
Sergey Konstantinov
The API

Sergey Konstantinov. The API.
twirl-team@yandex.ru · www.linkedin.com/in/twirl/ · www.patreon.com/yatwirl

The API-first development is one of the hottest technical topics nowadays, since many
companies started to realize that API serves as a multiplicator to their opportunities—
but it also amplifies the design mistakes as well.

The book is dedicated to designing APIs: how to build the architecture properly, from a
high-level planning down to final interfaces, and to extend API in a backwards-
compatible manner.

Illustrations by Maria Konstantinova
www.instagram.com/art.mari.ka/

This work is licensed under a Creative Commons Attribution-
NonCommercial 4.0 International License.

Source codes are available on GitHub

mailto:twirl-team@yandex.ru
https://www.linkedin.com/in/twirl/
https://www.patreon.com/yatwirl
https://www.instagram.com/art.mari.ka/
http://creativecommons.org/licenses/by-nc/4.0/
https://github.com/twirl/The-API-Book

TABLE OF CONTENTS

INTRODUCTION
Chapter 1. On the Structure of This Book
Chapter 2. The API Definition
Chapter 3. API Quality Criteria
Chapter 4. Backwards Compatibility
Chapter 5. On Versioning
Chapter 6. Terms and Notation Keys

SECTION I. THE API DESIGN
Chapter 7. The API Contexts Pyramid
Chapter 8. Defining an Application Field
Chapter 9. Separating Abstraction Levels
Chapter 10. Isolating Responsibility Areas
Chapter 11. Describing Final Interfaces
Chapter 12. Annex to Section I. Generic API Example

SECTION II. BACKWARDS COMPATIBILITY
Chapter 13. The Backwards Compatibility Problem Statement
Chapter 14. On the Iceberg's Waterline
Chapter 15. Extending through Abstracting
Chapter 16. Strong Coupling and Related Problems
Chapter 17. Weak Coupling
Chapter 18. Interfaces as a Universal Pattern
Chapter 19. The Serenity Notepad

INTRODUCTION

Chapter 1. On the Structure of This Book

The book you're holding in your hands comprises this Introduction and two sections:
‘The API Design’ and ‘Backwards Compatibility’.

In Section I, we will discuss designing APIs as a concept: how to build the architecture
properly, from high-level planning down to final interfaces.

Section II is dedicated to an API lifecycle: how interfaces evolve over time, and how to
elaborate the product to match users' needs.

One more section is planned for the future: the ‘API as a Product’ section will be more
about the un-engineering sides of the API, like API marketing, organizing customer
support, and working with a community.

First, two sections are interesting to engineers mostly, while the third section is more
relevant to both engineers and product managers. However, we insist that the third
section is the most important for the API software developer. Since an API is a product
for engineers, you cannot simply pronounce a non-engineering team responsible for
product planning and support. Nobody but you understands more about your API's
product features.

Let's start.

Chapter 2. The API Definition

Before we start talking about the API design, we need to explicitly define what the API
is. Encyclopedia tells us that ‘API’ is an acronym for ‘Application Program Interface’.
This definition is fine, but useless. Much like ‘Man’ definition by Plato: Man stood
upright on two legs without feathers. This definition is fine again, but it gives us no
understanding of what's so important about a Man. (Actually, not ‘fine’ either.
Diogenes of Sinope once brought a plucked chicken, saying ‘That's Plato's Man’. And
Plato had to add ‘with broad nails’ to his definition.)

What API means apart from the formal definition?

You're possibly reading this book using a Web browser. To make the browser display
this page correctly, a bunch of stuff must work correctly: parsing the URL according to
the specification; DNS service; TLS handshake protocol; transmitting the data over
HTTP protocol; HTML document parsing; CSS document parsing; correct HTML+CSS
rendering.

But those are just the tip of the iceberg. To make HTTP protocol work you need the
entire network stack (comprising 4-5 or even more different level protocols) work
correctly. HTML document parsing is being performed according to hundreds of
different specifications. Document rendering calls the underlying operating system
API, or even directly graphical processor API. And so on: down to modern CISC
processor commands being implemented on top of the microcommands API.

In other words, hundreds or even thousands of different APIs must work correctly to
make basic actions possible, like viewing a webpage. Modern internet technologies
simply couldn't exist without these tons of API working fine.

An API is an obligation. A formal obligation to connect different programmable
contexts.

When I'm asked for an example of a well-designed API, I usually show a picture of a
Roman aqueduct:

The Pont-du-Gard aqueduct. Built in the 1st century AD
Image Credit: igorelick @ pixabay

it interconnects two areas;
backwards compatibility being broken not a single time in two thousand years.

What differs between a Roman aqueduct and a good API is that APIs presume a
contract being programmable. To connect two areas some coding is needed. The goal of
this book is to help you in designing APIs which serve their purposes as solidly as a
Roman aqueduct does.

An aqueduct also illustrates another problem of the API design: your customers are
engineers themselves. You are not supplying water to end-users: suppliers are plugging
their pipes to your engineering structure, building their own structures upon it. From
one side, you may provide access to the water to many more people through them, not
spending your time on plugging each individual house to your network. From the other
side, you can't control the quality of suppliers' solutions, and you are to be blamed
every time there is a water problem caused by their incompetence.

https://pixabay.com/photos/pont-du-gard-france-aqueduct-bridge-3909998/

That's why designing the API implies a larger area of responsibility. API is a
multiplier to both your opportunities and mistakes.

Chapter 3. API Quality Criteria

Before we start laying out the recommendations, we ought to specify what API we
consider ‘fine’, and what's the profit of having a ‘fine’ API.

Let's discuss the second question first. Obviously, API ‘finesse’ is first of all defined
through its capability to solve developers' problems. (One may reasonably say that
solving developers' problems might not be the main purpose of offering the API of ours
to developers. However, manipulating public opinion is out of this book's author's
interest. Here we assume that APIs exist primarily to help developers in solving their
problems, not for some other covertly declared purposes.)

So, how the API design might help the developers? Quite simple: a well-designed API
must solve their problems in the most efficient and comprehensible manner. The
distance from formulating the task to writing a working code must be as short as
possible. Among other things, it means that:

it must be totally obvious out of your API's structure how to solve a task; ideally,
developers at first glance should be able to understand, what entities are meant to
solve their problem;
the API must be readable; ideally, developers write correct code after just looking
at the method nomenclature, never bothering about details (especially API
implementation details!); it is also very important to mention, that not only
problem solution (the ‘happy path’) should be obvious, but also possible errors
and exceptions (the ‘unhappy path’);
the API must be consistent; while developing new functionality (i.e. while using
unknown API entities) developers may write new code similar to the code they
already wrote using known API concepts, and this new code will work.

However static convenience and clarity of APIs is a simple part. After all, nobody seeks
for making an API deliberately irrational and unreadable. When we are developing an
API, we always start with clear basic concepts. Providing you've got some experience in
APIs, it's quite hard to make an API core that fails to meet obviousness, readability, and
consistency criteria.

Problems begin when we start to expand our API. Adding new functionality sooner or
later result in transforming once plain and simple API into a mess of conflicting
concepts, and our efforts to maintain backwards compatibility lead to illogical,
unobvious, and simply bad design solutions. It is partly related to an inability to

predict the future in detail: your understanding of ‘fine’ APIs will change over time,
both in objective terms (what problems the API is to solve, and what are the best
practices) and in subjective ones too (what obviousness, readability, and consistency
really means regarding your API).

The principles we are explaining below are specifically oriented to making APIs evolve
smoothly over time, not being turned into a pile of mixed inconsistent interfaces. It is
crucial to understand that this approach isn't free: a necessity to bear in mind all
possible extension variants and to preserve essential growth points means interface
redundancy and possibly excessing abstractions being embedded in the API design.
Besides both make developers' work harder. Providing excess design complexities
being reserved for future use makes sense only when this future actually exists
for your API. Otherwise, it's simply an overengineering.

Chapter 4. Backwards Compatibility

Backwards compatibility is a temporal characteristic of your API. An obligation to
maintain backwards compatibility is the crucial point where API development differs
from software development in general.

Of course, backwards compatibility isn't an absolute. In some subject areas shipping
new backwards-incompatible API versions is a routine. Nevertheless, every time you
deploy new backwards-incompatible API version, the developers need to make some
non-zero effort to adapt their code to the new API version. In this sense, releasing new
API versions puts a sort of a ‘tax’ on customers. They must spend quite real money just
to make sure their product continues working.

Large companies, which occupy firm market positions, could afford to imply such
taxation. Furthermore, they may introduce penalties for those who refuse to adapt
their code to new API versions, up to disabling their applications.

From our point of view, such a practice cannot be justified. Don't imply hidden taxes on
your customers. If you're able to avoid breaking backwards compatibility — never break
it.

Of course, maintaining old API versions is a sort of a tax either. Technology changes,
and you cannot foresee everything, regardless of how nice your API is initially
designed. At some point keeping old API versions results in an inability to provide new
functionality and support new platforms, and you will be forced to release a new
version. But at least you will be able to explain to your customers why they need to
make an effort.

We will discuss API lifecycle and version policies in Section II.

Chapter 5. On Versioning

Here and throughout we firmly stick to semver principles of versioning:

1. API versions are denoted with three numbers, i.e. 1.2.3.
2. First number (major version) increases when backwards incompatible changes in

the API are shipped.
3. Second Number (minor version) increases when new functionality is added to the

API, keeping backwards compatibility intact.
4. Third number (patch) increases when a new API version contains bug fixes only.

Sentences ‘major API version’ and ‘new API version, containing backwards-
incompatible changes’ are therefore to be considered as equivalent ones.

In Section II we will discuss versioning policies in more detail. In Section I, we will just
use semver versions designation, specifically v1, v2, etc.

https://semver.org/

Chapter 6. Terms and Notation Keys

Software development is being characterized, among other things, by the existence of
many different engineering paradigms, whose adepts sometimes are quite aggressive
towards other paradigms' adepts. While writing this book we are deliberately avoiding
using terms like ‘method’, ‘object’, ‘function’, and so on, using a neutral term ‘entity’
instead. ‘Entity’ means some atomic functionality unit, like class, method, object,
monad, prototype (underline what you think is right).

As for an entity's components, we regretfully failed to find a proper term, so we will use
the words ‘fields’ and ‘methods’.

Most of the examples of APIs will be provided in a form of JSON-over-HTTP endpoints.
This is some sort of notation which, as we see it, helps to describe concepts in the most
comprehensible manner. GET /v1/orders endpoint call could easily be replaced with
orders.get() method call, local or remote; JSON could easily be replaced with any
other data format. The meaning of assertions shouldn't change.

Let's take a look at the following example:

// Method description
POST /v1/bucket/{id}/some-resource
X-Idempotency-Token: <idempotency token>
{
 …
 // This is a single-line comment
 "some_parameter": "example value",
 …
}
→ 404 Not Found
Cache-Control: no-cache
{
 /* And this is
 a multiline comment */
 "error_message"
}

It should be read like this:

a client performs a POST request to a /v1/bucket/{id}/some-resource
resource, where {id} is to be replaced with some bucket's identifier
({something} notation refers to the nearest term from the left unless explicitly
specified otherwise);
a specific X-Idempotency-Token header is added to the request alongside
standard headers (which we omit);
terms in angle brackets (<idempotency token>) describe the semantics of an
entity value (field, header, parameter);
a specific JSON, containing a some_parameter field and some other unspecified
fields (indicated by ellipsis) is being sent as a request body payload;
in response (marked with arrow symbol →) server returns a 404 Not Founds
status code; the status might be omitted (treat it like 200 OK if no status is
provided);
the response could possibly contain additional notable headers;
the response body is a JSON comprising a single error_message field; field
value absence means that field contains exactly what you expect it should contain
— some error message in this case.

Term ‘client’ here stands for an application being executed on a user's device, either
native or web one. Terms ‘agent’ and ‘user agent’ are synonymous to ‘client’.

Some request and response parts might be omitted if they are irrelevant to the topic
being discussed.

Simplified notation might be used to avoid redundancies, like
POST /some-resource {…, "some_parameter", …} → { "operation_id" };
request and response bodies might also be omitted.

We will be using sentences like ‘POST /v1/bucket/{id}/some-resource method’
(or simply ‘bucket/some-resource method’, ‘some-resource’ method — if there
are no other some-resources in the chapter, so there is no ambiguity) to refer to
such endpoint definitions.

Apart from HTTP API notation, we will employ C-style pseudocode, or, to be more
precise, JavaScript-like or Python-like since types are omitted. We assume such
imperative structures are readable enough to skip detailed grammar explanations.

SECTION I. THE API DESIGN

Chapter 7. The API Contexts Pyramid

The approach we use to design APIs comprises four steps:

defining an application field;
separating abstraction levels;
isolating responsibility areas;
describing final interfaces.

This four-step algorithm actually builds an API from top to bottom, from common
requirements and use case scenarios down to a refined entity nomenclature. In fact,
moving this way will eventually conclude with a ready-to-use API — that's why we
value this approach highly.

It might seem that the most useful pieces of advice are given in the last chapter, but
that's not true. The cost of a mistake made at certain levels differs. Fixing the naming is
simple; revising the wrong understanding of what the API stands for is practically
impossible.

NB. Here and throughout we will illustrate API design concepts using a hypothetical
example of an API allowing for ordering a cup of coffee in city cafes. Just in case: this
example is totally synthetic. If we were to design such an API in the real world, it would
probably have very little in common with our fictional example.

Chapter 8. Defining an Application Field

The key question you should ask yourself looks like that: what problem we solve? It
should be asked four times, each time putting an emphasis on another word.

1. What problem we solve? Could we clearly outline the situation in which our
hypothetical API is needed by developers?

2. What problem we solve? Are we sure that the abovementioned situation poses a
problem? Does someone really want to pay (literally or figuratively) to automate a
solution for this problem?

3. What problem we solve? Do we actually possess the expertise to solve the
problem?

4. What problem we solve? Is it true that the solution we propose solves the problem
indeed? Aren't we creating another problem instead?

So, let's imagine that we are going to develop an API for automated coffee ordering in
city cafes, and let's apply the key question to it.

1. Why would someone need an API to make a coffee? Why ordering a coffee via
‘human-to-human’ or ‘human-to-machine’ interface is inconvenient, why have
‘machine-to-machine’ interface?

Possibly, we're solving knowledge and selection problems? To provide
humans with full knowledge of what options they have right now and right
here.
Possibly, we're optimizing waiting times? To save the time people waste while
waiting for their beverages.
Possibly, we're reducing the number of errors? To help people get exactly
what they wanted to order, stop losing information in imprecise
conversational communication, or in dealing with unfamiliar coffee machine
interfaces?

‘Why’ question is the most important of all questions you must ask yourself. And
not only about global project goals, but also locally about every single piece of
functionality. If you can't briefly and clearly answer the question ‘what this
entity is needed for’, then it's not needed.

Here and throughout we assume, to make our example more complex and bizarre,
that we are optimizing all three factors.

2. Do the problems we outlined really exist? Do we really observe unequal coffee-
machines utilization in mornings? Do people really suffer from the inability to
find nearby a toffee nut latte they long for? Do they really care about the minutes
they spend in lines?

3. Do we actually have a resource to solve a problem? Do we have access to a
sufficient number of coffee machines and users to ensure the system's efficiency?

4. Finally, will we really solve a problem? How we're going to quantify the impact our
API makes?

In general, there are no simple answers to those questions. Ideally, you should give
answers having all the relevant metrics measured: how much time is wasted exactly,
and what numbers we're going to achieve providing we have such coffee machines
density? Let us also stress that in a real-life obtaining these numbers is only possible if
you're entering a stable market. If you try to create something new, your only option is
to rely on your intuition.

Why an API?

Since our book is dedicated not to software development per se, but to developing
APIs, we should look at all those questions from a different angle: why solving those
problems specifically requires an API, not simply a specialized software application? In
terms of our fictional example, we should ask ourselves: why provide a service to
developers, allowing for brewing coffee to end users, instead of just making an app?

In other words, there must be a solid reason to split two software development
domains: there are the operators which provide APIs; and there are the operators
which develop services for end users. Their interests are somehow different to such an
extent, that coupling these two roles in one entity is undesirable. We will talk about the
motivation to specifically provide APIs in more detail in Section III.

We should also note, that you should try making an API when and only when you wrote
‘because that's our area of expertise’ in question 2. Developing APIs is a sort of meta-
engineering: you're writing some software to allow other companies to develop
software to solve users' problems. You must possess expertise in both domains (APIs
and user products) to design your API well.

As for our speculative example, let us imagine that in the near future some tectonic
shift happened within the coffee brewing market. Two distinct player groups took
shape: some companies provide ‘hardware’, i.e. coffee machines; other companies have
access to customer auditory. Something like the flights market looks like: there are air
companies, which actually transport passengers; and there are trip planning services
where users are choosing between trip variants the system generates for them. We're
aggregating hardware access to allow app vendors for ordering freshly brewed coffee.

What and How

After finishing all these theoretical exercises, we should proceed right to designing and
developing the API, having a decent understanding regarding two things:

what we're doing, exactly;
how we're doing it, exactly.

In our coffee case, we are:

providing an API to services with a larger audience, so their users may order a cup
of coffee in the most efficient and convenient manner;
abstracting access to coffee machines ‘hardware’ and delivering methods to select
a beverage kind and some location to brew — and to make an order.

