: (1) to
demonstrate how to design a more convenient API, (b) in a real life you really
got something like that from vendors, and this API is quite sane, actually.

Coffee machines with builtin functions:



// Returns a list of functions available 
GET /functions 
→ 
{ 
  "functions": [ 
    { 
      // Operation type: 
      // * set_cup 
      // * grind_coffee 
      // * shed_water 
      // * discard_cup 
      "type": "set_cup", 
      // Arguments available to each operation. 
      // To keep it simple, let's limit these to one: 
      // * volume — a volume of a cup, coffee, or water 
      "arguments": ["volume"] 
    }, 
    … 
  ] 
} 

// Takes arguments values 
// and starts executing a function 
POST /functions 
{ 
  "type": "set_cup", 
  "arguments": [{ "name": "volume", "value": "300ml" }] 
} 

// Returns sensors' state 
GET /sensors 
→ 
{ 
  "sensors": [ 
    { 
      // Values allowed: 
      // * cup_volume 
      // * ground_coffee_volume 
      // * cup_filled_volume 
      "type": "cup_volume", 
      "value": "200ml" 
    }, 
    … 
  ] 
} 

NB. The example is intentionally factitious to model a situation described
above: to determine beverage readiness you have to compare the requested



volume with volume sensor readings.

Now the picture becomes more apparent: we need to abstract coffee machine API
calls, so that ‘execution level’ in our API provides general functions (like beverage
readiness detection) in a uni�ed form. We should also note that these two coffee
machine API kinds belong to different abstraction levels themselves: the �rst one
provides a higher level API than the second one. Therefore, a ‘branch’ of our API
working with second kind machines will be more intricate.

The next step in abstraction level separating is determining what functionality we're
abstracting. To do so we need to understand the tasks developers solve at the ‘order’
level, and to learn what problems they get if our interim level is missing.

1. Obviously the developers desire to create an order uniformly: list high-level
order properties (beverage kind, volume and special options like syrup or milk
type), and don't think about how speci�c coffee machine executes it.

2. Developers must be able to learn the execution state: is the order ready? if not
— when to expect it's ready (and is there any sense to wait in case of execution
errors).

3. Developers need to address the order's location in space and time — to explain
to users where and when they should pick the order up.

4. Finally, developers need to run atomic operations, like canceling orders.

Note, that the �rst kind API is much closer to developers' needs than the second kind
API. Indivisible ‘program’ is a way more convenient concept than working with raw
commands and sensor data. There are only two problems we see in the �rst kind API:

absence of explicit ‘programs’ to ‘recipes’ relation; program identi�er is of no
use to developers, actually, since there is a ‘recipe’ concept;
absence of explicit ‘ready’ status.

But with the second kind API it's much worse. The main problem we foresee is an
absence of ‘memory’ for actions being executed. Functions and sensors API is totally
stateless, which means we don't event understand who called a function being
currently executed, when, and which order it is related to.

So we need to introduce two abstraction levels.

1. Execution control level, which provides uniform interface to indivisible
programs. ‘Uniform interface’ means here that, regardless of a coffee machine's
kind, developers may expect:



statuses and other high-level execution parameters nomenclature (for
example, estimated preparation time or possible execution error) being the
same;
methods nomenclature (for example, order cancellation method) and their
behavior being the same.

2. Program runtime level. For the �rst kind API it will provide just a wrapper for
existing programs API; for the second kind API the entire ‘runtime’ concept is
to be developed from scratch by us.

What does this mean in practical sense? Developers will still be creating orders,
dealing with high-level entities only:

POST /v1/orders 
{ 
  "coffee_machin 
  "recipe": "lungo", 
  "volume": "800ml" 
} 
→ 
{ "order_id" } 

The POST /orders handler checks all order parameters, puts a hold of corresponding
sum on user's credit card, forms a request to run, and calls the execution level. First,
correct execution program needs to be fetched:

POST /v1/programs/match 
{ "recipe", "coffee-machine" } 
→ 
{ "program_id" } 

Now, after obtaining a correct program identi�er, the handler runs a program:



POST /v1/programs/{id}/run 
{ 
  "order_id", 
  "coffee_machine_id", 
  "parameters": [ 
    { 
      "name": "volume", 
      "value": "800ml" 
    } 
  ] 
} 
→ 
{ "program_run_id" } 

Please note that knowing the coffee machine API kind isn't required at all; that's why
we're making abstractions! We could possibly make interfaces more speci�c,
implementing different run and match endpoints for different coffee machines:

POST /v1/programs/{api_type}/match
POST /v1/programs/{api_type}/{program_id}/run

This approach has some bene�ts, like a possibility to provide different sets of
parameters, speci�c to the API kind. But we see no need in such fragmentation. run
method handler is capable of extracting all the program metadata and perform one
of two actions:

call POST /execute physical API method, passing internal program identi�er —
for the �rst API kind;
initiate runtime creation to proceed with the second API kind.

Out of general concerns runtime level for the second kind API will be private, so we
are more or less free in implementing it. The easiest solution would be to develop a
virtual state machine which creates a ‘runtime’ (e.g. a stateful execution context) to
run a program and control its state.

POST /v1/runtimes 
{ "coffee_machine", "program", "parameters" } 
→ 
{ "runtime_id", "state" } 

The program here would look like that:



{ 
  "program_id", 
  "api_type", 
  "commands": [ 
    { 
      "sequence_id", 
      "type": "set_cup", 
      "parameters" 
    }, 
    … 
  ] 
} 

And the state like that:

{ 
  // Runtime status: 
  // * "pending" — awaiting execution 
  // * "executing" — performing some command 
  // * "ready_waiting" — beverage is ready 
  // * "finished" — all operations done 
  "status": "ready_waiting", 
  // Command being currently executed. 
  // Similar to line numbers in computer programs 
  "command_sequence_id", 
  // How the execution concluded: 
  // * "success" — beverage prepared and taken 
  // * "terminated" — execution aborted 
  // * "technical_error" — preparation error 
  // * "waiting_time_exceeded" — beverage prepared, 
  //     but not taken; timed out then disposed 
  "resolution": "success", 
  // All variables values, 
  // including sensors state 
  "variables" 
} 

NB: while implementing orders → match → run → runtimes call sequence we have
two options:

either POST /orders handler requests the data regarding the recipe, the coffee
machine model, and the program on its own behalf, and forms a stateless
request which contains all the necessary data (the API kind, command
sequence, etc.);
or the request contains only data identi�ers, and next in chain handler will
request pieces of data it needs via some internal APIs.