Chapter 9. Separating Abstraction Levels

‘Separate abstraction levels in your code’ is possibly the most general advice to
software developers. However, we don't think it would be a grave exaggeration to say
that abstraction levels separation is also the most difficult task for API developers.

Before proceeding to the theory, we should formulate clearly why abstraction levels are
so important, and what goals we're trying to achieve by separating them.

Let us remember that software product is a medium connecting two outstanding
contexts, thus transforming terms and operations belonging to one subject area into
another area's concepts. The more these areas differ, the more interim connecting links
we have to introduce.

Back to our coffee example. What entity abstraction levels do we see?

1. We're preparing an order via the API: one (or more) cups of coffee, and receive
payments for this.

2. Each cup of coffee is being prepared according to some recipe, which implies the
presence of different ingredients and sequences of preparation steps.

3. Each beverage is being prepared on some physical coffee machine, occupying
some position in space.

Every level presents a developer-facing ‘facet’ in our API. While elaborating
abstractions hierarchy, we are first of all trying to reduce the interconnectivity of
different entities. That would help us to reach several goals.

1. Simplifying developers' work and the learning curve. At each moment of time, a
developer is operating only those entities which are necessary for the task they're
solving right now. And conversely, badly designed isolation leads to the situation
when developers have to keep in mind lots of concepts mostly unrelated to the
task being solved.

2. Preserving backwards compatibility. Properly separated abstraction levels allow
for adding new functionality while keeping interfaces intact.

3. Maintaining interoperability. Properly isolated low-level abstractions help us to
adapt the API to different platforms and technologies without changing high-level
entities.

Let's say we have the following interface:

// Returns lungo recipe
GET /v1/recipes/lungo

// Posts an order to make a lungo
// using specified coffee-machine,
// and returns an order identifier
POST /v1/orders
{
 "coffee_machine_id",
 "recipe": "lungo"
}

// Returns order state
GET /v1/orders/{id}

Let's consider the question: how exactly developers should determine whether the
order is ready or not? Let's say we do the following:

add a reference beverage volume to the lungo recipe;
add the currently prepared volume of beverage to the order state.

Then a developer just needs to compare two numbers to find out whether the order is
ready.

This solution intuitively looks bad, and it really is: it violates all the abovementioned
principles.

First, to solve the task ‘order a lungo’ a developer needs to refer to the ‘recipe’ entity
and learn that every recipe has an associated volume. Then they need to embrace the
concept that an order is ready at that particular moment when the prepared beverage
volume becomes equal to the reference one. This concept is simply unguessable, and
knowing it is mostly useless.

Second, we will have automatically got problems if we need to vary the beverage size.
For example, if one day we decide to offer a choice to a customer, how many milliliters
of lungo they desire exactly, then we have to perform one of the following tricks.

Variant I: we have a list of possible volumes fixed and introduce bogus recipes like
/recipes/small-lungo or recipes/large-lungo. Why ‘bogus’? Because it's still
the same lungo recipe, same ingredients, same preparation steps, only volumes differ.
We will have to start the mass production of recipes, only different in volume, or
introduce some recipe ‘inheritance’ to be able to specify the ‘base’ recipe and just
redefine the volume.

Variant II: we modify an interface, pronouncing volumes stated in recipes being just
the default values. We allow to request different cup volume when placing an order:

POST /v1/orders
{
 "coffee_machine_id",
 "recipe":"lungo",
 "volume":"800ml"
}

For those orders with an arbitrary volume requested, a developer will need to obtain
the requested volume not from GET /v1/recipes, but GET /v1/orders. Doing so
we're getting a whole bunch of related problems:

there is a significant chance that developers will make mistakes in this
functionality implementation, if they add arbitrary volume support in the code
working with the POST /v1/orders handler, but forget to make corresponding
changes in the order readiness check code;
the same field (coffee volume) now means different things in different interfaces.
In GET /v1/recipes context volume field means ‘a volume to be prepared if no
arbitrary volume is specified in POST /v1/orders request’; and it cannot be
renamed to ‘default volume’ easily, we now have to live with that.

In third, the entire scheme becomes totally inoperable if different types of coffee
machines produce different volumes of lungo. To introduce ‘lungo volume depends on
machine type’ constraint we have to do quite a nasty thing: make recipes depend on
coffee machine id. By doing so we start actively ‘stir’ abstraction levels: one part of our
API (recipe endpoints) becomes unusable without explicit knowledge of another part
(coffee machines listing). And what is even worse, developers will have to change the
logic of their apps: previously it was possible to choose volume first, then a coffee
machine; but now this step must be rebuilt from scratch.

Okay, we understood how to make things bad. But how to make them nice?

Abstraction levels separation should go alongside three directions:

1. From user scenarios to their internal representation: high-level entities and their
method nomenclature must directly reflect API usage scenarios; low-level entities
reflect the decomposition of scenarios into smaller parts.

2. From user subject field terms to ‘raw’ data subject field terms — in our case from
high-level terms like ‘order’, ‘recipe’, ‘café’ to low-level terms like ‘beverage
temperature’, ‘coffee machine geographical coordinates’, etc.

3. Finally, from data structures suitable for end users to ‘raw’ data structures — in
our case, from ‘lungo recipe’ and ‘"Chamomile" café chain’ to the raw byte data
stream from ‘Good Morning’ coffee machine sensors.

The more is the distance between programmable contexts our API connects, the deeper
is the hierarchy of the entities we are to develop.

In our example with coffee readiness detection we clearly face the situation when we
need an interim abstraction level:

from one side, an ‘order’ should not store the data regarding coffee machine
sensors;
from the other side, a coffee machine should not store the data regarding order
properties (and its API probably doesn't provide such functionality).

A naïve approach to this situation is to design an interim abstraction level as a
‘connecting link’, which reformulates tasks from one abstraction level to another. For
example, introduce a task entity like that:

{
 …
 "volume_requested": "800ml",
 "volume_prepared": "200ml",
 "readiness_policy": "check_volume",
 "ready": false,
 "operation_state": {
 "status": "executing",
 "operations": [
 // description of commands
 // being executed on a physical coffee machine
]
 }
 …
}

We call this approach ‘naïve’ not because it's wrong; on the contrary, that's quite a
logical ‘default’ solution if you don't know yet (or don't understand yet) how your API
will look like. The problem with this approach lies in its speculativeness: it doesn't
reflect the subject area's organization.

An experienced developer in this case must ask: what options do exist? How we really
should determine beverage readiness? If it turns out that comparing volumes is the
only working method to tell whether the beverage is ready, then all the speculations
above are wrong. You may safely include readiness-by-volume detection into your
interfaces since no other methods exist. Before abstracting something we need to learn
what exactly we're abstracting.

In our example let's assume that we have studied coffee machines API specs, and
learned that two device types exist:

coffee machines capable of executing programs coded in the firmware; the only
customizable options are some beverage parameters, like desired volume, a syrup
flavor, and a kind of milk;
coffee machines with built-in functions, like ‘grind specified coffee volume’, ‘shed
the specified amount of water’, etc.; such coffee machines lack ‘preparation
programs’, but provide access to commands and sensors.

To be more specific, let's assume those two kinds of coffee machines provide the
following physical API.

Coffee machines with prebuilt programs:

// Returns a list of programs
GET /programs
→
{
 // program identifier
 "program": 1,
 // coffee type
 "type": "lungo"
}

// Starts an execution of a specified program
// and returns execution status
POST /execute
{
 "program": 1,
 "volume": "200ml"
}
→
{
 // Unique identifier of the execution
 "execution_id": "01-01",
 // Identifier of the program
 "program": 1,
 // Beverage volume requested
 "volume": "200ml"
}

// Cancels current program
POST /cancel

// Returns execution status.
// The format is the same as in `POST /execute`
GET /execution/status

NB. Just in case: this API violates a number of design principles, starting with a
lack of versioning; it's described in such a manner because of two reasons: (1) to
demonstrate how to design a more convenient API, (b) in the real life, you really
got something like that from vendors, and this API is quite sane, actually.

Coffee machines with built-in functions:

// Returns a list of functions available
GET /functions
→
{
 "functions": [
 {
 // Operation type:
 // * set_cup
 // * grind_coffee
 // * pour_water
 // * discard_cup
 "type": "set_cup",
 // Arguments available to each operation.
 // To keep it simple, let's limit these to one:
 // * volume — a volume of a cup, coffee, or water
 "arguments": ["volume"]
 },
 …
]
}

// Takes arguments values
// and starts executing a function
POST /functions
{
 "type": "set_cup",
 "arguments": [{ "name": "volume", "value": "300ml" }]
}

// Returns sensors' state
GET /sensors
→
{
 "sensors": [
 {
 // Values allowed:
 // * cup_volume
 // * ground_coffee_volume
 // * cup_filled_volume
 "type": "cup_volume",
 "value": "200ml"
 },
 …
]
}

NB. The example is intentionally factitious to model a situation described above:
to determine beverage readiness you have to compare the requested volume with
volume sensor readings.

Now the picture becomes more apparent: we need to abstract coffee machine API calls
so that the ‘execution level’ in our API provides general functions (like beverage
readiness detection) in a unified form. We should also note that these two coffee
machine API kinds belong to different abstraction levels themselves: the first one
provides a higher-level API than the second one. Therefore, a ‘branch’ of our API
working with second-kind machines will be more intricate.

The next step in abstraction level separating is determining what functionality we're
abstracting. To do so we need to understand the tasks developers solve at the ‘order’
level, and to learn what problems they get if our interim level is missing.

1. Obviously the developers desire to create an order uniformly: list high-level order
properties (beverage kind, volume, and special options like syrup or milk type),
and don't think about how the specific coffee machine executes it.

2. Developers must be able to learn the execution state: is the order ready? if not —
when to expect it's ready (and is there any sense to wait in case of execution
errors).

3. Developers need to address the order's location in space and time — to explain to
users where and when they should pick the order up.

4. Finally, developers need to run atomic operations, like canceling orders.

Note, that the first-kind API is much closer to developers' needs than the second-kind
API. Indivisible ‘program’ is a way more convenient concept than working with raw
commands and sensor data. There are only two problems we see in the first-kind API:

absence of explicit ‘programs’ to ‘recipes’ relation; program identifier is of no use
to developers since there is a ‘recipe’ concept;
absence of explicit ‘ready’ status.

But with the second-kind API it's much worse. The main problem we foresee is an
absence of ‘memory’ for actions being executed. Functions and sensors API is totally
stateless, which means we don't even understand who called a function being currently
executed, when, and which order it is related to.

So we need to introduce two abstraction levels.

1. Execution control level, which provides the uniform interface to indivisible
programs. ‘Uniform interface’ means here that, regardless of a coffee machine's
kind, developers may expect:

statuses and other high-level execution parameters nomenclature (for
example, estimated preparation time or possible execution error) being the
same;
methods nomenclature (for example, order cancellation method) and their
behavior being the same.

2. Program runtime level. For the first-kind API it will provide just a wrapper for
existing programs API; for the second-kind API the entire ‘runtime’ concept is to
be developed from scratch by us.

What does this mean in a practical sense? Developers will still be creating orders,
dealing with high-level entities only:

POST /v1/orders
{
 "coffee_machin
 "recipe": "lungo",
 "volume": "800ml"
}
→
{ "order_id" }

The POST /orders handler checks all order parameters, puts a hold of the
corresponding sum on the user's credit card, forms a request to run, and calls the
execution level. First, a correct execution program needs to be fetched:

POST /v1/program-matcher
{ "recipe", "coffee-machine" }
→
{ "program_id" }

Now, after obtaining a correct program identifier, the handler runs a program:

POST /v1/programs/{id}/run
{
 "order_id",
 "coffee_machine_id",
 "parameters": [
 {
 "name": "volume",
 "value": "800ml"
 }
]
}
→
{ "program_run_id" }

Please note that knowing the coffee machine API kind isn't required at all; that's why
we're making abstractions! We could possibly make interfaces more specific,
implementing different run and match endpoints for different coffee machines:

POST /v1/program-matcher/{api_type}
POST /v1/programs/{api_type}/{program_id}/run

This approach has some benefits, like the possibility to provide different sets of
parameters, specific to the API kind. But we see no need in such fragmentation. run
method handler is capable of extracting all the program metadata and performing one
of two actions:

call POST /execute physical API method, passing internal program identifier —
for the first API kind;
initiate runtime creation to proceed with the second API kind.

Out of general concerns runtime level for the second-kind API will be private, so we are
more or less free in implementing it. The easiest solution would be to develop a virtual
state machine that creates a ‘runtime’ (e.g. a stateful execution context) to run a
program and control its state.

POST /v1/runtimes
{ "coffee_machine", "program", "parameters" }
→
{ "runtime_id", "state" }

The program here would look like that:

{
 "program_id",
 "api_type",
 "commands": [
 {
 "sequence_id",
 "type": "set_cup",
 "parameters"
 },
 …
]
}

And the state like that:

{
 // Runtime status:
 // * "pending" — awaiting execution
 // * "executing" — performing some command
 // * "ready_waiting" — beverage is ready
 // * "finished" — all operations done
 "status": "ready_waiting",
 // Command being currently executed.
 // Similar to line numbers in computer programs
 "command_sequence_id",
 // How the execution concluded:
 // * "success" — beverage prepared and taken
 // * "terminated" — execution aborted
 // * "technical_error" — preparation error
 // * "waiting_time_exceeded" — beverage prepared,
 // but not taken; timed out then disposed
 "resolution": "success",
 // All variables values,
 // including sensors state
 "variables"
}

NB: while implementing orders → match → run → runtimes call sequence we have
two options:

either POST /orders handler requests the data regarding the recipe, the coffee
machine model, and the program on its own behalf, and forms a stateless request
which contains all the necessary data (the API kind, command sequence, etc.);
or the request contains only data identifiers, and next in chain handler will
request pieces of data it needs via some internal APIs.

Both variants are plausible, selecting one of them depends on implementation details.

Abstraction Levels Isolation

A crucial quality of properly separated abstraction levels (and therefore a requirement
to their design) is a level isolation restriction: only adjacent levels may interact. If
‘jumping over’ is needed in the API design, then clearly mistakes were made.

Get back to our example. How retrieving order status would work? To obtain a status
the following call chain is to be performed:

user initiates a call to the GET /v1/orders method;
the orders handler completes operations on its level of responsibility (for
example, checks user authorization), finds program_run_id identifier and
performs a call to the runs/{program_run_id} endpoint;
the runs endpoint in its turn completes operations corresponding to its level (for
example, checks the coffee machine API kind) and, depending on the API kind,
proceeds with one of two possible execution branches:

either calls the GET /execution/status method of a physical coffee
machine API, gets the coffee volume, and compares it to the reference value;
or invokes the GET /v1/runtimes/{runtime_id} method to obtain the
state.status and converts it to the order status;

in a case of the second-kind API, the call chain continues: the GET /runtimes
handler invokes the GET /sensors method of a physical coffee machine API and
performs some manipulations with the data, like comparing the cup / ground
coffee / shed water volumes with the reference ones, and changing the state and
the status if needed.

NB: The ‘call chain’ wording shouldn't be treated literally. Each abstraction level might
be organized differently in a technical sense:

there might be explicit proxying of calls down the hierarchy;
there might be a cache at each level, being updated upon receiving a callback call
or an event. In particular, a low-level runtime execution cycle obviously must be
independent of upper levels, renew its state in the background, and not wait for an
explicit call.

Note what happens here: each abstraction level wields its own status (e.g. order,
runtime, sensors status), being formulated in corresponding to this level subject area
terms. Forbidding the ‘jumping over’ results in the necessity to spawn statuses at each
level independently.

Let's now look at how the order cancel operation flows through our abstraction levels.
In this case, the call chain will look like that:

user initiates a call to the POST /v1/orders/{id}/cancel method;
the method handler completes operations on its level of responsibility:

checks the authorization;
solves money issues, i.e. whether a refund is needed;

finds the program_run_id identifier and calls the
runs/{program_run_id}/cancel method;

the rides/cancel handler completes operations on its level of responsibility
and, depending on the coffee machine API kind, proceeds with one of two possible
execution branches:

either calls the POST /execution/cancel method of a physical coffee
machine API;
or invokes the POST /v1/runtimes/{id}/terminate method;

in a second case the call chain continues, the terminate handler operates its
internal state:

changes the resolution to "terminated";
runs the "discard_cup" command.

Handling state-modifying operations like cancel requires more advanced abstraction
levels juggling skills compared to non-modifying calls like GET /status. There are
two important moments:

1. At each abstraction level the idea of ‘order canceling’ is reformulated:

at the orders level this action in fact splits into several ‘cancels’ of other
levels: you need to cancel money holding and to cancel an order execution;
at the second API kind physical level a ‘cancel’ operation itself doesn't exist:
‘cancel’ means ‘executing the discard_cup command’, which is quite the
same as any other command. The interim API level is needed to make this
transition between different level ‘cancels’ smooth and rational without
jumping over canyons.

2. From a high-level point of view, canceling an order is a terminal action, since no
further operations are possible. From a low-level point of view, the processing
continues until the cup is discarded, and then the machine is to be unlocked (e.g.
new runtimes creation allowed). It's a task to the execution control level to couple
those two states, outer (the order is canceled) and inner (the execution continues).

It might look that forcing the abstraction levels isolation is redundant and makes
interfaces more complicated. In fact, it is: it's very important to understand that
flexibility, consistency, readability, and extensibility come with a price. One may
construct an API with zero overhead, essentially just provide access to the coffee
machine's microcontrollers. However using such an API would be a disaster to a
developer, not to mention the inability to extend it.