Both variants are plausible, selecting one of them depends on implementation
details.

Abstraction Levels Isolation

Crucial quality of properly separated abstraction levels (and therefore a requirement
to their design) is a level isolation restriction: only adjacent levels may interact. If
‘jumping over’ is needed in the API design, then clearly mistakes were made.

Get back to our example. How retrieving order status would work? To obtain a status
the following call chain is to be performed:

user initiates a call to the GET /v1/orders method;
the orders handler completes operations on its level of responsibility (for
example, checks user authorization), �nds program_run_id identi�er and
performs a call to the runs/{program_run_id} endpoint;
the runs endpoint in its turn completes operations corresponding to its level
(for example, checks the coffee machine API kind) and, depending on the API
kind, proceeds with one of two possible execution branches:

either calls the GET /execution/status method of a physical coffee
machine API, gets the coffee volume and compares it to the reference
value;
or invokes the GET /v1/runtimes/{runtime_id} method to obtain the
state.status and converts it to the order status;

in case of the second API kind, the call chain continues: the GET /runtimes
handler invokes the GET /sensors method of a physical coffee machine API and
performs some manipulations with the data, like comparing the cup / ground
coffee / shed water volumes with the reference ones, and changing the state and
the status if needed.

NB: The ‘call chain’ wording shouldn't be treated literally. Each abstraction level
might be organized differently in a technical sense:

there might be explicit proxying of calls down the hierarchy;
there might be a cache at each level, being updated upon receiving a callback
call or an event. In particular, a low-level runtime execution cycle obviously
must be independent from upper levels and renew its state in background, not
waiting for an explicit call.



Note what happens here: each abstraction level wields its own status (e.g. order,
runtime, sensors status), being formulated in corresponding to this level subject area
terms. Forbidding the ‘jumping over’ results in necessity to spawn statuses at each
level independently.

Let's now look how the order cancel operation �ows through our abstraction levels.
In this case the call chain will look like that:

user initiates a call to the POST /v1/orders/{id}/cancel method;
the method handler completes operations on its level of responsibility:

checks the authorization;
solves money issues, i.e. whether a refund is needed;
�nds the program_run_id identi�er and calls the
runs/{program_run_id}/cancel method;

the rides/cancel handler completes operations on its level of responsibility
and, depending on the coffee machine API kind, proceeds with one of two
possible execution branches:

either calls the POST /execution/cancel method of a physical coffee
machine API;
or invokes the POST /v1/runtimes/{id}/terminate method;

in a second case the call chain continues, the terminate handler operates its
internal state:

changes the resolution to "terminated";
runs the "discard_cup" command.

Handling state-modifying operations like cancel requires more advanced abstraction
levels juggling skills compared to non-modifying calls like GET /status. There are
two important moments:

1. At each abstraction level the idea of ‘order canceling’ is reformulated:

at the orders level this action in fact splits into several ‘cancels’ of other
levels: you need to cancel money holding and to cancel an order execution;
at the second API kind physical level a ‘cancel’ operation itself doesn't
exist: ‘cancel’ means ‘executing the discard_cup command’, which is quite
the same as any other command. The interim API level is need to make this
transition between different level ‘cancels’ smooth and rational without
jumping over canyons.

2. From a high-level point of view, canceling an order is a terminal action, since
no further operations are possible. From a low-level point of view, the



processing continues until the cup is discarded, and then the machine is to be
unlocked (e.g. new runtimes creation allowed). It's a task to the execution
control level to couple those two states, outer (the order is canceled) and inner
(the execution continues).

It might look that forcing the abstraction levels isolation is redundant and makes
interfaces more complicated. In fact, it is: it's very important to understand that
�exibility, consistency, readability and extensibility come with a price. One may
construct an API with zero overhead, essentially just provide an access to coffee
machine's microcontrollers. However using such an API would be a disaster to a
developer, not mentioning an inability to expand it.

Separating abstraction levels is �rst of all a logical procedure: how we explain to
ourselves and to developers what our API consists of. The abstraction gap between
entities exists objectively, no matter what interfaces we design. Our task is just
separate this gap into levels explicitly. The more implicitly abstraction levels are
separated (or worse — blended into each other), the more complicated is your API's
learning curve, and the worse is the code which use it.

The Data Flow

One useful exercise allowing to examine the entire abstraction hierarchy is excluding
all the particulars and constructing (on a paper or just in your head) a data �ow
chart: what data is �owing through you API entities, and how it's being altered at
each step.

This exercise doesn't just helps, but also allows to design really large APIs with huge
entity nomenclatures. Human memory isn't boundless; any project which grows
extensively will eventually become too big to keep the entire entities hierarchy in
mind. But it's usually possible to keep in mind the data �ow chart; or at least keep a
much larger portion of the hierarchy.

What data �ow we have in our coffee API?

1. It starts with the sensors data, i.e. volumes of coffee / water / cups. This is the
lowest data level we have, and here we can't change anything.

2. A continuous sensors data stream is being transformed into a discrete command
execution statuses, injecting new concepts which don't exist within the subject
area. A coffee machine API doesn't provide a ‘coffee is being shed’ or a ‘cup is



being set’ notion. It's our software which treats incoming sensors data and
introduces new terms: if the volume of coffee or water is less than the target
one, then the process isn't over yet. If the target value is reached, then this
synthetic status is to be switched, and the next command to be executed.
It is important to note that we don't calculate new variables out from sensors
data: we need to create a new dataset �rst, a context, an ‘execution program’
comprising a sequence of steps and conditions, and to �ll it with initial values.
If this context is missing, it's impossible to understand what's happening with
the machine.

3. Having a logical data about the program execution state, we can (again via
creating a new high-level data context) merge two different data streams from
two different kinds of APIs into a single stream, which provides in a uni�ed
form the data regarding executing a beverage preparation program with logical
variables like recipe, volume, and readiness status.

Each API abstraction level therefore corresponds to some data �ow generalization
and enrichment, converting the low-level (and in fact useless to end users) context
terms into the higher level context terms.

We may also traverse the tree backwards.

1. At the order level we set its logical parameters: recipe, volume, execution place
and possible statuses set.

2. At the execution level we read the order level data and create a lower level
execution context: the program as a sequence of steps, their parameters,
transition rules, and initial state.

3. At the runtime level we read the target parameters (which operation to execute,
what the target volume is) and translate them into coffee machine API
microcommands and statuses for each command.

Also, if we take a deeper look into the ‘bad’ decision, being discussed in the
beginning of this chapter (forcing developers to determine actual order status on
their own), we could notice a data �ow collision there:

from one side, in the order context ‘leaked’ physical data (beverage volume
prepared) is injected, therefore stirring abstraction levels irreversibly;
from other side, the order context itself is de�cient: it doesn't provide new
meta-variables, non-existent at the lower levels (the order status, in particular),



doesn't initialize them and don't provide the game rules.

We will discuss data contexts in more details in the Section II. Here we will just state
that data �ows and their transformations might be and must be examined as a
speci�c API facet, which, from one side, helps us to separate abstraction levels
properly, and, from other side, to check if our theoretical structures work as
intended.



CHAPTER 10. ISOLATING RESPONSIBILITY AREAS

Basing on the previous chapter, we understand that the abstraction hierarchy in our
hypothetical project would look like that:

the user level (those entities users directly interact with and which are
formulated in terms, understandable by user: orders, coffee recipes);
the program execution control level (the entities responsible for transforming
orders into machine commands);
the runtime level for the second API kind (the entities describing the command
execution state machine).

We are now to de�ne each entity's responsibility area: what's the reasoning in
keeping this entity within our API boundaries; what operations are applicable to the
entity directly (and which are delegated to other objects). In fact, we are to apply the
‘why’-principle to every single API entity.

To do so we must iterate all over the API and formulate in subject area terms what
every object is. Let us remind that the abstraction levels concept implies that each
level is a some interim subject area per se; a step we take in the journey from
describing a task in the �rst connected context terms (‘a lungo ordered by a user’) to
the second connect context terms (‘a command performed by a coffee machine’).

As for our �ctional example, it would look like that:

1. User level entities.
An order describes some logical unit in app-user interaction. An order
might be:

created;
checked for its status;
retrieved;
canceled;

A recipe describes an ‘ideal model’ of some coffee beverage type, its
customer properties. A recipe is an immutable entity for us, which means
we could only read it.
A coffee-machine is a model of a real world device. We must be able to
retrieve the coffee machine's geographical location and the options it
support from this model (will be discussed below).

2. Program execution control level entities.



A program describes some general execution plan for a coffee machine.
Programs could only be read.
The program matcher programs/matcher is capable of coupling a recipe
and a program, which in fact means ‘to retrieve a dataset needed to prepare
a speci�c recipe on a speci�c coffee machine’.
A program execution programs/run describes a single fact of running a
program on a coffee machine. run might be:

initialized (created);
checked for its status;
canceled.

3. Runtime level entities.
A runtime describes a speci�c execution data context, i.e. the state of each
variable. runtime might be:

initialized (created);
checked for its status;
terminated.

If we look closely at the entities, we may notice that each entity turns out to be a
composite. For example a program will operate high-level data (recipe and
coffee-machine), enhancing them with its subject area terms (program_run_id for
instance). This is totally �ne: connecting contexts is what APIs do.

Use Case Scenarios

At this point, when our API is in general clearly outlined and drafted, we must put
ourselves into developer's shoes and try writing code. Our task is to look at the
entities nomenclature and make some estimates regarding their future usage.

So, let us imagine we've got a task to write an app for ordering a coffee, based upon
our API. What code would we write?

Obviously the �rst step is offering a choice to a user, to make them point out what
they want. And this very �rst step reveals that our API is quite inconvenient. There
are no methods allowing for choosing something. A developer has to do something
like that:

retrieve all possible recipes from the GET /v1/recipes endpoint;
retrieve a list of all available coffee machines from the
GET /v1/coffee-machines endpoint;
write a code which traverse all this data.



If we try writing a pseudocode, we will get something like that:

// Retrieve all possible recipes 
let recipes = api.getRecipes(); 
// Retrieve a list of all available coffee machines 
let coffeeMachines = api.getCoffeeMachines(); 
// Build a spatial index 
let coffeeMachineRecipesIndex = buildGeoIndex(recipes, coffee-machines); 
// Select coffee machines matching user's needs 
let matchingCoffeeMachines = coffeeMachineRecipesIndex.query( 
  parameters, 
  { "sort_by": "distance" } 
); 
// Finally, show offers to user 
app.display(coffeeMachines); 

As you see, developers are to write a lot of redundant code (to say nothing about the
dif�culties of implementing spatial indexes). Besides, if we take into consideration
our Napoleonic plans to cover all coffee machines in the world with our API, then we
need to admit that this algorithm is just a waste of resources on retrieving lists and
indexing them.

A necessity of adding a new endpoint for searching becomes obvious. To design such
an interface we must imagine ourselves being a UX designer, and think about how an
app could try to arouse users' interest. Two scenarios are evident:

display all cafes in the vicinity and types of coffee they offer (a ‘service
discovery’ scenario) — for new users or just users with no speci�c tastes;
display nearby cafes where a user could order a particular type of coffee — for
users seeking a certain beverage type.