Separating abstraction levels is first of all a logical procedure: how we explain to
ourselves and developers what our API consists of. The abstraction gap between
entities exists objectively, no matter what interfaces we design. Our task is just
separate this gap into levels explicitly. The more implicitly abstraction levels are
separated (or worse — blended into each other), the more complicated is your API's
learning curve, and the worse is the code that uses it.

The Data Flow

One useful exercise allowing us to examine the entire abstraction hierarchy is
excluding all the particulars and constructing (on a paper or just in your head) a data
flow chart: what data is flowing through your API entities, and how it's being altered at
each step.

This exercise doesn't just help but also allows to design really large APIs with huge
entity nomenclatures. Human memory isn't boundless; any project which grows
extensively will eventually become too big to keep the entire entity hierarchy in mind.
But it's usually possible to keep in mind the data flow chart, or at least keep a much
larger portion of the hierarchy.

What data flow do we have in our coffee API?

1. It starts with the sensors data, i.e. volumes of coffee / water / cups. This is the
lowest data level we have, and here we can't change anything.

2. A continuous sensors data stream is being transformed into discrete command
execution statuses, injecting new concepts which don't exist within the subject
area. A coffee machine API doesn't provide a ‘coffee is being shed’ or a ‘cup is
being set’ notion. It's our software that treats incoming sensors data and
introduces new terms: if the volume of coffee or water is less than the target one,
then the process isn't over yet. If the target value is reached, then this synthetic
status is to be switched, and the next command to be executed.
It is important to note that we don't calculate new variables out from sensors
data: we need to create a new dataset first, a context, an ‘execution program’
comprising a sequence of steps and conditions, and to fill it with initial values. If
this context is missing, it's impossible to understand what's happening with the
machine.

3. Having logical data about the program execution state, we can (again via creating
a new high-level data context) merge two different data streams from two
different kinds of APIs into a single stream, which provides in a unified form the
data regarding executing a beverage preparation program with logical variables
like the recipe, volume, and readiness status.

Each API abstraction level, therefore corresponds to some data flow generalization and
enrichment, converting the low-level (and in fact useless to end users) context terms
into the higher-level context terms.

We may also traverse the tree backward.

1. At the order level we set its logical parameters: recipe, volume, execution place
and possible statuses set.

2. At the execution level we read the order level data and create a lower level
execution context: the program as a sequence of steps, their parameters,
transition rules, and initial state.

3. At the runtime level we read the target parameters (which operation to execute,
what the target volume is) and translate them into coffee machine API
microcommands and statuses for each command.

Also, if we take a deeper look into the ‘bad’ decision (forcing developers to determine
actual order status on their own), being discussed at the beginning of this chapter, we
could notice a data flow collision there:

from one side, in the order context ‘leaked’ physical data (beverage volume
prepared) is injected, therefore stirring abstraction levels irreversibly;
from the other side, the order context itself is deficient: it doesn't provide new
meta-variables, non-existent at the lower levels (the order status, in particular),
doesn't initialize them, and doesn't set the game rules.

We will discuss data contexts in more detail in Section II. Here we will just state that
data flows and their transformations might be and must be examined as a specific API
facet, which, from one side, helps us to separate abstraction levels properly, and, from
the other side, to check if our theoretical structures work as intended.

Chapter 10. Isolating Responsibility Areas

Based on the previous chapter, we understand that the abstraction hierarchy in our
hypothetical project would look like that:

the user level (those entities users directly interact with and which are formulated
in terms, understandable by user: orders, coffee recipes);
the program execution control level (the entities responsible for transforming
orders into machine commands);
the runtime level for the second API kind (the entities describing the command
execution state machine).

We are now to define each entity's responsibility area: what's the reasoning in keeping
this entity within our API boundaries; what operations are applicable to the entity
directly (and which are delegated to other objects). In fact, we are to apply the ‘why’-
principle to every single API entity.

To do so we must iterate all over the API and formulate in subject area terms what
every object is. Let us remind that the abstraction levels concept implies that each level
is a some interim subject area per se; a step we take in the journey from describing a
task in the first connected context terms (‘a lungo ordered by a user’) to the second
connect context terms (‘a command performed by a coffee machine’).

As for our fictional example, it would look like that:

1. User-level entities.
An order describes some logical unit in app-user interaction. An order
might be:

created;
checked for its status;
retrieved;
canceled;

A recipe describes an ‘ideal model’ of some coffee beverage type, its
customer properties. A recipe is an immutable entity for us, which means
we could only read it.
A coffee-machine is a model of a real-world device. We must be able to
retrieve the coffee machine's geographical location and the options it
supports from this model (will be discussed below).

2. Program execution control level entities.

A program describes some general execution plan for a coffee machine.
Programs could only be read.
The program matcher programs/matcher is capable of coupling a recipe
and a program, which in fact means ‘to retrieve a dataset needed to prepare
a specific recipe on a specific coffee machine’.
A program execution programs/run describes a single fact of running a
program on a coffee machine. run might be:

initialized (created);
checked for its status;
canceled.

3. Runtime-level entities.
A runtime describes a specific execution data context, i.e. the state of each
variable. runtime might be:

initialized (created);
checked for its status;
terminated.

If we look closely at the entities, we may notice that each entity turns out to be a
composite. For example, a program will operate high-level data (recipe and
coffee-machine), enhancing them with its subject area terms (program_run_id
for instance). This is totally fine: connecting contexts is what APIs do.

Use Case Scenarios

At this point, when our API is in general clearly outlined and drafted, we must put
ourselves into the developer's shoes and try writing code. Our task is to look at the
entity nomenclature and make some estimates regarding their future usage.

So, let us imagine we've got a task to write an app for ordering a coffee, based upon our
API. What code would we write?

Obviously, the first step is offering a choice to a user, to make them point out what they
want. And this very first step reveals that our API is quite inconvenient. There are no
methods allowing for choosing something. A developer has to implement these steps:

retrieve all possible recipes from the GET /v1/recipes endpoint;
retrieve a list of all available coffee machines from the
GET /v1/coffee-machines endpoint;
write a code that traverses all this data.

If we try writing pseudocode, we will get something like that:

As you see, developers are to write a lot of redundant code (to say nothing about the
difficulties of implementing spatial indexes). Besides, if we take into consideration our
Napoleonic plans to cover all coffee machines in the world with our API, then we need
to admit that this algorithm is just a waste of resources on retrieving lists and indexing
them.

The necessity of adding a new endpoint for searching becomes obvious. To design such
an interface we must imagine ourselves being UX designers, and think about how an
app could try to arouse users' interest. Two scenarios are evident:

display all cafes in the vicinity and types of coffee they offer (a ‘service discovery’
scenario) — for new users or just users with no specific tastes;
display nearby cafes where a user could order a particular type of coffee — for
users seeking a certain beverage type.

Then our new interface would look like this:

// Retrieve all possible recipes
let recipes = api.getRecipes();
// Retrieve a list of all available coffee machines
let coffeeMachines = api.getCoffeeMachines();
// Build a spatial index
let coffeeMachineRecipesIndex = buildGeoIndex(recipes, coffeeMachines)
// Select coffee machines matching user's needs
let matchingCoffeeMachines = coffeeMachineRecipesIndex.query(
 parameters,
 { "sort_by": "distance" }
);
// Finally, show offers to user
app.display(coffeeMachines);

POST /v1/offers/search
{
 // optional
 "recipes": ["lungo", "americano"],
 "position": <geographical coordinates>,
 "sort_by": [
 { "field": "distance" }
],
 "limit": 10
}
→
{
 "results": [
 { "coffee_machine", "place", "distance", "offer" }
],
 "cursor"
}

Here:

an offer — is a marketing bid: on what conditions a user could have the
requested coffee beverage (if specified in the request), or some kind of a marketing
offer — prices for the most popular or interesting products (if no specific
preference was set);
a place — is a spot (café, restaurant, street vending machine) where the coffee
machine is located; we never introduced this entity before, but it's quite obvious
that users need more convenient guidance to find a proper coffee machine than
just geographical coordinates.

NB. We could have been enriched the existing /coffee-machines endpoint instead
of adding a new one. This decision, however, looks less semantically viable: coupling in
one interface different modes of listing entities, by relevance and by order, is usually a
bad idea because these two types of rankings imply different usage features and
scenarios. Furthermore, enriching the search with ‘offers’ pulls this functionality out of
coffee-machines namespace: the fact of getting offers to prepare specific beverages
in specific conditions is a key feature to users, with specifying the coffee-machine
being just a part of an offer.

Coming back to the code developers are writing, it would now look like that:

// Searching for offers
// matching a user's intent
let offers = api.search(parameters);
// Display them to a user
app.display(offers);

Helpers

Methods similar to newly invented offers/search are called helpers. The purpose
they exist is to generalize known API usage scenarios and facilitate implementing
them. By ‘facilitating’ we mean not only reducing wordiness (getting rid of
‘boilerplates’) but also helping developers to avoid common problems and mistakes.

For instance, let's consider the order price question. Our search function returns some
‘offers’ with prices. But ‘price’ is volatile; coffee could cost less during ‘happy hours’,
for example. Developers could make a mistake thrice while implementing this
functionality:

cache search results on a client device for too long (as a result, the price will
always be nonactual);
contrary to previous, call search method excessively just to actualize prices, thus
overloading the network and the API servers;
create an order with an invalid price (therefore deceiving a user, displaying one
sum, and debiting another).

To solve the third problem we could demand including the displayed price in the order
creation request, and return an error if it differs from the actual one. (In fact, any API
working with money shall do so.) But it isn't helping with the first two problems and
makes the user experience degrade. Displaying actual price is always a much more
convenient behavior than displaying errors upon pressing the ‘place an order’ button.

One solution is to provide a special identifier to an offer. This identifier must be
specified in an order creation request.

{
 "results": [
 {
 "coffee_machine", "place", "distance",
 "offer": {
 "id",
 "price",
 "currency_code",
 // Date and time when the offer expires
 "valid_until"
 }
 }
],
 "cursor"
}

By doing so we're not only helping developers to grasp a concept of getting the relevant
price, but also solving a UX task of telling users about ‘happy hours’.

As an alternative, we could split endpoints: one for searching, another one for
obtaining offers. This second endpoint would only be needed to actualize prices in the
specified places.

Error Handling

And one more step towards making developers' life easier: how an ‘invalid price’ error
would look like?

POST /v1/orders
{ … "offer_id" …}
→ 409 Conflict
{
 "message": "Invalid price"
}

Formally speaking, this error response is enough: users get the ‘Invalid price’ message,
and they have to repeat the order. But from a UX point of view that would be a horrible
decision: the user hasn't made any mistakes, and this message isn't helpful at all.

The main rule of error interfaces in the APIs is: an error response must help a client to
understand what to do with this error. All other stuff is unimportant: if the error
response was machine-readable, there would be no need for the user-readable
message.

An error response content must address the following questions:

1. Which party is the problem's source: client or server?
HTTP APIs traditionally employ 4xx status codes to indicate client problems, 5xx
to indicate server problems (with the exception of a 404, which is an uncertainty
status).

2. If the error is caused by a server, is there any sense to repeat the request? If yes,
then when?

3. If the error is caused by a client, is it resolvable, or not?
The invalid price error is resolvable: a client could obtain a new price offer and
create a new order with it. But if the error occurred because of a mistake in the
client code, then eliminating the cause is impossible, and there is no need to make
the user push the ‘place an order’ button again: this request will never succeed.
NB: here and throughout we indicate resolvable problems with 409 Conflict
code, and unresolvable ones with 400 Bad Request.

4. If the error is resolvable, then what's the kind of problem? Obviously, a client
couldn't resolve a problem it's unaware of. For every resolvable problem, some
code must be written (reobtaining the offer in our case), so a list of error
descriptions must exist.

5. If the same kind of errors arise because of different parameters being invalid, then
which parameter value is wrong exactly?

6. Finally, if some parameter value is unacceptable, then what values are acceptable?

In our case, the price mismatch error should look like this:

409 Conflict
{
 // Error kind
 "reason": "offer_invalid",
 "localized_message":
 "Something goes wrong. Try restarting the app."
 "details": {
 // What's wrong exactly?
 // Which validity checks failed?
 "checks_failed": [
 "offer_lifetime"
]
 }
}

After getting this error, a client is to check the error's kind (‘some problem with offer’),
check the specific error reason (‘order lifetime expired’), and send an offer retrieving
request again. If checks_failed field indicated another error reason (for example,
the offer isn't bound to the specified user), client actions would be different (re-
authorize the user, then get a new offer). If there were no error handler for this specific
reason, a client would show localized_message to the user, and invoke standard
error recovery procedure.

It is also worth mentioning that unresolvable errors are useless to a user at the time
(since the client couldn't react usefully to unknown errors), but it doesn't mean that
providing extended error data is excessive. A developer will read it when fixing the
error in the code. Also, check paragraphs 12&13 in the next chapter.

Decomposing Interfaces. The ‘7±2’ Rule

Out of our own API development experience, we can tell without any doubt that the
greatest final interfaces design mistake (and the greatest developers' pain accordingly)
is excessive overloading of entities' interfaces with fields, methods, events, parameters,
and other attributes.

Meanwhile, there is the ‘Golden Rule’ of interface design (applicable not only to APIs
but almost to anything): humans could comfortably keep 7±2 entities in short-term
memory. Manipulating a larger number of chunks complicates things for most humans.
The rule is also known as ‘Miller's law’.

https://en.wikipedia.org/wiki/Working_memory#Capacity

The only possible method of overcoming this law is decomposition. Entities should be
grouped under a single designation at every concept level of the API, so developers are
never to operate more than 10 entities at a time.

Let's take a look at a simple example: what the coffee machine search function returns.
To ensure an adequate UX of the app, quite bulky datasets are required.

{
 "results": [
 {
 "coffee_machine_id",
 "coffee_machine_type": "drip_coffee_maker",
 "coffee_machine_brand",
 "place_name": "The Chamomile",
 // Coordinates of a place
 "place_location_latitude",
 "place_location_longitude",
 "place_open_now",
 "working_hours",
 // Walking route parameters
 "walking_distance",
 "walking_time",
 // How to find the place
 "place_location_tip",
 "offers": [
 {
 "recipe": "lungo",
 "recipe_name": "Our brand new Lungo®™",
 "recipe_description",
 "volume": "800ml",
 "offer_id",
 "offer_valid_until",
 "localized_price": "Just $19 for a large coffee cup",
 "price": "19.00",
 "currency_code": "USD",
 "estimated_waiting_time": "20s"
 },
 …
]
 },
 …
]
}

This approach is quite normal, alas; could be found in almost every API. As we see, the
number of entities' fields exceeds recommended 7, and even 9. Fields are being mixed
into one single list, often with similar prefixes.

In this situation, we are to split this structure into data domains: which fields are
logically related to a single subject area. In our case we may identify at least 7 data
clusters:

data regarding a place where the coffee machine is located;
properties of the coffee machine itself;
route data;
recipe data;
recipe options specific to the particular place;
offer data;
pricing data.

Let's try to group it together:

{
 "results": [{
 // Place data
 "place": { "name", "location" },
 // Coffee machine properties
 "coffee-machine": { "id", "brand", "type" },
 // Route data
 "route": { "distance", "duration", "location_tip" },
 "offers": {
 // Recipe data
 "recipe": { "id", "name", "description" },
 // Recipe specific options
 "options": { "volume" },
 // Offer metadata
 "offer": { "id", "valid_until" },
 // Pricing
 "pricing": { "currency_code", "price", "localized_price" },
 "estimated_waiting_time"
 }
 }, …]
}

Such decomposed API is much easier to read than a long sheet of different attributes.
Furthermore, it's probably better to group even more entities in advance. For example,
place and route could be joined in a single location structure, or offer and
pricing might be combined into some generalized object.

It is important to say that readability is achieved not only by mere grouping the
entities. Decomposing must be performed in such a manner that a developer, while
reading the interface, instantly understands: ‘here is the place description of no
interest to me right now, no need to traverse deeper’. If the data fields needed to
complete some action are scattered all over different composites, the readability
doesn't improve but degrades.

Proper decomposition also helps with extending and evolving the API. We'll discuss the
subject in Section II.

Chapter 11. Describing Final Interfaces

When all entities, their responsibilities, and relations to each other are defined, we
proceed to the development of the API itself. We are to describe the objects, fields,
methods, and functions nomenclature in detail. In this chapter, we're giving purely
practical advice on making APIs usable and understandable.

Important assertion at number 0:

0. Rules are just generalizations

Rules are not to be applied unconditionally. They are not making thinking redundant.
Every rule has a rational reason to exist. If your situation doesn't justify following the
rule — then you shouldn't do it.

For example, demanding a specification being consistent exists to help developers
spare time on reading docs. If you need developers to read some entity's doc, it is
totally rational to make its signature deliberately inconsistent.

This idea applies to every concept listed below. If you get an unusable, bulky,
unobvious API because you follow the rules, it's a motive to revise the rules (or the
API).

It is important to understand that you always can introduce concepts of your own. For
example, some frameworks willfully reject paired set_entity / get_entity
methods in a favor of a single entity() method, with an optional argument. The
crucial part is being systematic in applying the concept. If it's rendered into life, you
must apply it to every single API method, or at the very least elaborate a naming rule
to discern such polymorphic methods from regular ones.

1. Explicit is always better than implicit

Entity name must explicitly tell what it does and what side effects to expect while
using it.

Bad:

// Cancels an order
GET /orders/cancellation

It's quite a surprise that accessing the cancellation resource (what is it?) with the
non-modifying GET method actually cancels an order.

Better:

// Cancels an order
POST /orders/cancel

Bad:

// Returns aggregated statistics
// since the beginning of time
GET /orders/statistics

Even if the operation is non-modifying but computationally expensive, you should
explicitly indicate that, especially if clients got charged for computational resource
usage. Even more so, default values must not be set in a manner leading to maximum
resource consumption.

Better:

// Returns aggregated statistics
// for a specified period of time
POST /v1/orders/statistics/aggregate
{ "begin_date", "end_date" }

Try to design function signatures to be absolutely transparent about what the
function does, what arguments it takes, and what's the result. While reading a
code working with your API, it must be easy to understand what it does without
reading docs.

Two important implications:

1.1. If the operation is modifying, it must be obvious from the signature. In particular,
there might be no modifying operations using GET verb.

1.2. If your API's nomenclature contains both synchronous and asynchronous
operations, then (a)synchronicity must be apparent from signatures, or a naming
convention must exist.

2. Specify which standards are used

Regretfully, humanity is unable to agree on the most trivial things, like which day
starts the week, to say nothing about more sophisticated standards.

So always specify exactly which standard is applied. Exceptions are possible if you're
100% sure that only one standard for this entity exists in the world, and every person
on Earth is totally aware of it.

Bad: "date": "11/12/2020" — there are tons of date formatting standards; you
can't even tell which number means the day number and which number means the
month.

Better: "iso_date": "2020-11-12".

Bad: "duration": 5000 — five thousand of what?

Better:
"duration_ms": 5000
or
"duration": "5000ms"
or
"duration": {"unit": "ms", "value": 5000}.

One particular implication from this rule is that money sums must always be
accompanied by a currency code.

It is also worth saying that in some areas the situation with standards is so spoiled
that, whatever you do, someone got upset. A ‘classical’ example is geographical
coordinates order (latitude-longitude vs longitude-latitude). Alas, the only working
method of fighting with frustration there is the ‘Serenity Notepad’ to be discussed in
Section II.

3. Keep fractional numbers precision intact

If the protocol allows, fractional numbers with fixed precision (like money sums) must
be represented as a specially designed type like Decimal or its equivalent.

If there is no Decimal type in the protocol (for instance, JSON doesn't have one), you
should either use integers (e.g. apply a fixed multiplicator) or strings.

4. Entities must have concrete names

Avoid single amoeba-like words, such as ‘get’, ‘apply’, ‘make’.

Bad: user.get() — hard to guess what is actually returned.

Better: user.get_id().

5. Don't spare the letters

In the 21st century, there's no need to shorten entities' names.

Bad: order.time() — unclear, what time is actually returned: order creation time,
order preparation time, order waiting time?…

Better: order.get_estimated_delivery_time()

Bad:

// Returns a pointer to the first occurrence
// in str1 of any of the characters
// that are part of str2
strpbrk (str1, str2)

Possibly, an author of this API thought that pbrk abbreviature would mean something
to readers; clearly mistaken. Also, it's hard to tell from the signature which string
(str1 or str2) stands for a character set.

Better: str_search_for_characters (lookup_character_set, str)
— though it's highly disputable whether this function should exist at all; a feature-rich
search function would be much more convenient. Also, shortening string to str
bears no practical sense, regretfully being a routine in many subject areas.

6. Naming implies typing

Field named recipe must be of Recipe type. Field named recipe_id must contain a
recipe identifier which we could find within the Recipe entity.

Same for primitive types. Arrays must be named in a plural form or as collective nouns,
i.e. objects, children. If that's impossible, better add a prefix or a postfix to avoid
doubt.

Bad: GET /news — unclear whether a specific news item is returned, or a list of them.

Better: GET /news-list.

Similarly, if a Boolean value is expected, entity naming must describe some qualitative
state, i.e. is_ready, open_now.

Bad: "task.status": true
— statuses are not explicitly binary; also such API isn't extendable.

Better: "task.is_finished": true.

Specific platforms imply specific additions to this rule with regard to the first-class
citizen types they provide. For example, entities of Date type (if such type is present)
would benefit from being indicated with _at or _date postfix, i.e. created_at,
occurred_at.

If entity name is a polysemantic term itself, which could confuse developers, better add
an extra prefix or postfix to avoid misunderstanding.

Bad:

// Returns a list of coffee machine builtin functions
GET /coffee-machines/{id}/functions

Word ‘function’ is many-valued. It could mean built-in functions, but also ‘a piece of
code’, or a state (machine is functioning).

Better: GET /v1/coffee-machines/{id}/builtin-functions-list

7. Matching entities must have matching names and behave alike

Bad: begin_transition / stop_transition
— begin and stop doesn't match; developers will have to dig into the docs.

Better: either begin_transition / end_transition or start_transition /
stop_transition.

Bad:

// Find the position of the first occurrence
// of a substring in a string
strpos(haystack, needle)

// Replace all occurrences
// of the search string with the replacement string
str_replace(needle, replace, haystack)

Several rules are violated:

inconsistent underscore using;
functionally close methods have different needle/haystack argument order;
first function finds the first occurrence while the second one finds them all, and
there is no way to deduce that fact out of the function signatures.

We're leaving the exercise of making these signatures better to the reader.

8. Use globally unique identifiers

It's considered good form to use globally unique strings as entity identifiers, either
semantic (i.e. "lungo" for beverage types) or random ones (i.e. UUID-4). It might turn
out to be extremely useful if you need to merge data from several sources under a
single identifier.

In general, we tend to advice using urn-like identifiers, e.g. urn:order:<uuid> (or
just order:<uuid>). That helps a lot in dealing with legacy systems with different
identifiers attached to the same entity. Namespaces in urns help to understand quickly
which identifier is used and is there a usage mistake.

One important implication: never use increasing numbers as external identifiers.
Apart from the abovementioned reasons, it allows counting how many entities of each
type there are in the system. Your competitors will be able to calculate a precise
number of orders you have each day, for example.

NB: in this book, we often use short identifiers like "123" in code examples; that's for
reading the book on small screens convenience. Do not replicate this practice in a real-
world API.

9. System state must be observable by clients

This rule could be reformulated as ‘don't make clients guess’.

Bad:

// Creates an order and returns its id
POST /v1/orders
{ … }
→
{ "order_id" }

// Returns an order by its id
GET /v1/orders/{id}
// The order isn't confirmed
// and awaits checking
→ 404 Not Found

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

— though the operation looks to be executed successfully, the client must store order
id and recurrently check GET /v1/orders/{id} state. This pattern is bad per se, but
gets even worse when we consider two cases:

clients might lose the id, if system failure happened in between sending the
request and getting the response, or if app data storage was damaged or cleansed;
customers can't use another device; in fact, the knowledge of orders being created
is bound to a specific user agent.

In both cases, customers might consider order creating failed, and make a duplicate
order, with all the consequences to be blamed on you.

Better:

// Creates an order and returns it
POST /v1/orders
{ <order parameters> }
→
{
 "order_id",
 // The order is created in explicit
 // «checking» status
 "status": "checking",
 …
}

// Returns an order by its id
GET /v1/orders/{id}
→
{ "order_id", "status" … }

// Returns all customer's orders
// in all statuses
GET /v1/users/{id}/orders

10. Avoid double negations

Bad: "dont_call_me": false
— humans are bad at perceiving double negation; make mistakes.

Better: "prohibit_calling": true or "avoid_calling": true
— it's easier to read, though you shouldn't deceive yourself. Avoid semantical double
negations, even if you've found a ‘negative’ word without ‘negative’ prefix.

Also worth mentioning, that making mistakes in de Morgan's laws usage is even
simpler. For example, if you have two flags:

GET /coffee-machines/{id}/stocks
→
{
 "has_beans": true,
 "has_cup": true
}

‘Coffee might be prepared’ condition would look like has_beans && has_cup —
both flags must be true. However, if you provide the negations of both flags:

{
 "beans_absence": false,
 "cup_absence": false
}

— then developers will have to evaluate one of
!beans_absence && !cup_absence ⇔ !(beans_absence || cup_absence)
conditions, and in this transition people tend to make mistakes. Avoiding double
negations helps little, and regretfully only general advice could be given: avoid the
situations when developers have to evaluate such flags.

11. Avoid implicit type conversion

This advice is opposite to the previous one, ironically. When developing APIs you
frequently need to add a new optional field with a non-empty default value. For
example:

https://en.wikipedia.org/wiki/De_Morgan's_laws

POST /v1/orders
{}
→
{
 "contactless_delivery": true
}

This new contactless_delivery option isn't required, but its default value is
true. A question arises: how developers should discern explicit intention to abolish
the option (false) from knowing not it exists (field isn't set). They have to write
something like:

if (Type(order.contactless_delivery) == 'Boolean' &&
 order.contactless_delivery == false) { … }

This practice makes the code more complicated, and it's quite easy to make mistakes,
which will effectively treat the field in a quite opposite manner. The same could
happen if some special values (i.e. null or -1) to denote value absence are used.

The universal rule to deal with such situations is to make all new Boolean flags being
false by default.

Better

POST /v1/orders
{}
→
{
 "force_contact_delivery": false
}

If a non-Boolean field with specially treated value absence is to be introduced, then
introduce two fields.

Bad:

// Creates a user
POST /users
{ … }
→
// Users are created with a monthly
// spending limit set by default
{
 …
 "spending_monthly_limit_usd": "100"
}
// To cancel the limit null value is used
POST /users
{
 …
 "spending_monthly_limit_usd": null
}

Better

POST /users
{
 // true — user explicitly cancels
 // monthly spending limit
 // false — limit isn't canceled
 // (default value)
 "abolish_spending_limit": false,
 // Non-required field
 // Only present if the previous flag
 // is set to false
 "spending_monthly_limit_usd": "100",
 …
}

NB: the contradiction with the previous rule lies in the necessity of introducing
‘negative’ flags (the ‘no limit’ flag), which we had to rename to
abolish_spending_limit. Though it's a decent name for a negative flag, its
semantics is still unobvious, and developers will have to read the docs. That's the way.

12. Avoid implicit partial updates

Bad:

// Return the order state
// by its id
GET /v1/orders/123
→
{
 "order_id",
 "delivery_address",
 "client_phone_number",
 "client_phone_number_ext",
 "updated_at"
}
// Partially rewrites the order
PATCH /v1/orders/123
{ "delivery_address" }
→
{ "delivery_address" }

— this approach is usually chosen to lessen request and response body sizes, plus it
allows to implement collaborative editing cheaply. Both these advantages are
imaginary.

First, sparing bytes on semantic data is seldom needed in modern apps. Network
packets sizes (MTU, Maximum Transmission Unit) are more than a kilobyte right now;
shortening responses is useless while they're less than a kilobyte.

Excessive network traffic usually occurs if:

no data pagination is provided;
no limits on field values are set;
binary data is transmitted (graphics, audio, video, etc.)

Transferring only a subset of fields solves none of these problems, in the best case just
masks them. A more viable approach comprises:

making separate endpoints for ‘heavy’ data;
introducing pagination and field value length limits;

stopping saving bytes in all other cases.

Second, shortening response sizes will backfire exactly with spoiling collaborative
editing: one client won't see the changes the other client has made. Generally
speaking, in 9 cases out of 10, it is better to return a full entity state from any
modifying operation, sharing the format with the read-access endpoint. Actually, you
should always do this unless response size affects performance.

In third, this approach might work if you need to rewrite a field's value. But how to
unset the field, return its value to the default state? For example, how to remove
client_phone_number_ext?

In such cases, special values are often being used, like null. But as we discussed
above, this is a defective practice. Another variant is prohibiting non-required fields,
but that would pose considerable obstacles in a way of expanding the API.

Better: one of the following two strategies might be used.

Option #1: splitting the endpoints. Editable fields are grouped and taken out as
separate endpoints. This approach also matches well against the decomposition
principle we discussed in the previous chapter.

// Return the order state
// by its id
GET /v1/orders/123
→
{
 "order_id",
 "delivery_details": {
 "address"
 },
 "client_details": {
 "phone_number",
 "phone_number_ext"
 },
 "updated_at"
}
// Fully rewrite order delivery options
PUT /v1/orders/123/delivery-details
{ "address" }
// Fully rewrite order customer data
PUT /v1/orders/123/client-details
{ "phone_number" }

Omitting client_phone_number_ext in PUT client-details request would be
sufficient to remove it. This approach also helps to separate constant and calculated
fields (order_id and updated_at) from editable ones, thus getting rid of ambiguous
situations (what happens if a client tries to rewrite the updated_at field?). You may
also return the entire order entity from PUT endpoints (however, there should be
some naming convention for that).

Option 2: design a format for atomic changes.

POST /v1/order/changes
X-Idempotency-Token: <see next paragraph>
{
 "changes": [{
 "type": "set",
 "field": "delivery_address",
 "value": <new value>
 }, {
 "type": "unset",
 "field": "client_phone_number_ext"
 }]
}

This approach is much harder to implement, but it's the only viable method to
implement collaborative editing, since it explicitly reflects what a user was actually
doing with entity representation. With data exposed in such a format, you might
actually implement offline editing, when user changes are accumulated and then sent
at once, while the server automatically resolves conflicts by ‘rebasing’ the changes.

13. All API operations must be idempotent

Let us recall that idempotency is the following property: repeated calls to the same
function with the same parameters don't change the resource state. Since we're
discussing client-server interaction in the first place, repeating requests in case of
network failure isn't an exception, but a norm of life.

If the endpoint's idempotency can't be assured naturally, explicit idempotency
parameters must be added, in a form of either a token or a resource version.

Bad:

// Creates an order
POST /orders

The second order will be produced if the request is repeated!

Better:

// Creates an order
POST /v1/orders
X-Idempotency-Token: <random string>

A client on its side must retain X-Idempotency-Token in case of automated
endpoint retrying. A server on its side must check whether an order created with this
token exists.

An alternative:

// Creates order draft
POST /v1/orders/drafts
→
{ "draft_id" }

// Confirms the draft
PUT /v1/orders/drafts/{draft_id}
{ "confirmed": true }

Creating order drafts is a non-binding operation since it doesn't entail any
consequences, so it's fine to create drafts without the idempotency token.

Confirming drafts is a naturally idempotent operation, with draft_id being its
idempotency key.

Also worth mentioning that adding idempotency tokens to naturally idempotent
handlers isn't meaningless either, since it allows to distinguish two situations:

a client didn't get the response because of some network issues, and is now
repeating the request;
a client's mistaken, trying to make conflicting changes.

Consider the following example: imagine there is a shared resource, characterized by a
revision number, and a client tries updating it.

POST /resource/updates
{
 "resource_revision": 123
 "updates"
}

The server retrieves the actual resource revision and finds it to be 124. How to respond
correctly? 409 Conflict might be returned, but then the client will be forced to
understand the nature of the conflict and somehow resolve it, potentially confusing the
user. It's also unwise to fragment the conflict resolving algorithm, allowing each client
to implement it independently.

The server may compare request bodies, assuming that identical updates values mean
retrying, but this assumption might be dangerously wrong (for example if the resource
is a counter of some kind, then repeating identical requests are routine).

Adding idempotency token (either directly as a random string, or indirectly in a form of
drafts) solves this problem.

POST /resource/updates
X-Idempotency-Token: <token>
{
 "resource_revision": 123
 "updates"
}
→ 201 Created

— the server found out that the same token was used in creating revision 124, which
means the client is retrying the request.

Or:

POST /resource/updates
X-Idempotency-Token: <token>
{
 "resource_revision": 123
 "updates"
}
→ 409 Conflict

— the server found out that a different token was used in creating revision 124, which
means an access conflict.

Furthermore, adding idempotency tokens not only resolves the issue but also makes
advanced optimizations possible. If the server detects an access conflict, it could try to
resolve it, ‘rebasing’ the update like modern version control systems do, and return
200 OK instead of 409 Conflict. This logic dramatically improves user experience,
being fully backwards compatible, and helps to avoid conflict resolving code
fragmentation.

Also, be warned: clients are bad at implementing idempotency tokens. Two problems
are common:

you can't really expect that clients generate truly random tokens — they may
share the same seed or simply use weak algorithms or entropy sources; therefore
you must put constraints on token checking: token must be unique to specific user
and resource, not globally;
clients tend to misunderstand the concept and either generate new tokens each
time they repeat the request (which deteriorates the UX, but otherwise healthy) or
conversely use one token in several requests (not healthy at all and could lead to
catastrophic disasters; another reason to implement the suggestion in the
previous clause); writing detailed doc and/or client library is highly recommended.

14. Avoid non-atomic operations

There is a common problem with implementing the changes list approach: what to do
if some changes were successfully applied, while others are not? The rule is simple: if
you may ensure the atomicity (e.g. either apply all changes or none of them) — do it.

Bad:

// Returns a list of recipes
GET /v1/recipes
→
{
 "recipes": [{
 "id": "lungo",
 "volume": "200ml"
 }, {
 "id": "latte",
 "volume": "300ml"
 }]
}
// Changes recipes' parameters
PATCH /v1/recipes
{
 "changes": [{
 "id": "lungo",
 "volume": "300ml"
 }, {
 "id": "latte",
 "volume": "-1ml"
 }]
}
→ 400 Bad Request
// Re-reading the list
GET /v1/recipes
→
{
 "recipes": [{
 "id": "lungo",
 // This value changed
 "volume": "300ml"
 }, {
 "id": "latte",
 // and this did not
 "volume": "300ml"
 }]
}

— there is no way how the client might learn that failed operation was actually
partially applied. Even if there is an indication of this fact in the response, the client
still cannot tell, whether lungo volume changed because of the request, or some other
client changed it.