Then our new interface would look like:



POST /v1/coffee-machines/search 
{ 
  // optional 
  "recipes": ["lungo", "americano"], 
  "position": <geographical coordinates>, 
  "sort_by": [ 
    { "field": "distance" } 
  ], 
  "limit": 10 
} 
→ 
{ 
  "results": [ 
    { "coffee_machine", "place", "distance", "offer" } 
  ], 
  "cursor" 
} 

Here:

an offer — is a marketing bid: on what conditions a user could have the
requested coffee beverage (if speci�ed in request), or a some kind of marketing
offering — prices for the most popular or interesting products (if no speci�c
preference was set);
a place — is a spot (café, restaurant, street vending machine) where the coffee
machine is located; we never introduced this entity before, but it's quite obvious
that users need more convenient guidance to �nd a proper coffee machine than
just geographical coordinates.

NB. We could have been enriched the existing /coffee-machines endpoint instead of
adding a new one. This decision, however, looks less semantically viable: coupling in
one interface different modes of listing entities, by relevance and by order, is usually
a bad idea, because these two types of rankings implies different usage features and
scenarios.

Coming back to the code developers are writing, it would now look like that:

// Searching for coffee machines 
// matching a user's intent 
let coffeeMachines = api.search(parameters); 
// Display them to a user 
app.display(coffeeMachines); 

Helpers



Methods similar to newly invented coffee-machines/search are called helpers. The
purpose they exist is to generalize known API usage scenarios and facilitate
implementing them. By ‘facilitating’ we mean not only reducing wordiness (getting
rid of ‘boilerplates’), but also helping developers to avoid common problems and
mistakes.

For instance, let's consider the order price question. Our search function returns
some ‘offers’ with prices. But ‘price’ is volatile; coffee could cost less during ‘happy
hours’, for example. Developers could make a mistake thrice while implementing this
functionality:

cache search results on a client device for too long (as a result, the price will
always be nonactual);
contrary to previous, call search method excessively just to actualize prices,
thus overloading the network and the API servers;
create an order with invalid price (therefore deceiving a user, displaying one
sum and debiting another).

To solve the third problem we could demand including the displayed price in the
order creation request, and return an error if it differs from the actual one. (In fact,
any API working with money shall do so.) But it isn't helping with the �rst two
problems, and makes user experience degrade. Displaying actual price is always a
much more convenient behavior than displaying errors upon pressing the ‘place an
order’ button.

One solution is to provide a special identi�er to an offer. This identi�er must be
speci�ed in an order creation request.

{ 
  "results": [ 
    { 
      "coffee_machine", "place", "distance", 
      "offer": { 
        "id", 
        "price", 
        "currency_code", 
        // Date and time when the offer expires 
        "valid_until" 
      } 
    } 
  ], 
  "cursor" 
} 



Doing so we're not only helping developers to grasp a concept of getting relevant
price, but also solving a UX task of telling users about ‘happy hours’.

As an alternative we could split endpoints: one for searching, another one for
obtaining offers. This second endpoint would only be needed to actualize prices in
the speci�ed places.

Error Handling

And one more step towards making developers' life easier: how an ‘invalid price’
error would look like?

POST /v1/orders 
{ … "offer_id" …} 
→ 409 Conflict 
{ 
  "message": "Invalid price" 
} 

Formally speaking, this error response is enough: users get the ‘Invalid price’
message, and they have to repeat the order. But from a UX point of view that would
be a horrible decision: the user hasn't made any mistakes, and this message isn't
helpful at all.

The main rule of error interfaces in the APIs is: an error response must help a client
to understand what to do with this error. All other stuff is unimportant: if the error
response was machine readable, there would be no need in the user readable
message.

An error response content must address the following questions:

1. Which party is the problem's source, client or server?
 HTTP APIs traditionally employ 4xx status codes to indicate client problems,

5xx to indicates server problems (with the exception of a 404, which is an
uncertainty status).

2. If the error is caused by a server, is there any sense to repeat the request? If yes,
then when?

3. If the error is caused by a client, is it resolvable, or not?
 The invalid price error is resolvable: client could obtain a new price offer and

create a new order with it. But if the error occurred because of a mistake in the



client code, then eliminating the cause is impossible, and there is no need to
make user push the ‘place an order’ button again: this request will never
succeed.
NB: here and throughout we indicate resolvable problems with 409 Conflict
code, and unresolvable ones with 400 Bad Request.

4. If the error is resolvable, then what's the kind of the problem? Obviously, client
couldn't resolve a problem it's unaware of. For every resolvable problem some
code must be written (reobtaining the offer in our case), so a list of error
descriptions must exist.

5. If the same kind of errors arise because of different parameters being invalid,
then which parameter value is wrong exactly?

6. Finally, if some parameter value is unacceptable, then what values are
acceptable?

In our case, the price mismatch error should look like:

409 Conflict 
{ 
  // Error kind 
  "reason": "offer_invalid", 
  "localized_message": 
    "Something goes wrong. Try restarting the app." 
  "details": { 
    // What's wrong exactly? 
    // Which validity checks failed? 
    "checks_failed": [ 
      "offer_lifetime" 
    ] 
  } 
} 

After getting this error, a client is to check the error's kind (‘some problem with
offer’), check the speci�c error reason (‘order lifetime expired’) and send an offer
retrieve request again. If checks_failed �eld indicated another error reason (for
example, the offer isn't bound to the speci�ed user), client actions would be different
(re-authorize the user, then get a new offer). If there were no error handler for this
speci�c reason, a client would show localized_message to the user, and invoke
standard error recovery procedure.

It is also worth mentioning that unresolvable errors are useless to a user at the time
(since the client couldn't react usefully to unknown errors), but it doesn't mean that
providing extended error data is excessive. A developer will read it when �xing the
error in the code. Also, check paragraphs 12&13 in the next chapter.



Decomposing Interfaces. The ‘7±2’ Rule

Out of our own API development experience, we can tell without any doubt that the
greatest �nal interfaces design mistake (and the greatest developers' pain
accordingly) is an excessive overloading of entities' interfaces with �elds, methods,
events, parameters, and other attributes.