If you can't guarantee the atomicity of an operation, you should elaborate in detail on
how to deal with it. There must be a separate status for each individual change.

Better:

PATCH /v1/recipes
{
 "changes": [{
 "recipe_id": "lungo",
 "volume": "300ml"
 }, {
 "recipe_id": "latte",
 "volume": "-1ml"
 }]
}
// You may actually return
// a ‘partial success’ status
// if the protocol allows it
→ 200 OK
{
 "changes": [{
 "change_id",
 "occurred_at",
 "recipe_id": "lungo",
 "status": "success"
 }, {
 "change_id",
 "occurred_at",
 "recipe_id": "latte",
 "status": "fail",
 "error"
 }]
}

Here:

change_id is a unique identifier of each atomic change;
occurred_at is a moment of time when the change was actually applied;
error field contains the error data related to the specific change.

Might be of use:

introducing sequence_id parameters in the request to guarantee execution
order and to align item order in response with the requested one;
expose a separate /changes-history endpoint for clients to get the history of
applied changes even if the app crashed while getting partial success response or
there was a network timeout.

Non-atomic changes are undesirable because they erode the idempotency concept.
Let's take a look at the example:

PATCH /v1/recipes
{
 "idempotency_token",
 "changes": [{
 "recipe_id": "lungo",
 "volume": "300ml"
 }, {
 "recipe_id": "latte",
 "volume": "400ml"
 }]
}
→ 200 OK
{
 "changes": [{
 …
 "status": "success"
 }, {
 …
 "status": "fail",
 "error": {
 "reason": "too_many_requests"
 }
 }]
}

Imagine the client failed to get a response because of a network error, and it repeats
the request:

PATCH /v1/recipes
{
 "idempotency_token",
 "changes": [{
 "recipe_id": "lungo",
 "volume": "300ml"
 }, {
 "recipe_id": "latte",
 "volume": "400ml"
 }]
}
→ 200 OK
{
 "changes": [{
 …
 "status": "success"
 }, {
 …
 "status": "success",
 }]
}

To the client, everything looks normal: changes were applied, and the last response got
is always actual. But the resource state after the first request was inherently different
from the resource state after the second one, which contradicts the very definition of
‘idempotency’.

It would be more correct if the server did nothing upon getting the second request with
the same idempotency token, and returned the same status list breakdown. But it
implies that storing these breakdowns must be implemented.

Just in case: nested operations must be idempotent themselves. If they are not,
separate idempotency tokens must be generated for each nested operation.

15. Specify caching policies

Client-server interaction usually implies that network and server resources are limited,
therefore caching operation results on client devices is standard practice.

So it's highly desirable to make caching options clear, if not from functions' signatures
then at least from docs.

Bad:

// Returns lungo price in cafes
// closest to the specified location
GET /price?recipe=lungo
 &longitude={longitude}&latitude={latitude}
→
{ "currency_code", "price" }

Two questions arise:

until when the price is valid?
in what vicinity of the location the price is valid?

Better: you may use standard protocol capabilities to denote cache options, like
Cache-Control header. If you need caching in both temporal and spatial dimensions,
you should do something like that:

// Returns an offer: for what money sum
// our service commits to make a lungo
GET /price?recipe=lungo
 &longitude={longitude}&latitude={latitude}
→
{
 "offer": {
 "id",
 "currency_code",
 "price",
 "conditions": {
 // Until when the price is valid
 "valid_until",
 // What vicinity the price is valid within
 // * city
 // * geographical object
 // * …
 "valid_within"
 }
 }
}

16. Pagination, filtration, and cursors

Any endpoints returning data collections must be paginated. No exclusions exist.

Any paginated endpoint must provide an interface to iterate over all the data.

Bad:

// Returns a limited number of records
// sorted by creation date
// starting with a record with an index
// equals to `offset`
GET /v1/records?limit=10&offset=100

At the first glance, this is the most standard way of organizing the pagination in APIs.
But let's ask some questions to ourselves.

1. How clients could learn about new records being added at the beginning of the
list? Obviously, a client could only retry the initial request (offset=0) and
compare identifiers to those it already knows. But what if the number of new
records exceeds the limit? Imagine the situation:

the client process records sequentially;
some problem occurred, and a batch of new records awaits processing;
the client requests new records (offset=0) but can't find any known records
on the first page;
the client continues iterating over records page by page until it finds the last
known identifier; all this time the order processing is idle;
the client might never start processing, being preoccupied with chaotic page
requests to restore records sequence.

2. What happens if some record is deleted from the head of the list?
Easy: the client will miss one record and will never learn this.

3. What cache parameters to set for this endpoint?
None could be set: repeating the request with the same limit and offset each
time produces new records set.

Better: in such unidirectional lists the pagination must use that key which implies the
order. Like this:

// Returns a limited number of records
// sorted by creation date
// starting with a record with an identifier
// following the specified one
GET /v1/records?older_than={record_id}&limit=10
// Returns a limited number of records
// sorted by creation date
// starting with a record with an identifier
// preceding the specified one
GET /v1/records?newer_than={record_id}&limit=10

With the pagination organized like that, clients never bother about records being
added or removed in the processed part of the list: they continue to iterate over the
records, either getting new ones (using newer_than) or older ones (using
older_than). If there is no record removal operation, clients may easily cache

responses — the URL will always return the same recordset.

Another way to organize such lists is returning a cursor to be used instead of
record_id, making interfaces more versatile.

// Initial data request
POST /v1/records/list
{
 // Some additional filtering options
 "filter": {
 "category": "some_category",
 "created_date": {
 "older_than": "2020-12-07"
 }
 }
}
→
{
 "cursor"
}

// Follow-up requests
GET /v1/records?cursor=<cursor value>
{ "records", "cursor" }

One advantage of this approach is the possibility to keep initial request parameters
(i.e. filter in our example) embedded into the cursor itself, thus not copying them in
follow-up requests. It might be especially actual if the initial request prepares the full
dataset, for example, moving it from the ‘cold’ storage to a ‘hot’ one (then cursor
might simply contain the encoded dataset id and the offset).

There are several approaches to implementing cursors (for example, making a single
endpoint for initial and follow-up requests, returning the first data portion in the first
response). As usual, the crucial part is maintaining consistency across all such
endpoints.

NB: some sources discourage this approach because in this case user can't see a list of
all pages and can't choose an arbitrary one. We should note here that:

such a case (pages list and page selection) exists if we deal with user interfaces; we
could hardly imagine a program interface which needs to provide access to random
data pages;
if we still talk about an API to some application, which has a ‘paging’ user control,
then a proper approach would be to prepare ‘paging’ data on the server side,
including generating links to pages;
cursor-based solution doesn't prohibit using offset/limit; nothing could stop
us from creating a dual interface, which might serve both
GET /items?cursor=… and GET /items?offset=…&limit=… requests;
finally, if there is a necessity to provide access to arbitrary pages in the user
interface, we should ask ourselves a question, which problem is being solved that
way; probably, users use this functionality to find something: a specific element
on the list, or the position they ended while working with the list last time;
probably, we should provide more convenient controls to solve those tasks than
accessing data pages by their indexes.

Bad:

Sorting by the date of modification usually means that data might be modified. In other
words, some records might change after the first data chunk is returned, but before the
next chunk is requested. Modified records will simply disappear from the listing
because of moving to the first page. Clients will never get those records that were
changed during the iteration process, even if the cursor scheme is implemented, and
they never learn the sheer fact of such an omission. Also, this particular interface isn't
extendable as there is no way to add sorting by two or more fields.

Better: there is no general solution to this problem in this formulation. Listing records
by modification time will always be unpredictably volatile, so we have to change the
approach itself; we have two options.

Option one: fix the record order at the moment we've got the initial request, e.g. our
server produces the entire list and stores it in the immutable form:

// Returns a limited number of records
// sorted by a specified field in a specified order
// starting with a record with an index
// equals to `offset`
GET /records?sort_by=date_modified&sort_order=desc&limit=10&offset=100

// Creates a view based on the parameters passed
POST /v1/record-views
{
 sort_by: [
 { "field": "date_modified", "order": "desc" }
]
}
→
{ "id", "cursor" }

// Returns a portion of the view
GET /v1/record-views/{id}?cursor={cursor}

Since the produced view is immutable, access to it might be organized in any form,
including a limit-offset scheme, cursors, Range header, etc. However, there is a
downside: records modified after the view was generated will be misplaced or outdated.

Option two: guarantee a strict records order, for example, by introducing a concept of
record change events:

POST /v1/records/modified/list
{
 // Optional
 "cursor"
}
→
{
 "modified": [
 { "date", "record_id" }
],
 "cursor"
}

This scheme's downsides are the necessity to create separate indexed event storage,
and the multiplication of data items, since for a single record many events might exist.

17. Errors must be informative

While writing the code developers face problems, many of them quite trivial, like
invalid parameter type or some boundary violation. The more convenient are error
responses your API return, the fewer is the time developers waste in struggling with it,
and the more comfortable is working with the API.

Bad:

POST /v1/coffee-machines/search
{
 "recipes": ["lngo"],
 "position": {
 "latitude": 110,
 "longitude": 55
 }
}
→ 400 Bad Request
{}

— of course, the mistakes (typo in "lngo" and wrong coordinates) are obvious. But the
handler checks them anyway, why not return readable descriptions?

Better:

It is also a good practice to return all detectable errors at once to spare developers'
time.

18. Maintain a proper error sequence

First, always return unresolvable errors before the resolvable ones:

{
 "reason": "wrong_parameter_value",
 "localized_message":
 "Something is wrong. Contact the developer of the app."
 "details": {
 "checks_failed": [
 {
 "field": "recipe",
 "error_type": "wrong_value",
 "message":
 "Unknown value: 'lngo'. Did you mean 'lungo'?"
 },
 {
 "field": "position.latitude",
 "error_type": "constraint_violation",
 "constraints": {
 "min": -90,
 "max": 90
 },
 "message":
 "'position.latitude' value must fall within [-90, 90] interv
 }
]
 }
}

POST /v1/orders
{
 "recipe": "lngo",
 "offer"
}
→ 409 Conflict
{
 "reason": "offer_expired"
}
// Request repeats
// with the renewed offer
POST /v1/orders
{
 "recipe": "lngo",
 "offer"
}
→ 400 Bad Request
{
 "reason": "recipe_unknown"
}

— what was the point of renewing the offer if the order cannot be created anyway?

Second, maintain such a sequence of unresolvable errors which leads to a minimal
amount of customers' and developers' irritation.

Bad:

POST /v1/orders
{
 "items": [{ "item_id": "123", "price": "0.10" }]
}
→
409 Conflict
{
 "reason": "price_changed",
 "details": [{ "item_id": "123", "actual_price": "0.20" }]
}
// Request repeats
// with an actual price
POST /v1/orders
{
 "items": [{ "item_id": "123", "price": "0.20" }]
}
→
409 Conflict
{
 "reason": "order_limit_exceeded",
 "localized_message": "Order limit exceeded"
}

— what was the point of showing the price changed dialog, if the user still can't make
an order, even if the price is right? When one of the concurrent orders finishes, and the
user is able to commit another one, prices, items availability, and other order
parameters will likely need another correction.

In third, draw a chart: which error resolution might lead to the emergence of another
one. Otherwise, you might eventually return the same error several times, or worse,
make a cycle of errors.

// Create an order
// with a payed delivery
POST /v1/orders
{
 "items": 3,
 "item_price": "3000.00"
 "currency_code": "MNT",
 "delivery_fee": "1000.00",
 "total": "10000.00"
}
→ 409 Conflict
// Error: if the order sum
// is more than 9000 tögrögs,
// delivery must be free
{
 "reason": "delivery_is_free"
}
// Create an order
// with a free delivery
POST /v1/orders
{
 "items": 3,
 "item_price": "3000.00"
 "currency_code": "MNT",
 "delivery_fee": "0.00",
 "total": "9000.00"
}
→ 409 Conflict
// Error: minimal order sum
// is 10000 tögrögs
{
 "reason": "below_minimal_sum",
 "currency_code": "MNT",
 "minimal_sum": "10000.00"
}

You may note that in this setup the error can't be resolved in one step: this situation
must be elaborated over, and either order calculation parameters must be changed
(discounts should not be counted against the minimal order sum), or a special type of
error must be introduced.

19. No results is a result

If a server processed a request correctly and no exceptional situation occurred — there
must be no error. Regretfully, an antipattern is widespread — of throwing errors when
zero results are found.

Bad

POST /search
{
 "query": "lungo",
 "location": <customer's location>
}
→ 404 Not Found
{
 "localized_message":
 "No one makes lungo nearby"
}

4xx statuses imply that a client made a mistake. But no mistakes were made by either a
customer or a developer: a client cannot know whether the lungo is served in this
location beforehand.

Better:

POST /search
{
 "query": "lungo",
 "location": <customer's location>
}
→ 200 OK
{
 "results": []
}

This rule might be reduced to: if an array is the result of the operation, then the
emptiness of that array is not a mistake, but a correct response. (Of course, if an empty
array is acceptable semantically; an empty array of coordinates is a mistake for sure.)

20. Localization and internationalization

All endpoints must accept language parameters (for example, in a form of the
Accept-Language header), even if they are not being used currently.

It is important to understand that the user's language and the user's jurisdiction are
different things. Your API working cycle must always store the user's location. It might
be stated either explicitly (requests contain geographical coordinates) or implicitly
(initial location-bound request initiates session creation which stores the location),
but no correct localization is possible in absence of location data. In most cases
reducing the location to just a country code is enough.

The thing is that lots of parameters potentially affecting data formats depend not on
language, but user location. To name a few: number formatting (integer and fractional
part delimiter, digit groups delimiter), date formatting, the first day of the week,
keyboard layout, measurement units system (which might be non-decimal!), etc. In
some situations, you need to store two locations: user residence location and user
‘viewport’. For example, if the US citizen is planning a European trip, it's convenient to
show prices in local currency, but measure distances in miles and feet.

Sometimes explicit location passing is not enough since there are lots of territorial
conflicts in a world. How the API should behave when user coordinates lie within
disputed regions is a legal matter, regretfully. The author of this book once had to
implement a ‘state A territory according to state B official position’ concept.

Important: mark a difference between localization for end users and localization for
developers. Take a look at the example in rule #19: localized_message is meant for
the user; the app should show it if there is no specific handler for this error exists in
code. This message must be written in the user's language and formatted according to
the user's location. But details.checks_failed[].message is meant to be read
by developers examining the problem. So it must be written and formatted in a manner
that suits developers best. In a software development world, it usually means ‘in
English’.

Worth mentioning is that localized_ prefix in the example is used to differentiate
messages to users from messages to developers. A concept like that must be, of course,
explicitly stated in your API docs.

And one more thing: all strings must be UTF-8, no exclusions.

Chapter 12. Annex to Section I. Generic API Example

Let's summarize the current state of our API study.

1. Offer search

POST /v1/offers/search
{
 // optional
 "recipes": ["lungo", "americano"],
 "position": <geographical coordinates>,
 "sort_by": [
 { "field": "distance" }
],
 "limit": 10
}
→
{
 "results": [{
 // Place data
 "place": { "name", "location" },
 // Coffee machine properties
 "coffee-machine": { "id", "brand", "type" },
 // Route data
 "route": { "distance", "duration", "location_tip" },
 "offers": {
 // Recipe data
 "recipe": { "id", "name", "description" },
 // Recipe specific options
 "options": { "volume" },
 // Offer metadata
 "offer": { "id", "valid_until" },
 // Pricing
 "pricing": { "currency_code", "price", "localized_price" },
 "estimated_waiting_time"
 }
 }, …],
 "cursor"
}

2. Working with recipes

// Returns a list of recipes
// Cursor parameter is optional
GET /v1/recipes?cursor=<cursor>
→
{ "recipes", "cursor" }

// Returns the recipe by its id
GET /v1/recipes/{id}
→
{ "recipe_id", "name", "description" }

3. Working with orders

// Creates an order
POST /v1/orders
{
 "coffee_machine_id",
 "currency_code",
 "price",
 "recipe": "lungo",
 // Optional
 "offer_id",
 // Optional
 "volume": "800ml"
}
→
{ "order_id" }

// Returns the order by its id
GET /v1/orders/{id}
→
{ "order_id", "status" }

// Cancels the order
POST /v1/orders/{id}/cancel

4. Working with programs

// Returns an identifier of the program
// corresponding to specific recipe
// on specific coffee-machine
POST /v1/program-matcher
{ "recipe", "coffee-machine" }
→
{ "program_id" }

// Return program description
// by its id
GET /v1/programs/{id}
→
{
 "program_id",
 "api_type",
 "commands": [
 {
 "sequence_id",
 "type": "set_cup",
 "parameters"
 },
 …
]
}

5. Running programs

// Runs the specified program
// on the specified coffee-machine
// with specific parameters
POST /v1/programs/{id}/run
{
 "order_id",
 "coffee_machine_id",
 "parameters": [
 {
 "name": "volume",
 "value": "800ml"
 }
]
}
→
{ "program_run_id" }

// Stops program running
POST /v1/runs/{id}/cancel

6. Managing runtimes

// Creates a new runtime
POST /v1/runtimes
{ "coffee_machine_id", "program_id", "parameters" }
→
{ "runtime_id", "state" }

// Returns the state
// of the specified runtime
GET /v1/runtimes/{runtime_id}/state
{
 "status": "ready_waiting",
 // Command being currently executed
 // (optional)
 "command_sequence_id",
 "resolution": "success",
 "variables"
}

// Terminates the runtime
POST /v1/runtimes/{id}/terminate

SECTION II. BACKWARDS COMPATIBILITY

Chapter 13. The Backwards Compatibility Problem Statement

As usual, let's conceptually define ‘backwards compatibility’ before we start.