Meanwhile, there is the ‘Golden Rule’ of interface design (applicable not only to
APIs, but almost to anything): humans could comfortably keep 7±2 entities in a
short-term memory. Manipulating a larger number of chunks complicates things for
most of humans. The rule is also known as ‘Miller's law’.

The only possible method of overcoming this law is decomposition. Entities should
be grouped under single designation at every concept level of the API, so developers
are never to operate more than 10 entities at a time.

Let's take a look at a simple example: what the coffee machine search function
returns. To ensure an adequate UX of the app, quite bulky datasets are required.

https://en.wikipedia.org/wiki/Working_memory#Capacity


{ 
  "results": [ 
    { 
      "coffee_machine_type": "drip_coffee_maker", 
      "coffee_machine_brand", 
      "place_name": "The Chamomile", 
      // Coordinates of a place 
      "place_location_latitude", 
      "place_location_longitude", 
      "place_open_now", 
      "working_hours", 
      // Walking route parameters 
      "walking_distance", 
      "walking_time", 
      // How to find the place 
      "place_location_tip", 
      "offers": [ 
        { 
          "recipe": "lungo", 
          "recipe_name": "Our brand new Lungo®™", 
          "recipe_description", 
          "volume": "800ml", 
          "offer_id", 
          "offer_valid_until", 
          "localized_price": "Just $19 for a large coffee cup", 
          "price": "19.00", 
          "currency_code": "USD", 
          "estimated_waiting_time": "20s" 
        }, 
        … 
      ] 
    }, 
    … 
  ] 
} 

This approach is quite normal, alas; could be found in almost every API. As we see, a
number of entities' �elds exceeds recommended 7, and even 9. Fields are being
mixed into one single list, often with similar pre�xes.

In this situation we are to split this structure into data domains: which �elds are
logically related to a single subject area. In our case we may identify at least 7 data
clusters:

data regarding a place where the coffee machine is located;
properties of the coffee machine itself;
route data;
recipe data;
recipe options speci�c to the particular place;



offer data;
pricing data.

Let's try to group it together:

{ 
  "results": { 
    // Place data 
    "place": { "name", "location" }, 
    // Coffee machine properties 
    "coffee-machine": { "brand", "type" }, 
    // Route data 
    "route": { "distance", "duration", "location_tip" }, 
    "offers": { 
      // Recipe data 
      "recipe": { "id", "name", "description" }, 
      // Recipe specific options 
      "options": { "volume" }, 
      // Offer metadata 
      "offer": { "id", "valid_until" }, 
      // Pricing 
      "pricing": { "currency_code", "price", "localized_price" }, 
      "estimated_waiting_time" 
    } 
  } 
} 

Such decomposed API is much easier to read than a long sheet of different
attributes. Furthermore, it's probably better to group even more entities in advance.
For example, place and route could be joined in a single location structure, or offer
and pricing might be combined into a some generalized object.

It is important to say that readability is achieved not only by mere grouping the
entities. Decomposing must be performed in such a manner that a developer, while
reading the interface, instantly understands: ‘here is the place description of no
interest to me right now, no need to traverse deeper’. If the data �elds needed to
complete some action are scattered all over different composites, the readability
degrades, not improves.

Proper decomposition also helps extending and evolving the API. We'll discuss the
subject in the Section II.



CHAPTER 11. DESCRIBING FINAL INTERFACES

When all entities, their responsibilities, and relations to each other are de�ned, we
proceed to developing the API itself. We are to describe the objects, �elds, methods,
and functions nomenclature in details. In this chapter we're giving purely practical
advice on making APIs usable and understandable.

Important assertion at number 0:

0. Rules are just generalizations

Rules are not to be applied unconditionally. They are not making thinking
redundant. Every rule has a rational reason to exist. If your situation doesn't justify
following the rule — then you shouldn't do it.

For example, demanding a speci�cation being consistent exists to help developers
spare time on reading docs. If you need developers to read some entity's doc, it is
totally rational to make its signature deliberately inconsistent.

This idea applies to every concept listed below. If you get an unusable, bulky,
unobvious API because you follow the rules, it's a motive to revise the rules (or the
API).

It is important to understand that you always can introduce the concepts of your
own. For example, some frameworks willfully reject paired set_entity / get_entity
methods in a favor of a single entity() method, with an optional argument. The
crucial part is being systematic in applying the concept. If it's rendered into life, you
must apply it to every single API method, or at the very least elaborate a naming rule
to discern such polymorphic methods from regular ones.

1. Explicit is always better than implicit

Entity's name must explicitly tell what it does and what side effects to expect while
using it.

Bad:



// Cancels an order 
GET /orders/cancellation 

It's quite a surprise that accessing the cancellation resource (what is it?) with non-
modifying GET method actually cancels an order.

Better:

// Cancels an order 
POST /orders/cancel 

Bad:

// Returns aggregated statistics 
// since the beginning of time 
GET /orders/statistics 

Even if the operation is non-modifying, but computationally expensive, you should
explicitly indicate that, especially if clients got charged for computational resource
usage. Even more so, default values must not be set in a manner leading to
maximum resource consumption.

Better:

// Returns aggregated statistics 
// for a specified period of time 
POST /v1/orders/statistics/aggregate 
{ "begin_date", "end_date" } 

Try to design function signatures to be absolutely transparent about what the
function does, what arguments takes and what's the result. While reading a code
working with your API, it must be easy to understand what it does without reading
docs.

Two important implications:

1.1. If the operation is modifying, it must be obvious from the signature. In
particular, there might be no modifying operations using GET verb.



1.2. If your API's nomenclature contains both synchronous and asynchronous
operations, then (a)synchronicity must be apparent from signatures, or a naming
convention must exist.

2. Specify which standards are used

Regretfully, the humanity is unable to agree on the most trivial things, like which
day starts the week, to say nothing about more sophisticated standards.

So always specify exactly which standard is applied. Exceptions are possible, if you
100% sure that only one standard for this entity exists in the world, and every person
on Earth is totally aware of it.

Bad: "date": "11/12/2020" — there are tons of date formatting standards; you can't
even tell which number means the day number and which number means the month.

Better: "iso_date": "2020-11-12".

Bad: "duration": 5000 — �ve thousand of what?

Better:
 "duration_ms": 5000

 or
 "duration": "5000ms"

 or
 "duration": {"unit": "ms", "value": 5000}.

One particular implication from this rule is that money sums must always be
accompanied with currency code.

It is also worth saying that in some areas the situation with standards is so spoiled
that, whatever you do, someone got upset. A ‘classical’ example is geographical
coordinates order (latitude-longitude vs longitude-latitude). Alas, the only working
method of �ghting with frustration there is a ‘serenity notepad’ to be discussed in
Section II.

3. Keep fractional numbers precision intact



If the protocol allows, fractional numbers with �xed precision (like money sums)
must be represented as a specially designed type like Decimal or its equivalent.

If there is no Decimal type in the protocol (for instance, JSON doesn't have one), you
should either use integers (e.g. apply a �xed multiplicator) or strings.

4. Entities must have concrete names

Avoid single amoeba-like words, such as get, apply, make.

Bad: user.get() — hard to guess what is actually returned.

Better: user.get_id().

5. Don't spare the letters

In XXI century there's no need to shorten entities' names.

Bad: order.time() — unclear, what time is actually returned: order creation time,
order preparation time, order waiting time?…

Better: order.get_estimated_delivery_time()

Bad:

// Returns a pointer to the first occurrence 
// in str1 of any of the characters 
// that are part of str2 
strpbrk (str1, str2) 

Possibly, an author of this API thought that pbrk abbreviature would mean
something to readers; clearly mistaken. Also it's hard to tell from the signature
which string (str1 or str2) stands for a character set.

Better: str_search_for_characters (lookup_character_set, str)
 — though it's highly disputable whether this function should exist at all; a feature-

rich search function would be much more convenient. Also, shortening string to str
bears no practical sense, regretfully being a routine in many subject areas.



6. Naming implies typing

Field named recipe must be of Recipe type. Field named recipe_id must contain a
recipe identi�er which we could �nd within Recipe entity.

Same for primitive types. Arrays must be named in a plural form or as collective
nouns, i.e. objects, children. If that's impossible, better add a pre�x or a post�x to
avoid doubt.

Bad: GET /news — unclear whether a speci�c news item is returned, or a list of them.

Better: GET /news-list.

Similarly, if a Boolean value is expected, entity naming must describe some
qualitative state, i.e. is_ready, open_now.

Bad: "task.status": true
 — statuses are not explicitly binary; also such API isn't extendable.

Better: "task.is_finished": true.

Speci�c platforms imply speci�c additions to this rule with regard to �rst class
citizen types they provide. For examples, entities of Date type (if such type is
present) would bene�t from being indicated with _at or _date post�x, i.e.
created_at, occurred_at.

If entity name is a polysemantic term itself, which could confuse developers, better
add an extra pre�x or post�x to avoid misunderstanding.

Bad:

// Returns a list of coffee machine builtin functions 
GET /coffee-machines/{id}/functions 

Word ‘function’ is many-valued. It could mean builtin functions, but also ‘a piece of
code’, or a state (machine is functioning).

Better: GET /v1/coffee-machines/{id}/builtin-functions-list

7. Matching entities must have matching names and behave alike



Bad: begin_transition / stop_transition
— begin and stop doesn't match; developers will have to dig into the docs.

Better: either begin_transition / end_transition or start_transition /
stop_transition.

Bad:

// Find the position of the first occurrence 
// of a substring in a string 
strpos(haystack, needle) 

// Replace all occurrences 
// of the search string with the replacement string 
str_replace(needle, replace, haystack) 

Several rules are violated:

inconsistent underscore using;
functionally close methods have different needle/haystack argument order;
�rst function �nds the �rst occurrence while second one �nds them all, and
there is no way to deduce that fact out of the function signatures.

We're leaving the exercise of making these signatures better to the reader.

8. Clients must always know full system state

This rule could be reformulated as ‘don't make clients guess’.

Bad:

// Creates a comment and returns its id 
POST /comments 
{ "content" } 
→ 
{ "comment_id" } 



// Returns a comment by its id 
GET /comments/{id} 
→ 
{ 
  // The comment isn't published 
  // until the captcha is solved 
  "published": false, 
  "action_required": "solve_captcha", 
  "content" 
} 

— though the operation pretends to be successful, clients must perform an
additional action to understand the comment's real state. In between
POST /comments and GET /comments/{id} calls client remains in ‘Schrödinger's cat’
state: it is unknown whether the comment is published or not, and how to display
this state to a user.

Better:

// Creates a comment and returns it 
POST /v1/comments 
{ "content" } 
→ 
{ "comment_id", "published", "action_required", "content" } 

// Returns a comment by its id 
GET /v1/comments/{id} 
→ 
{ /* exactly the same format,  
    as in `POST /comments` reponse */ 
    … 
} 

Generally speaking, in 9 cases out of 10 it is better to return a full entity state from
any modifying operation, sharing the format with read access endpoint. Actually,
you should always do this unless response size affects performance.

Same observation applies to �lling default values either. Don't make client guess
what default values are, or, even worse, hardcode them — return the values of all
non-required �elds in creation / rewriting endpoints response.

9. Idempotency



All API operations must be idempotent. Let us recall that idempotency is the
following property: repeated calls to the same function with the same parameters
don't change the resource state. Since we're discussing client-server interaction in a
�rst place, repeating request in case of network failure isn't an exception, but a norm
of life.

If endpoint's idempotency can't be assured naturally, explicit idempotency
parameters must be added, in a form of either a token or a resource version.

Bad:

// Creates an order 
POST /orders 

Second order will be produced if the request is repeated!