Backwards compatibility is a feature of the entire API system to be stable in time. It
means the following: the code which developers have written using your API,
continues working functionally correctly for a long period of time. There are two
important questions to this definition, and two explanations:

1. What does ‘functionally correctly’ mean?

It means that the code continues to serve its function, e.g. solve some users'
problem. It doesn't mean it continues working indistinguishably: for example, if
you're maintaining a UI library, changing functionally insignificant design details
like shadow depth or border stoke type is backwards compatible, whereas
changing visual components size is not.

2. What does ‘a long period of time’ mean?

From our point of view, backwards compatibility maintenance period should be
reconciled with subject area applications lifetime. Platform LTS periods are a
decent guidance in the most cases. Since apps will be rewritten anyway when the
platform maintenance period ends, it is reasonable to expect developers to move
to the new API version also. In mainstream subject areas (e.g. desktop and mobile
operating systems) this period lasts several years.

From the definition becomes obvious why backwards compatibility needs to be
maintained (including taking necessary measures at the API design stage). An outage,
full or partial, caused by the API vendor, is an extremely uncomfortable situation for
every developer, if not a disaster — especially if they pay money for the API usage.

But let's take a look at the problem from another angle: why the maintaining
backwards compatibility problem exists at all? Why would anyone want to break at?
This question, though it looks quite trivial, is much more complicated than the
previous one.

We could say the we break backwards compatibility to introduce new features to the API.
But that would be deceiving: new features are called ‘new’ just because they cannot
affect existing implementations which are not using them. We must admit there are
several associated problems, which lead to the aspiration to rewrite our code, the code
of the API itself, and ship new major version:

the code eventually becomes outdated; making changes, even introducing totally
new functionality, is impractical;

the old interfaces aren't suited to encompass new features; we would love to
extend existing entities with new properties, but simply couldn't;

finally, with years passing since the initial release, we understood more about the
subject area and API usage best practices, and we would implement many things
differently.

These arguments could be summarized frankly as ‘the API developers don't want to
support the old code’. But this explanation is still incomplete: even if you're not going
to rewrite the API code to add new functionality, or you're not going to add it at all, you
still have to ship new API versions, minor and major alike.

NB: in this chapter we don't make any difference between minor versions and patches:
‘minor version’ means any backwards compatible API release.

Let us remind that an API is a bridge, a meaning of connecting different programmable
contexts. No matter how strong our desire to keep the bridge intact is, for our
capabilities are limited: we could lock the bridge, but we cannot command the rifts and
the canyon itself. That's the source of the problems: we can't guarantee our own code
wouldn't change, so at some point we will have to ask the clients to change their code.

Apart from our own aspirations to change the API architecture, three other tectonic
processes are happening at the same time: user agents, subject areas, and underlying
platforms erosion.

Consumer applications fragmentation

When you shipped the very first API version, and first clients started to use it, the
situation was perfect. There was only one version, and all clients were using just it.
When this perfection ends, two scenarios are possible.

1. If the platform allows for fetching code on-demand, like the good old Web does,
and you weren't too lazy to implement that code-on-demand (in a form of a
platform SDK — for example, JS API), then the evolution of your API is more or
less under your control. Maintaining backwards compatibility effectively means
keeping the client library backwards compatible. As for client-server interaction,
you're free.

It doesn't mean that you can't break backwards compatibility. You still can make a
mess with cache control headers or just overlook a bug in the code. Besides, even
code-on-demand systems don't get updated instantly. The author of this book
faced the situation, when users were deliberately keeping a browser tab open for
weeks to get rid of updates. But still, you usually don't have to support more than
two API versions — the last one and the penultimate one. Furthermore, you may
try to rewrite previous major version of the library, implementing it upon the
actual version API.

2. If code-on-demand isn't supported or is prohibited by the platform, as in modern
mobile operating systems, then the situation becomes more severe. Each client
effectively borrows a snapshot of the code, working with your API, frozen at the
moment of compilation. Client application updates are scattered over time at
much more extent than Web application updates. The most painful thing is that
some clients will never be up to date, because of one of three reasons:

developers simply don't want to update the app, its development stopped;
users don't wont to get updates (sometimes because users think that
developers ‘spoiled’ the app in new versions);
users can't get updates because their devices are no longer supported.

In modern times these three categories combined could easily constitute tens of
percent of auditory. It implies that cutting the support of any API version might
be remarkable — especially if developers' apps continue supporting a more broad
spectrum of platforms than the API does.

You could have never issued any SDK, providing just the server-side API, for
example in a form of HTTP endpoints. You might think, given your API is less
competitive on the market because of a lack of SDKs, that the backwards
compatibility problem is mitigated. That's not true: if you don't provide an SDK,
then developers will either adopt an unofficial one (if someone bothers to make
it), or just write a framework of themselves — independently. ‘Your framework —
your problems’ strategy, fortunately or not, works badly: if developers write poor
quality code upon your API, then your API is of a poor quality itself. Definitely in

the view of developers, possibly in the view of end users, if the API performance
within the app is visible to them.

Certainly, if you provide a stateless API which doesn't need client SDKs (or they might
be auto-generated from the spec), those problems will be much less noticeable, but not
fully avoidable, unless you never issue any new API version. Otherwise you still had to
deal with some distribution of users by API and SDK versions.

Subject area evolution

The other side of the canyon is the underlying functionality you're exposing via the
API. It's, of course, not static and somehow evolves:

new functionality emerges;
older functionality shuts down;
interfaces change.

As usual, the API provides an abstraction to much more granular subject area. In case
of our coffee machine API example one might reasonably expect new models to pop up,
which are to be supported by the platform. New models tend to provide new APIs, and
it's hard to guarantee they might be included preserving the same high-level API. And
anyway, the code needs to be altered, which might lead to incompatibility, albeit
unintentional.

Let us also stress that low-level API vendors are not always as resolute regarding
maintaining backwards compatibility (actually, any software they provide) as (we hope
so) you are. You should be prepared that keeping your API in an operational state, e.g.
writing and supporting facades to the shifting subject area landscape, will be your
problem, and rather a sudden one.

Platform drift

Finally, there is a third side to a story — the ‘canyon’ you're crossing over with a bridge
of your API. Developers write code which is executed in some environment you can't
control, and it's evolving. New versions of operating system, browsers, protocols,
language SDKs emerge. New standards are being developed, new arrangements made,
some of them being backwards incompatible, and nothing could be done about that.

https://twirl.github.io/The-API-Book/docs/API.en.html#chapter-7

Older platform versions lead to the fragmentation, just like older apps versions do,
because developers (including the API developers) are struggling with supporting older
platforms, and users are struggling with platform updates — and often can't update at
all, since newer platform versions require newer devices.

The nastiest thing here is that not only incremental progress in a form of new
platforms and protocols demands changing the API, but also a vulgar fashion does.
Several years ago realistic 3d icons were popular, but since then the public taste
changed in a favor of flat and abstract ones. UI components developers had to follow
the fashion, rebuilding their libraries, either shipping new icons or replacing old ones.
Similarly, right now ‘night mode’ support is introduced everywhere, demanding
changes in a broad range of APIs.

Backwards compatibility policy

To summarize the above:

you will have to deploy new API versions because of apps, platforms, and subject
area evolution; different areas are evolving with different rate, but never a zero
one;
that will lead to fragmenting the API versions usage over different platforms and
apps;
you have to make decisions critically important to your API's sustainability in the
customers view.

Let's briefly describe these decisions and key factors of making them.

1. How often new major API versions should be developed?

That's primarily a product question. New major API version is to be released when
the critical mass of functionality is achieved — a critical mass of features which
couldn't be introduced in the previous API versions, or introducing them is too
expensive. On stable markets such a situation occurs once in several years,
usually. On emerging markets new API major versions might be shipped more
frequently, only depending on your capabilities of supporting the zoo of previous
versions. However, we should note that deploying a new version before the
previous one was stabilized (which commonly takes from several months up to a
year) is always a troubling sign to developers, meaning they're risking dealing with
the unfinished platform glitches permanently.

2. How many major versions should be supported at a time?

As for major versions, we gave theoretical advice earlier: ideally, the major API
version lifecycle should be a bit longer than the platform's one. In stable niches
like desktop operating systems it constitutes 5 to 10 years. In new and emerging
ones it is less, but still measures in years. Practically speaking you should look at
the size of auditory which continues using older versions.

3. How many minor versions (within one major version) should be supported at a
time?

As for minor versions, there are two options:

if you provide server-side APIs and compiled SDKs only, you may basically do
not expose minor versions at all, just the actual one: the server-side API is
totally within your control, and you may fix any problem efficiently;
if you provide code-on-demand SDKs, it is considered a good form to provide
an access to previous minor versions of SDK for a period of time sufficient
enough for developers to test their application and fix some issues if
necessary. Since full rewriting isn't necessary, it's fine to align with apps
release cycle duration in your industry, which is usually several months in
worst cases.

We will address these questions in more details in the next chapters. Additionally, in
the Section III we will also discuss, how to communicate to customers about new
versions releases and older versions support discontinuance, and how to stimulate
them to adopt new API versions.

Chapter 14. On the Iceberg's Waterline

Before we start talking about the extensible API design, we should discuss the hygienic
minimum. A huge number of problems would have never happened if API vendors had
paid more attention to marking their area of responsibility.

1. Provide a minimal amount of functionality

At any moment in its lifetime, your API is like an iceberg: it comprises an observable
(e.g. documented) part and a hidden one, undocumented. If the API is designed
properly, these two parts correspond to each other just like the above-water and under-
water parts of a real iceberg do, i.e. one to ten. Why so? Because of two obvious
reasons.

Computers exist to make complicated things easy, not vice versa. The code
developers write upon your API must describe a complicated problem's solution in
neat and straightforward sentences. If developers have to write more code than
the API itself comprises, then there is something rotten here. Probably, this API
simply isn't needed at all.

Revoking the API functionality causes losses. If you've promised to provide some
functionality, you will have to do so ‘forever’ (until this API version's maintenance
period is over). Pronouncing some functionality deprecated is a tricky thing,
potentially alienating your customers.

Rule #1 is the simplest: if some functionality might be withheld — then never expose
it. It might be reformulated like: every entity, every field, every public API method is a
product solution. There must be solid product reasons why some functionality is
exposed.

2. Avoid gray zones and ambiguities

Your obligations to maintain some functionality must be stated as clearly as possible.
Especially regarding those environments and platforms where no native capability to
restrict access to undocumented functionality exists. Unfortunately, developers tend to
consider some private features they found to be eligible for use, thus presuming the

API vendor shall maintain them intact. Policy on such ‘findings’ must be articulated
explicitly. At the very least, in case of such non-authorized usage of undocumented
functionality, you might refer to the docs, and be in your own rights in the eyes of the
community.

However, API developers often legitimize such gray zones themselves, for example, by:

returning undocumented fields in endpoints' responses;
using private functionality in code examples — in the docs, responding to support
messages, in conference talks, etc.

One cannot make a partial commitment. Either you guarantee this code will always
work or do not slip a slightest note such functionality exists.

3. Codify implicit agreements

The third principle is much less obvious. Pay close attention to the code which you're
suggesting developers to develop: are there any conventions that you consider evident,
but never wrote them down?

Example #1. Let's take a look at this order processing SDK example:

// Creates an order
let order = api.createOrder();
// Returns the order status
let status = api.getStatus(order.id);

Let's imagine that you're struggling with scaling your service, and at some point moved
to the asynchronous replication of the database. This would lead to the situation when
querying for the order status right after order creating might return 404 if an
asynchronous replica hasn't got the update yet. In fact, thus we abandon strict
consistency policy in a favor of an eventual one.

What would be the result? The code above will stop working. A developer creates an
order, tries to get its status — but gets the error. It's very hard to predict what approach
developers would implement to tackle this error. Probably, none at all.

https://en.wikipedia.org/wiki/Consistency_model

You may say something like, ‘But we've never promised the strict consistency in the
first place’ — and that is obviously not true. You may say that if, and only if, you have
really described the eventual consistency in the createOrder docs, and all your SDK
examples look like:

let order = api.createOrder();
let status;
while (true) {
 try {
 status = api.getStatus(order.id);
 } catch (e) {
 if (e.httpStatusCode != 404 || timeoutExceeded()) {
 break;
 }
 }
}
if (status) {
 …
}

We presume we may skip the explanations why such code must never be written under
any circumstances. If you're really providing a non-strictly consistent API, then either
createOrder operation must be asynchronous and return the result when all replicas
are synchronized, or the retry policy must be hidden inside getStatus operation
implementation.

If you failed to describe the eventual consistency in the first place, then you simply
can't make these changes in the API. You will effectively break backwards
compatibility, which will lead to huge problems with your customers' apps, intensified
by the fact they can't be simply reproduced.

Example #2. Take a look at the following code:

let resolve;
let promise = new Promise(
 function (innerResolve) {
 resolve = innerResolve;
 }
);
resolve();

This code presumes that the callback function passed to new Promise will be
executed synchronously, and the resolve variable will be initialized before the
resolve() function is called. But this assumption is based on nothing: there are no
clues indicating that new Promise constructor executes the callback function
synchronously.

Of course, the developers of the language standard can afford such tricks; but you as an
API developer cannot. You must at least document this behavior and make the
signatures point to it; actually, good advice is to avoid such conventions, since they are
simply unobvious while reading the code. And of course, under no circumstances you
can actually change this behavior to an asynchronous one.

Example #3. Imagine you're providing animations API, which includes two
independent functions:

// Animates object's width,
// beginning with first value, ending with second
// in a specified time period
object.animateWidth('100px', '500px', '1s');
// Observes object's width changes
object.observe('widthchange', observerFunction);

A question arises: how frequently and at what time fractions the observerFunction
will be called? Let's assume in the first SDK version we emulated step-by-step
animation at 10 frames per second: then observerFunction will be called 10 times,
getting values '140px', '180px', etc., up to '500px'. But then in a new API version, we
switched to implementing both functions atop of a system's native functionality — and
so you simply don't know, when and how frequently the observerFunction will be
called.

Just changing call frequency might result in making some code dysfunctional — for
example, if the callback function makes some complex calculations, and no throttling
is implemented since the developer just relied on your SDK's built-in throttling. And if
the observerFunction ceases to be called when exactly '500px' is reached because of
some system algorithms specifics, some code will be broken beyond any doubt.

In this example, you should document the concrete contract (how often the observer
function is called) and stick to it even if the underlying technology is changed.

Example #4. Imagine that customer orders are passing through a specific pipeline:

GET /v1/orders/{id}/events/history
→
{
 "event_history": [
 {
 "iso_datetime": "2020-12-29T00:35:00+03:00",
 "new_status": "created"
 },
 {
 "iso_datetime": "2020-12-29T00:35:10+03:00",
 "new_status": "payment_approved"
 },
 {
 "iso_datetime": "2020-12-29T00:35:20+03:00",
 "new_status": "preparing_started"
 },
 {
 "iso_datetime": "2020-12-29T00:35:30+03:00",
 "new_status": "ready"
 }
]
}

Suppose at some moment we decided to allow trustworthy clients to get their coffee in
advance before the payment is confirmed. So an order will jump straight to
"preparing_started", or event "ready", without a "payment_approved" event being
emitted. It might appear to you that this modification is backwards compatible since
you've never really promised any specific event order being maintained, but it is not.

Let's assume that a developer (probably, your company's business partner) wrote some
code implementing some valuable business procedure, for example, gathering income
and expenses analytics. It's quite logical to expect this code operates a state machine,
which switches from one state to another depending on getting (or getting not) specific
events. This analytical code will be broken if the event order changes. In the best-case
scenario, a developer will get some exceptions and have to cope with the error's cause;
worst-case, partners will operate wrong statistics for an indefinite period of time until
they find a mistake.

A proper decision would be, in first, documenting the event order and allowed states;
in second, continuing generating "payment_approved" event before "preparing_started"
(since you're making a decision to prepare that order, so you're in fact approving the
payment) and add extended payment information.

This example leads us to the last rule.

4. Product logic must be backwards compatible as well

State transition graph, event order, possible causes of status changes — such critical
things must be documented. Not every piece of business logic might be defined in a
form of a programmatical contract; some cannot be represented at all.

Imagine that one day you start to take phone calls. A client may contact the call center
to cancel an order. You might even make this functionality technically backwards
compatible, introducing new fields to the ‘order’ entity. But the end-user might simply
know the number, and call it even if the app wasn't suggesting anything like that.
Partner's business analytical code might be broken likewise, or start displaying weather
on Mars since it was written knowing nothing about the possibility of canceling orders
somehow in circumvention of the partner's systems.

Technically correct decision would be adding ‘canceling via call center allowed’
parameter to the order creation function. Conversely, call center operators may only
cancel those orders which were created with this flag set. But that would be a bad
decision from a product point of view. The only ‘good’ decision in this situation is to
foresee the possibility of external order cancels in the first place. If you haven't
foreseen it, your only option is the ‘Serenity Notepad’ to be discussed in the last
chapter of this Section.