Better:

// Creates an order 
POST /v1/orders 
X-Idempotency-Token: <random string> 

A client on its side must retain X-Idempotency-Token in case of automated endpoint
retrying. A server on its side must check whether an order created with this token
exists.

An alternative:

// Creates order draft 
POST /v1/orders/drafts 
→ 
{ "draft_id" } 

// Confirms the draft 
PUT /v1/orders/drafts/{draft_id} 
{ "confirmed": true } 

Creating order drafts is a non-binding operation since it doesn't entail any
consequences, so it's �ne to create drafts without idempotency token.



Con�rming drafts is a naturally idempotent operation, with draft_id being its
idempotency key.

Also worth mentioning that adding idempotency tokens to naturally idempotent
handlers isn't meaningless either, since it allows to distinguish two situations:

a client didn't get the response because of some network issues, and is now
repeating the request;
a client's mistaken, trying to make con�icting changes.

Consider the following example: imagine there is a shared resource, characterized by
a revision number, and a client tries updating it.

POST /resource/updates 
{ 
  "resource_revision": 123 
  "updates" 
} 

The server retrieves the actual resource revision and �nd it to be 124. How to
respond correctly? 409 Conflict might be returned, but then the client will be forced
to understand the nature of the con�ict and somehow resolve it, potentially
confusing the user. It's also unwise to fragment con�ict resolving algorithms,
allowing each client to implement it independently.

The server may compare request bodies, assuming that identical updates values
means retrying, but this assumption might be dangerously wrong (for example if the
resource is a counter of some kind, then repeating identical requests are routine).

Adding idempotency token (either directly as a random string, or indirectly in a form
of drafts) solves this problem.

POST /resource/updates 
X-Idempotency-Token: <token> 
{ 
  "resource_revision": 123 
  "updates" 
} 
→ 201 Created 

— the server found out that the same token was used in creating revision 124, which
means the client is retrying the request.



Or:

POST /resource/updates 
X-Idempotency-Token: <token> 
{ 
  "resource_revision": 123 
  "updates" 
} 
→ 409 Conflict 

— the server found out that a different token was used in creating revision 124,
which means an access con�ict.

Furthermore, adding idempotency tokens not only resolves the issue, but also makes
possible to make an advanced optimization. If the server detects an access con�ict, it
could try to resolve it, ‘rebasing’ the update like modern version control systems do,
and return 200 OK instead of 409 Conflict. This logics dramatically improves user
experience, being fully backwards compatible (providing your API embraces the rule
#9) and avoiding con�ict resolving code fragmentation.

Also, be warned: clients are bad at implementing idempotency tokens. Two
problems are common:

you can't really expect that clients generate truly random tokens — they may
share the same seed or simply use weak algorithms or entropy sources;
therefore you must put constraints on token checking: token must be unique to
speci�c user and resource, not globally;
clients tend to misunderstand the concept and either generate new tokens each
time they repeat the request (which deteriorates the UX, but otherwise healthy)
or conversely use one token in several requests (not healthy at all and could
lead to catastrophic disasters; another reason to implement the suggestion in
the previous clause); writing detailed doc and/or client library is highly
recommended.

10. Caching

Client-server interaction usually implies that network and server resources are
limited, therefore caching operation results on client devices is a standard practice.



So it's highly desirable to make caching options clear, if not from functions'
signatures then at least from docs.

Bad:

// Returns lungo price in cafes 
// closest to the specified location 
GET /price?recipe=lungo&longitude={longitude}&latitude={latitude} 
→ 
{ "currency_code", "price" } 

Two questions arise:

until when the price is valid?
in what vicinity of the location the price is valid?

Better: you may use standard protocol capabilities to denote cache options, like
Cache-Control header. If you need caching in both temporal and spatial dimensions,
you should do something like that:

// Returns an offer: for what money sum 
// our service commits to make a lungo 
GET /price?recipe=lungo&longitude={longitude}&latitude={latitude} 
→ 
{ 
  "offer": { 
    "id", 
    "currency_code", 
    "price", 
    "conditions": { 
      // Until when the price is valid 
      "valid_until", 
      // What vicinity the price is valid within 
      // * city 
      // * geographical object 
      // * … 
      "valid_within" 
    } 
  } 
} 

11. Pagination, �ltration, and cursors

Any endpoints returning data collections must be paginated. No exclusions exist.



Any paginated endpoint must provide an interface to iterate over all the data.

Bad:

// Returns a limited number of records 
// sorted by creation date 
// starting with a record with an index 
// equals to `offset` 
GET /v1/records?limit=10&offset=100 

At the �rst glance, this the most standard way of organizing the pagination in APIs.
But let's ask some questions to ourselves.

1. How clients could learn about new records being added in the beginning of the
list? Obviously a client could only retry the initial request (offset=0) and
compare identi�ers to those it already knows. But what if the number of new
records exceeds the limit? Imagine the situation:

the client process records sequentially;
some problem occurred, and a batch of new records awaits processing;
the client requests new records (offset=0) but can't �nd any known records
on the �rst page;
the client continues iterating over records, page by page, until it �nds the
last known identi�er; all this time the order processing is idle;
the client might never start processing, being preoccupied with chaotic
page requests to restore records sequence.

2. What happens if some record is deleted from the head of the list?
 Easy: the client will miss one record and will never learn this.

3. What cache parameters to set for this endpoint?
 None could be set: repeating the request with the same limit and offset each

time produces new records set.

Better: in such unidirectional lists the pagination must use that key which implies
the order. Like this:



// Returns a limited number of records 
// sorted by creation date 
// starting with a record with an identifier 
// following the specified one 
GET /v1/records?older_than={record_id}&limit=10 
// Returns a limited number of records 
// sorted by creation date 
// starting with a record with an identifier 
// preceding the specified one 
GET /v1/records?newer_than={record_id}&limit=10 

With the pagination organized like that, clients never bothers about record being
added or removed in the processed part of the list: they continue to iterate over the
records, either getting new ones (using newer_than) or older ones (using
older_than). If there is no record removal operation, clients may easily cache
responses — the URL will always return the same record set.

Another way to organize such lists is returning a cursor to be used instead of
record_id, making interfaces more versatile.

// Initial data request 
POST /v1/records/list 
{ 
  // Some additional filtering options 
  "filter": { 
    "category": "some_category", 
    "created_date": { 
      "older_than": "2020-12-07" 
    } 
  } 
} 
→ 
{ 
  "cursor" 
} 

// Follow-up requests 
GET /v1/records?cursor=<cursor value> 
{ "records", "cursor" } 

One advantage of this approach is the possibility to keep initial request parameters
(i.e. filter in our example) embedded into the cursor itself, thus not copying them
in follow-up requests. It might be especially actual if the initial request prepares full



dataset, for example, moving it from a ‘cold’ storage to a ‘hot’ one (then cursor
might simply contain the encoded dataset id and the offset).

There are several approaches to implementing cursors (for example, making single
endpoint for initial and follow-up requests, returning the �rst data portion in the
�rst response). As usual, the crucial part is maintaining consistency across all such
endpoints.

Bad:

// Returns a limited number of records 
// sorted by a specified field in a specified order 
// starting with a record with an index 
// equals to `offset` 
GET /records?sort_by=date_modified&sort_order=desc&limit=10&offset=100 

Sorting by the date of modi�cation usually means that data might be modi�ed. In
other words, some records might change after the �rst data chunk is returned, but
before the next chunk is requested. Modi�ed record will simply disappear from the
listing because of moving to the �rst page. Clients will never get those records which
were changed during the iteration process, even if the cursor scheme is
implemented, and they never learn the sheer fact of such an omission. Also, this
particular interface isn't extendable as there is no way to add sorting by two or more
�elds.

Better: there is no general solution to this problem in this formulation. Listing
records by modi�cation time will always be unpredictably volatile, so we have to
change the approach itself; we have two options.

Option one: �x the records order at the moment we've got initial request, e.g. our
server produces the entire list and stores it in immutable form:

// Creates a view based on the parameters passed 
POST /v1/record-views 
{ 
  sort_by: [ 
    { "field": "date_modified", "order": "desc" } 
  ] 
} 
→ 
{ "id", "cursor" } 



// Returns a portion of the view 
GET /v1/record-views/{id}?cursor={cursor} 

Since the produced view is immutable, an access to it might be organized in any
form, including a limit-offset scheme, cursors, Range header, etc. However there is a
downside: records modi�ed after the view was generated will be misplaced or
outdated.

Option two: guarantee a strict records order, for example, by introducing a concept
of record change events:

POST /v1/records/modified/list 
{ 
  // Optional 
  "cursor" 
} 
→ 
{ 
  "modified": [ 
    { "date", "record_id" } 
  ], 
  "cursor" 
} 

This scheme's downsides are the necessity to create separate indexed event storage,
and the multiplication of data items, since for a single record many events might
exist.

12. Errors must be informative

While writing the code developers face problems, many of them quite trivial, like
invalid parameter type or some boundary violation. The more convenient are error
responses your API return, the less time developers waste in struggling with it, and
the more comfortable is working with the API.

Bad:



POST /v1/coffee-machines/search 
{ 
  "recipes": ["lngo"], 
  "position": { 
    "latitude": 110, 
    "longitude": 55 
  } 
} 
→ 400 Bad Request 
{} 

— of course, the mistakes (typo in "lngo" and wrong coordinates) are obvious. But
the handler checks them anyway, why not return readable descriptions?

Better:

{ 
  "reason": "wrong_parameter_value", 
  "localized_message": 
    "Something is wrong. Contact the developer of the app." 
  "details": { 
    "checks_failed": [ 
      { 
        "field": "recipe", 
        "error_type": "wrong_value", 
        "message": 
          "Unknown value: 'lngo'. Did you mean 'lungo'?" 
      }, 
      { 
        "field": "position.latitude", 
        "error_type": "constraint_violation", 
        "constraints": { 
          "min": -180, 
          "max": 180 
        }, 
        "message": 
          "'position.latitude' value must fall within [-180, 180] interval" 
      } 
    ] 
  } 
} 

It is also a good practice to return all detectable errors at once to spare developers'
time.

13. Localization and internationalization



All endpoints must accept language parameters (for example, in a form of the
Accept-Language header), even if they are not being used currently.

It is important to understand that user's language and user's jurisdiction are
different things. Your API working cycle must always store user's location. It might
be stated either explicitly (requests contain geographical coordinates) or implicitly
(initial location-bound request initiates session creation which stores the location),
bit no correct localization is possible in absence of location data. In most cases
reducing the location to just a country code is enough.

The thing is that lots of parameters potentially affecting data formats depend not on
language, but user location. To name a few: number formatting (integer and
fractional part delimiter, digit groups delimiter), date formatting, �rst day of week,
keyboard layout, measurement units system (which might be non-decimal!), etc. In
some situations you need to store two locations: user residence location and user
‘viewport’. For example, if US citizen is planning a European trip, it's convenient to
show prices in local currency, but measure distances in miles and feet.

Sometimes explicit location passing is not enough since there are lots of territorial
con�icts in a world. How the API should behave when user coordinates lie within
disputed regions is a legal matter, regretfully. Author of this books once had to
implement a ‘state A territory according to state B of�cial position’ concept.

Important: mark a difference between localization for end users and localization for
developers. Take a look at the example in #12 rule: localized_message is meant for
the user; the app should show it if there is no speci�c handler for this error exists in
code. This message must be written in user's language and formatted according to
user's location. But details.checks_failed[].message is meant to be read by
developers examining the problem. So it must be written and formatted in a manner
which suites developers best. In a software development world it usually means ‘in
English’.

Worth mentioning is that localized_ pre�x in the example is used to differentiate
messages to users from messages to developers. A concept like that must be, of
course, explicitly stated in your API docs.

And one more thing: all strings must be UTF-8, no exclusions.