Chapter 15. Extending through Abstracting

In previous chapters, we have tried to outline theoretical rules and illustrate them with
practical examples. However, understanding the principles of change-proof API design
requires practice above all things. An ability to anticipate future growth problems
comes from a handful of grave mistakes once made. One cannot foresee everything but
can develop certain technical intuition.

So in the following chapters, we will try to probe our study API from the previous
Section, testing its robustness from every possible viewpoint, thus carrying out some
‘variational analysis’ of our interfaces. More specifically, we will apply a ‘What If?’
question to every entity, as if we are to provide a possibility to write an alternate
implementation of every piece of logic.

NB. In our examples, the interfaces will be constructed in a manner allowing for
dynamic real-time linking of different entities. In practice, such integrations usually
imply writing an ad hoc server-side code in accordance with specific agreements made
with specific partners. But for educational purposes, we will pursue more abstract and
complicated ways. Dynamic real-time linking is more typical in complex program
constructs like operating system APIs or embeddable libraries; giving educational
examples based on such sophisticated systems would be too inconvenient.

Let's start with the basics. Imagine that we haven't exposed any other functionality but
searching for offers and making orders, thus providing an API of two methods:
POST /offers/search and POST /orders.

Let us make the next logical step there and suppose that partners will wish to
dynamically plug their own coffee machines (operating some previously unknown
types of API) into our platform. To allow doing so, we have to negotiate a callback
format that would allow us to call partners' APIs and expose two new endpoints
providing the following capabilities:

registering new API types in the system;
providing the list of the coffee machines and their API types;

For example, we might provide the following methods.

// 1. Register a new API type
PUT /v1/api-types/{api_type}
{
 "order_execution_endpoint": {
 // Callback function description
 }
}

// 2. Provide a list of coffee machines
// with their API types
PUT /v1/partners/{partnerId}/coffee-machines
{
 "coffee_machines": [{
 "api_type",
 "location",
 "supported_recipes"
 }, …]
}

So the mechanics is like that:

a partner registers their API types, coffee machines, and supported recipes;
with each incoming order, our server will call the callback function, providing the
order data in the stipulated format.

Now the partners might dynamically plug their coffee machines in and get the orders.
But we now will do the following exercise:

enumerate all the implicit assumptions we have made;
enumerate all the implicit coupling mechanisms we need to haven the platform
functioning properly.

It may look like there are no such things in our API since it's quite simple and basically
just describes making some HTTP call — but that's not true.

1. It is implied that every coffee machine supports every order option like varying
the beverage volume.

2. There is no need to display some additional data to the end-user regarding coffee
being brewed on these new coffee machines.

3. The price of the beverage doesn't depend on the selected partner or coffee
machine type.

We have written down this list having one purpose in mind: we need to understand,
how exactly will we make these implicit arrangements explicit if we need it. For
example, if different coffee machines provide different functionality — for example,
some of them provide fixed beverage volumes only — what would change in our API?

The universal approach to making such amendments is: to consider the existing
interface as a reduction of some more general one like if some parameters were set to
defaults and therefore omitted. So making a change is always a three-step process.

1. Explicitly define the programmatical contract as it works right now.
2. Extend the functionality: add a new method allowing for tackling those

restrictions set in the previous paragraph.
3. Pronounce the existing interfaces (those defined in #1) being ‘helpers’ to new ones

(those defined in #2) which sets some options to default values.

More specifically, if we talk about changing available order options, we should do the
following.

1. Describe the current state. All coffee machines, plugged via the API, must support
three options: sprinkling with cinnamon, changing the volume, and contactless
delivery.

2. Add new ‘with-options’ endpoint:

PUT /v1/partners/{partner_id}/coffee-machines-with-options
{
 "coffee_machines": [{
 "id",
 "api_type",
 "location",
 "supported_recipes",
 "supported_options": [
 {"type": "volume_change"}
]
 }, …]
}

3. Pronounce PUT /coffee-machines endpoint as it now stands in the protocol
being equivalent to calling PUT /coffee-machines-with-options if we pass
those three options to it (sprinkling with cinnamon, changing the volume,
contactless delivery) and therefore being a partial case — a helper to a more
general call.

Usually, just adding a new optional parameter to the existing interface is enough; in
our case, adding non-mandatory options to the PUT /coffee-machines endpoint.

NB. When we talk about defining the contract as it works right now, we're talking about
internal agreements. We must have asked partners to support those three options while
negotiating the interaction format. If we had failed to do so from the very beginning,
and now are defining these in a course of expanding the public API, it's a very strong
claim to break backwards compatibility, and we should never do that (see Chapter 14).

Limits of Applicability

Though this exercise looks very simple and universal, its consistent usage is possible
only if the hierarchy of entities is well designed from the very beginning and, which is
more important, the vector of the further API expansion is clear. Imagine that after
some time passed, the options list got new items; let's say, adding syrup or a second
espresso shot. We are totally capable of expanding the list — but not the defaults. So
the ‘default’ PUT /coffee-machines interface will eventually become totally
useless because the default set of three options will not only be any longer of use but
will also look ridiculously: why these three options, what are the selection criteria? In
fact, the defaults and the method list will be reflecting the historical stages of our API
development, and that's totally not what you'd expect from the helpers and defaults
nomenclature.

Alas, this dilemma can't be easily resolved. From one side, we want developers to write
neat and laconic code, so we must provide useful helpers and defaults. From the other
side, we can't know in advance which options sets will be the most frequent after
several years of the API expansion.

NB. We might mask this problem in the following manner: one day gather all these
oddities and re-define all the defaults with one single parameter. For example,
introduce a special method like POST /use-defaults {"version": "v2"} which
would overwrite all the defaults with more suitable values. That will ease the learning
curve, but your documentation will become even worse after that.

In the real world, the only viable approach to somehow tackle the problem is the weak
entity coupling, which we will discuss in the next chapter.

Chapter 16. Strong Coupling and Related Problems

To demonstrate the strong coupling problematics let us move to really interesting
things. Let's continue our ‘variation analysis’: what if the partners wish to offer not
only the standard beverages but their own unique coffee recipes to end-users? There is
a catch in this question: the partner API as we described it in the previous chapter,
does not expose the very existence of the partner network to the end-user, and thus
describes a simple case. Once we start providing methods to alter the core
functionality, not just API extensions, we will soon face next-level problems.

So, let us add one more endpoint to register the partner's own recipe:

// Adds new recipe
POST /v1/recipes
{
 "id",
 "product_properties": {
 "name",
 "description",
 "default_value"
 // Other properties, describing
 // a beverage to end-user
 …
 }
}

At first glance, again, it looks like a reasonably simple interface, explicitly decomposed
into abstraction levels. But let us imagine the future — what would happen with this
interface when our system evolves further?

The first problem is obvious to those who read chapter 11 thoroughly: product
properties must be localized. That will lead us to the first change:

"product_properties": {
 // "l10n" is a standard abbreviation
 // for "localization"
 "l10n" : [{
 "language_code": "en",
 "country_code": "US",
 "name",
 "description"
 }, /* other languages and countries */ …]
]

And here the first big question arises: what should we do with the default_volume
field? From one side, that's an objective quality measured in standardized units, and it's
being passed to the program execution engine. On the other side, in countries like the
United States, we had to specify beverage volume not like ‘300 ml’, but ‘10 fl oz’. We
may propose two solutions:

either the partner provides the corresponding number only, and we will make
readable descriptions on our own behalf,
or the partner provides both the number and all of its localized representations.

The flaw in the first option is that a partner might be willing to use the service in some
new country or language — and will be unable to do so until the API supports them.
The flaw in the second option is that it works with predefined volumes only, so you
can't order an arbitrary beverage volume. So the very first step we've made effectively
has us trapped.

The localization flaws are not the only problem of this API. We should ask ourselves a
question — why do we really need these name and description? They are simply
non-machine-readable strings with no specific semantics. At first glance, we need them
to return them back in the /v1/search method response, but that's not a proper
answer: why do we really return these strings from search?

The correct answer lies a way beyond this specific interface. We need them because
some representation exists. There is a UI for choosing beverage type. Probably the name
and description fields are simply two designations of the beverage for a user to
read, a short one (to be displayed on the search results page) and a long one (to be
displayed in the extended product specification block). It actually means that we are
setting the requirements to the API based on some very specific design. But what if a
partner is making their own UI for their own app? Not only they might not actually

need two descriptions, but we are also deceiving them. The name is not ‘just a name’
actually, it implies some restrictions: it has recommended length which is optimal to
some specific UI, and it must look consistently on the search results page. Indeed, ‘our
best quality™ coffee’ or ‘Invigorating Morning Freshness®’ designation would look
very weird in-between ‘Cappuccino’, ‘Lungo’, and ‘Latte’.

There is also another side to this story. As UIs (both ours and partners) tend to evolve,
new visual elements will be eventually introduced. For example, a picture of a
beverage, its energy value, allergen information, etc. product_properties will
become a scrapyard for tons of optional fields, and learning how setting what field
results in what effects in the UI will be an interesting quest, full of probes and
mistakes.

Problems we're facing are the problems of strong coupling. Each time we offer an
interface like described above, we in fact prescript implementing one entity (recipe)
based on implementations of other entities (UI layout, localization rules). This
approach disrespects the very basic principle of the ‘top to bottom’ API design because
low-level entities must not define high-level ones.

The rule of contexts

To make things worse, let us state that the inverse principle is actually correct either:
high-level entities must not define low-level ones, since that simply isn't their
responsibility. The exit from this logical labyrinth is: high-level entities must define a
context, which other objects are to interpret. To properly design adding new recipe
interface we shouldn't try to find a better data format; we need to understand what
contexts, both explicit and implicit, exist in our subject area.

We have already found a localization context. There is some set of languages and
regions we support in our API, and there are requirements — what exactly the partner
must provide to make our API work in a new region. More specifically, there must be
some formatting function to represent beverage volume somewhere in our API code:

l10n.volume.format(value, language_code, country_code)
// l10n.formatVolume('300ml', 'en', 'UK') → '300 ml'
// l10n.formatVolume('300ml', 'en', 'US') → '10 fl oz'

To make our API work correctly with a new language or region, the partner must either
define this function or point which pre-existing implementation to use. Like this:

// Add a general formatting rule
// for Russian language
PUT /formatters/volume/ru
{
 "template": "{volume} мл"
}
// Add a specific formatting rule
// for Russian language in the ‘US’ region
PUT /formatters/volume/ru/US
{
 // in US we need to recalculate
 // the number, then add a postfix
 "value_preparation": {
 "action": "divide",
 "divisor": 30
 },
 "template": "{volume} ун."
}

NB: we are more than aware that such a simple format isn't enough to cover real-world
localization use-cases, and one either rely on existing libraries, or design a
sophisticated format for such templating, which takes into account such things as
grammatical cases and rules of rounding numbers up, or allow defining formatting
rules in a form of function code. The example above is simplified for purely educational
purposes.

Let us deal with the name and description problem then. To lower the coupling
level there we need to formalize (probably just to ourselves) a ‘layout’ concept. We are
asking for providing name and description not because we just need them, but for
representing them in some specific user interface. This specific UI might have an
identifier or a semantic name.

GET /v1/layouts/{layout_id}
{
 "id",
 // We would probably have lots of layouts,
 // so it's better to enable extensibility
 // from the beginning
 "kind": "recipe_search",
 // Describe every property we require
 // to have this layout rendered properly
 "properties": [{
 // Since we learned that `name`
 // is actually a title for a search
 // result snippet, it's much more
 // convenient to have explicit
 // `search_title` instead
 "field": "search_title",
 "view": {
 // Machine-readable description
 // of how this field is rendered
 "min_length": "5em",
 "max_length": "20em",
 "overflow": "ellipsis"
 }
 }, …],
 // Which fields are mandatory
 "required": [
 "search_title",
 "search_description"
]
}

So the partner may decide, which option better suits them. They can provide
mandatory fields for the standard layout:

PUT /v1/recipes/{id}/properties/l10n/{lang}
{
 "search_title", "search_description"
}

or create a layout of their own and provide data fields it requires:

POST /v1/layouts
{
 "properties"
}
→
{ "id", "properties" }

or they may ultimately design their own UI and don't use this functionality at all,
defining neither layouts nor data fields.

Then our interface would ultimately look like:

POST /v1/recipes
{ "id" }
→
{ "id" }

This conclusion might look highly counter-intuitive, but lacking any fields in a ‘Recipe’
simply tells us that this entity possesses no specific semantics of its own, and is simply
an identifier of a context; a method to point out where to look for the data needed by
other entities. In the real world we should implement a builder endpoint capable of
creating all the related contexts with a single request:

POST /v1/recipe-builder
{
 "id",
 // Recipe's fixed properties
 "product_properties": {
 "default_volume",
 "l10n"
 },
 // Create all the desirable layouts
 "layouts": [{
 "id", "kind", "properties"
 }],
 // Add all the formatters needed
 "formatters": {
 "volume": [
 { "language_code", "template" },
 { "language_code", "country_code", "template" }
]
 },
 // Other actions needed to be done
 // to register new recipe in the system
 …
}

We should also note that providing a newly created entity identifier by the requesting
side isn't exactly the best pattern. However, since we decided from the very beginning
to keep recipe identifiers semantically meaningful, we have to live with this
convention. Obviously, we're risking getting lots of collisions on recipe names used by
different partners, so we actually need to modify this operation: either the partner
must always use a pair of identifiers (i.e. recipe's one plus partner's own id), or we need
to introduce composite identifiers, as we recommended earlier in Chapter 11.

POST /v1/recipes/custom
{
 // First part of the composite
 // identifier, for example,
 // the partner's own id
 "namespace": "my-coffee-company",
 // Second part of the identifier
 "id_component": "lungo-customato"
}
→
{
 "id": "my-coffee-company:lungo-customato"
}

Also note that this format allows us to maintain an important extensibility point:
different partners might have totally isolated namespaces, or conversely share them.
Furthermore, we might introduce special namespaces (like ‘common’, for example) to
allow for publishing new recipes for everyone (and that, by the way, would allow us to
organize our own backoffice to edit recipes).

Chapter 17. Weak Coupling

In the previous chapter we've demonstrated how breaking strong coupling of
components leads to decomposing entities and collapsing their public interfaces down
to a reasonable minimum. A mindful reader might have noted that this technique was
already used in our API study much earlier in Chapter 9 with regards to ‘program’ and
‘program run’ entities. Indeed, we might do it without program-matcher endpoint
and make it this way:

GET /v1/recipes/{id}/run-data/{api_type}
→
{ /* A description, how to
 execute a specific recipe
 using a specified API type */ }

Then developers would have to make this trick to get coffee prepared:

learn the API type of the specific coffee machine;
get the execution description, as stated above;
depending on the API type, run some specific commands.

Obviously, such an interface is absolutely unacceptable, simply because in the majority
of use cases developers don't care at all, which API type the specific coffee machine
runs. To avoid the necessity of introducing such bad interfaces we created a new
‘program’ entity, which constitutes merely a context identifier, just like a ‘recipe’ entity
does. A program_run_id entity is also organized in this manner, it also possesses no
specific properties, being just a program run identifier.

But let us return to the question we have previously mentioned in Chapter 15: how
should we parametrize the order preparation process implemented via third-party API.
In other words, what's this program_execution_endpoint that we ask upon the
API type registration?

PUT /v1/api-types/{api_type}
{
 "order_execution_endpoint": {
 // ???
 }
}

Out of general considerations, we may assume that every such API would be capable of
executing three functions: run a program with specified parameters, return current
execution status, and finish (cancel) the order. An obvious way to provide the common
interface is to require these three functions being executed via a remote call, for
example, like this:

// This is an endpoint for partners
// to register their coffee machines
// in the system
PUT /partners/{id}/coffee-machines
{
 "coffee-machines": [{
 "id",
 …
 "order_execution_endpoint": {
 "program_run_endpoint": {
 /* Some description of
 the remote function call */
 "type": "rpc",
 "endpoint": <URL>,
 "format"
 },
 "program_state_endpoint",
 "program_stop_endpoint"
 }
 }, …]
}

NB: doing so we're transferring the complexity of developing the API onto a plane of
developing appropriate data formats, e.g. how exactly would we send order parameters
to the program_run_endpoint, and what format the program_state_endpoint
shall return, etc., but in this chapter, we're focusing on different questions.

Though this API looks absolutely universal, it's quite easy to demonstrate how once
simple and clear API ends up being confusing and convoluted. This design presents two
main problems.

1. It describes nicely the integrations we've already implemented (it costs almost
nothing to support the API types we already know), but brings no flexibility in the
approach. In fact, we simply described what we'd already learned, not even trying
to look at a larger picture.

2. This design is ultimately based on a single principle: every order preparation
might be codified with these three imperative commands.

We may easily disprove the #2 principle, and that will uncover the implications of the
#1. For the beginning, let us imagine that on a course of further service growth we
decided to allow end-users to change the order after the execution started. For
example, ask for a cinnamon sprinkling or contactless takeout. That would lead us to
creating a new endpoint, let's say, program_modify_endpoint, and new difficulties
in data format development (we need to understand in the real-time, could we actually
sprinkle cinnamon on this specific cup of coffee or not). What is important is that both
endpoint and new data fields would be optional because of backwards compatibility
requirement.

Now let's try to imagine a real-world example that doesn't fit into our ‘three
imperatives to rule them all’ picture. That's quite easy either: what if we're plugging via
our API not a coffee house, but a vending machine? From one side, it means that
modify endpoint and all related stuff are simply meaningless: vending machine
couldn't sprinkle cinnamon over a coffee cup, and contactless takeout requirement
means nothing to it. From the other side, the machine, unlike the people-operated
café, requires takeout approval: the end-user places an order being somewhere in some
other place then walks to the machine and pushes the ‘get the order’ button in the app.
We might, of course, require the user to stand in front of the machine when placing an
order, but that would contradict the entire product concept of users selecting and
ordering beverages and then walking to the takeout point.

Programmable takeout approval requires one more endpoint, let's say,
program_takeout_endpoint. And so we've lost our way in a forest of three
endpoints:

to have vending machines integrated a partner must implement the
program_takeout_endpoint, but doesn't actually need the
program_modify_endpoint;

to have regular coffee houses integrated a partner must implement the
program_modify_endpoint, but doesn't actually need the
program_takeout_endpoint.

Furthermore, we have to describe both endpoints in the docs. It's quite natural that
takeout endpoint is very specific; unlike cinnamon sprinkling, which we hid under
the pretty general modify endpoint, operations like takeout approval will require
introducing a new unique method every time. After several iterations, we would have a
scrapyard, full of similarly looking methods, mostly optional — but developers would
need to study the docs nonetheless to understand, which methods are needed in your
specific situation, and which are not.

We actually don't know, whether in the real world of coffee machine APIs this problem
will really occur or not. But we can say with all confidence regarding ‘bare metal’
integrations that the processes we described always happen. The underlying
technology shifts; an API that seemed clear and straightforward, becomes a trash bin
full of legacy methods, half of which borrows no practical sense under any specific set
of conditions. If we add technical progress to the situation, i.e. imagine that after a
while all coffee houses become automated, we will finally end up with the situation
when half of the methods isn't actually needed at all, like requesting contactless takeout
method.

It is also worth mentioning that we unwittingly violated the abstraction levels isolation
principle. At the vending machine API level, there is no such thing as a ‘contactless
takeout’, that's actually a product concept.

So, how would we tackle this issue? Using one of two possible approaches: either
thoroughly study the entire subject area and its upcoming improvements for at least
several years ahead, or abandon strong coupling in favor of weak one. How would the
ideal solution look from both sides? Something like this:

the higher-level program API level doesn't actually know how the execution of its
commands works; it formulates the tasks at its own level of understanding: brew
this recipe, sprinkle with cinnamon, allow this user to take it;
the underlying program execution API level doesn't care what other same-level
implementations exist; it just interprets those parts of the task which make sense
to it.

If we take a look at the principles described in the previous chapter, we would find that
this principle was already formulated: we need to describe informational contexts at
every abstraction level and design a mechanism to translate them between levels.
Furthermore, in a more general sense, we formulated it as early as in ‘The Data Flow’
paragraph of Chapter 9.

In our case we need to implement the following mechanisms:

running a program creates a corresponding context comprising all the essential
parameters;
there is a method to stream the information regarding the state modifications: the
execution level may read the context, learn about all the changes and report back
the changes of its own.

There are different techniques to organize this data flow, but basically we always have
two context descriptions and a two-way event stream in-between. If we were
developing an SDK we would express the idea like this:

/* Partner's implementation of the program
 run procedure for a custom API type */
registerProgramRunHandler(apiType, (program) => {
 // Initiating an execution
 // on partner's side
 let execution = initExecution(…);
 // Listen to parent context's changes
 program.context.on('takeout_requested', () => {
 // If takeout is requested, initiate
 // corresponding procedures
 execution.prepareTakeout(() => {
 // When the cup is ready for takeout,
 // emit corresponding event
 // for higher-level entity to catch it
 execution.context.emit('takeout_ready');
 });
 });

 return execution.context;
});

NB: In the case of HTTP API corresponding example would look rather bulky as it
involves implementing several additional endpoints for message queues like
GET /program-run/events and GET /partner/{id}/execution/events. We
would leave this exercise to the reader. Also worth mentioning that in real-world
systems such event queues are usually organized using external event message systems
like Apache Kafka or Amazon SNS/SQS.

At this point, a mindful reader might begin protesting because if we take a look at the
nomenclature of the new entities, we will find that nothing changed in the problem
statement. It actually became even more complicated:

instead of calling the takeout method we're now generating a pair of
takeout_requested/takeout_ready events;
instead of a long list of methods that shall be implemented to integrate partner's
API, we now have a long list of context objects fields and events they generate;
and with regards to technological progress we've changed nothing: now we have
deprecated fields and events instead of deprecated methods.

And this remark is totally correct. Changing API formats doesn't solve any problems
related to the evolution of functionality and underlying technology. Changing API
formats solves another problem: how to make the code written by developers stay clean
and maintainable. Why would strong-coupled integration (i.e. coupling entities via
methods) render the code unreadable? Because both sides are obliged to implement the
functionality which is meaningless in their corresponding subject areas. And these
implementations would actually comprise a handful of methods to say that this
functionality is either not supported at all, or supported always and unconditionally.

The difference between strong coupling and weak coupling is that field-event
mechanism isn't obligatory to both sides. Let us remember what we sought to achieve:

higher-level context doesn't actually know how low-level API works — and it really
doesn't; it describes the changes which occurs within the context itself, and reacts
only to those events which mean something to it;
low-level context doesn't know anything about alternative implementations —
and it really doesn't; it handles only those events which mean something at its
level, and emits only those events which could actually happen under its specific
conditions.

It's ultimately possible that both sides would know nothing about each other and
wouldn't interact at all. This might actually happen at some point in the future with
the evolution of underlying technologies.

Worth mentioning that the number of entities (fields, events), though effectively
doubled compared to strong-coupled API design, raised qualitatively, not
quantitatively. The program context describes fields and events in its own terms (type
of beverage, volume, cinnamon sprinkling), while the execution context must
reformulate those terms according to its own subject area (omitting redundant ones, by
the way). It is also important that the execution context might concretize these
properties for underlying objects according to its own specifics, while the program
context must keep its properties general enough to be applicable to any possible
underlying technology.

One more important feature of weak coupling is that it allows an entity to have several
higher-level contexts. In typical subject areas such a situation would look like an API
design flaw, but in complex systems, with several system state-modifying agents
present, such design patterns are not that rare. Specifically, you would likely face it
while developing user-facing UI libraries. We will cover this issue in detail in the
upcoming ‘SDK’ section of this book.

The Inversion of Responsibility

It becomes obvious from what was said above that two-way weak coupling means a
significant increase of code complexity on both levels, which is often redundant. In
many cases, two-way event linking might be replaced with one-way linking without
significant loss of design quality. That means allowing a low-level entity to call higher-
level methods directly instead of generating events. Let's alter our example:

/* Partner's implementation of program
 run procedure for a custom API type */
registerProgramRunHandler(apiType, (program) => {
 // Initiating an execution
 // on partner's side
 let execution = initExecution(…);
 // Listen to parent context's changes
 program.context.on('takeout_requested', () => {
 // If takeout is requested, initiate
 // corresponding procedures
 execution.prepareTakeout(() => {
 /* When the order is ready for takeout,
 signalize about that, but not
 with event emitting */
 // execution.context.emit('takeout_ready')
 program.context.set('takeout_ready');
 // Or even more rigidly
 // program.setTakeoutReady();
 });
 });
 /* Since we're modifying parent context
 instead of emitting events, we don't
 actually need to return anything */
 // return execution.context;
});
}

Again, this solution might look counter-intuitive, since we efficiently returned to
strong coupling via strictly defined methods. But there is an important difference:
we're making all this stuff up because we expect alternative implementations of the
lower abstraction level. Situations with different realizations of higher abstraction
levels emerging are, of course, possible, but quite rare. The tree of alternative
implementations usually grows top to bottom.

Another reason to justify this solution is that major changes occurring at different
abstraction levels have different weights:

if the technical level is under change, that must not affect product qualities and
the code written by partners;

if the product is changing, i.e. we start selling flight tickets instead of preparing
coffee, there is literally no sense to preserve backwards compatibility at technical
abstraction levels. Ironically, we may actually make our program run API sell
tickets instead of brewing coffee without breaking backwards compatibility, but
the partners' code will still become obsolete.

In conclusion, because of the abovementioned reasons, higher-level APIs are evolving
more slowly and much more consistently than low-level APIs, which means that
reverse strong coupling might often be acceptable or even desirable, at least from the
price-quality ratio point of view.

NB: many contemporary frameworks explore a shared state approach, Redux being
probably the most notable example. In Redux paradigm the code above would look like
this:

execution.prepareTakeout(() => {
 // Instead of generating events
 // or calling higher-level methods,
 // an `execution` entity calls
 // a global or quasi-global
 // callback to change a global state
 dispatch(takeoutReady());
});

Let us note that this approach in general doesn't contradict the weak coupling
principle, but violates another one — of abstraction levels isolation, and therefore isn't
suitable for writing branchy APIs with high hierarchy trees. In such systems, it's still
possible to use global or quasi-global state manager, but you need to implement event
or method call propagation through the hierarchy, i.e. ensure that a low-level entity
always interacting with its closest higher-level neighbors only, delegating the
responsibility of calling high-level or global methods to them.

execution.prepareTakeout(() => {
 // Instead of initiating global actions
 // an `execution` entity invokes
 // its superior's dispatch functionality
 program.context.dispatch(takeoutReady());
});

// program.context.dispatch implementation
ProgramContext.dispatch = (action) => {
 // program.context calls its own
 // superior or global object
 // if there are no superiors
 globalContext.dispatch(
 // The action itself may and
 // must be reformulated
 // in appropriate terms
 this.generateAction(action)
);
}

Test Yourself

So, we have designed the interaction with third-party APIs as described in the previous
paragraph. And now we should (actually, must) check whether these interfaces are
compatible with our own abstraction we had developed in the Chapter 9. In other
words, could we start an execution of an order if we operate the low-level API instead
of the high-level one?

Let us recall that we had proposed the following abstract interfaces to work with
arbitrary coffee machine API types:

POST /v1/program-matcher returns the id of the program based on the coffee
machine and recipe ids;
POST /v1/programs/{id}/run executes the program.

As we can easily prove, it's quite simple to make these interfaces compatible: we only
need to assign a program_id identifier to the (API type, recipe) pair, for example,
through returning it in the PUT /coffee-machines method response:

PUT /v1/partners/{partnerId}/coffee-machines
{
 "coffee_machines": [{
 "id",
 "api_type",
 "location",
 "supported_recipes"
 }, …]
}
→
{
 "coffee_machines": [{
 "id",
 "recipes_programs": [
 {"recipe_id", "program_id"},
 …
]
 }, …]
}

So the method we'd developed:

POST /v1/programs/{id}/run

will work with the partner's coffee machines (like it's a third API type).

Delegate!

From what was said, one more important conclusion follows: doing a real job, e.g.
implementing some concrete actions (making coffee, in our case) should be delegated
to the lower levels of the abstraction hierarchy. If the upper levels try to prescribe some
specific implementation algorithms, then (as we have demonstrated on the
order_execution_endpoint example) we will soon face a situation of inconsistent
methods and interaction protocols nomenclature, most of which has no specific
meaning when we talk about some specific hardware context.

Contrariwise, applying the paradigm of concretizing the contexts at each new
abstraction level, we will eventually fall into the bunny hole deep enough to have
nothing to concretize: the context itself unambiguously matches the functionality we
can programmatically control. And at that level, we must stop detailing contexts
further, and just realize the algorithms needed. Worth mentioning that the abstraction
deepness for different underlying platforms might vary.

NB. In the Chapter 9 we have illustrated exactly this: when we speak about the first
coffee machine API type, there is no need to extend the tree of abstractions further
than running programs, but with the second API type, we need one more intermediary
abstraction level, namely the runtimes API.

Chapter 18. Interfaces as a Universal Pattern

Let us summarize what we have written in the three previous chapters.

1. Extending API functionality is realized through abstracting: the entity
nomenclature is to be reinterpreted so that existing methods become partial
(ideally — the most frequent) simplified cases to more general functionality.

2. Higher-level entities are to be the informational contexts for low-level ones, e.g.
don't prescribe any specific behavior but translate their state and expose
functionality to modify it (directly through calling some methods or indirectly
through firing events).

3. Concrete functionality, e.g. working with ‘bare metal’ hardware, underlying
platform APIs, should be delegated to low-level entities.

NB. There is nothing novel about these rules: one might easily recognize them being
the SOLID architecture principles. There is no surprise in that either, because SOLID
concentrates on contract-oriented development, and APIs are contracts by definition.
We've just added ‘abstraction levels’ and ‘informational contexts’ concepts there.

However, there is an unanswered question: how should we design the entity
nomenclature from the beginning so that extending the API won't make it a mess of
different inconsistent methods of different ages. The answer is pretty obvious: to avoid
clumsy situations while abstracting (as with the coffee machine's supported options),
all the entities must be originally considered being a specific implementation of a more
general interface, even if there are no planned alternative implementations for them.

For example, we should have asked ourselves a question while designing the
POST /search API: what is a ‘search result’? What abstract interface does it
implement? To answer this question we must neatly decompose this entity to find
which facet of it is used for interacting with which objects.

Then we would have come to the understanding that a ‘search result’ is actually a
composition of two interfaces:

when we create an order, we need from the search result to provide those fields
which describe the order itself; it might be a structure like:

{coffee_machine_id, recipe_id, volume, currency_code, price},

or we can encode this data in the single offer_id;

https://en.wikipedia.org/wiki/SOLID

to have this search result displayed in the app, we need a different data set: name,
description, formatted and localized price.

So our interface (let us call it ISearchResult) is actually a composition of two other
interfaces: IOrderParameters (an entity that allows for creating an order) and
ISearchItemViewParameters (some abstract representation of the search result in
the UI). This interface split should automatically lead us to additional questions.

1. How will we couple the former and the latter? Obviously, these two sub-interfaces
are related: the machine-readable price must match the human-readable one, for
example. This will naturally lead us to the ‘formatter’ concept described in the
Chapter 16.

2. And what is the ‘abstract representation of the search result in the UI’? Do we
have other kinds of search, should the ISearchItemViewParameters interface
be a subtype of some even more general interface, or maybe a composition of
several such ones?

Replacing specific implementations with interfaces not only allows us to answer more
clearly many questions which should have been appeared in the API design phase but
also helps us to outline many possible API evolution vectors, which should help in
avoiding API inconsistency problems in the future.

Chapter 19. The Serenity Notepad

Apart from the abovementioned abstract principles, let us give a list of concrete
recommendations: how to make changes in the existing API to maintain the backwards
compatibility.

1. Remember the iceberg's waterline

If you haven't given any formal guarantee, it doesn't mean that you can violate
informal once. Often, even just fixing bugs in APIs might make some developers' code
inoperable. We might illustrate it with a real-life example which the author of this
book has actually faced once:

there was an API to place a button into a visual container; according to the docs, it
was taking its position (offsets to the container's corner) as a mandatory
argument;
in reality, there was a bug: if the position was not supplied, no exception was
thrown; buttons were simply stacked in the corner one after another;
when the error was fixed, we've got a bunch of complaints: clients did really use
this flaw to stack the buttons in the container's corner.

If fixing the error might somehow affect real customers, you have no other choice but
to emulate this erroneous behavior until the next major release. This situation is quite
common if you develop a large API with a huge audience. For example, operating
systems API developers literally have to transfer old bugs to new OS versions.

2. Test the formal interface

Any software must be tested, and APIs ain't an exclusion. However, there are some
subtleties there: as APIs provide formal interfaces, it's the formal interfaces that are
needed to be tested. That leads to several kinds of mistakes:

1. Often the requirements like ‘the getEntity function returns the value previously
being set by the setEntity function’ appear to be too trivial to both developers
and QA engineers to have a proper test. But it's quite possible to make a mistake
there, and we have actually encountered such bugs several times.

2. The interface abstraction principle must be tested either. In theory, you might
have considered each entity as an implementation of some interface; in practice,
it might happen that you have forgotten something, and alternative
implementations aren't actually possible. For testing purposes, it's highly
desirable to have an alternative realization, even a provisional one.

3. Implement your API functionality atop of public interfaces

There is an antipattern that occurs frequently: API developers use some internal closed
implementations of some methods which exist in the public API. It happens because of
two reasons:

often the public API is just an addition to the existing specialized software, and
the functionality, exposed via the API, isn't being ported back to the closed part of
the project, or the public API developers simply don't know the corresponding
internal functionality exists;
on a course of extending the API some interfaces become abstract, but the existing
functionality isn't affected; imagine that while implementing the
PUT /formatters interface described in the Chapter 16 developers have created
a new, more general version of the volume formatter, but hasn't changed the
implementation of the existing one, so it continues working in case of pre-existing
languages.

There are obvious local problems with this approach (like the inconsistency in
functions' behavior, or the bugs which were not found while testing the code), but also
a bigger one: your API might be simply unusable if a developer tries any non-
mainstream approach, because of performance issues, bugs, instability, etc.

NB. The perfect example of avoiding this anti-pattern is compiler development;
usually, the next compiler's version is compiled with the previous compiler's version.

4. Keep a notepad

Whatever tips and tricks that were described in the previous chapters you use, it's often
quite probable that you can't do anything to prevent the API inconsistencies start piling
up. It's possible to reduce the speed of this stockpiling, foresee some problems, have
some interface durability reserved for future use. But one can't foresee everything. At

this stage, many developers tend to make some rash decisions, e.g. to release a
backwards incompatible minor version to fix some design flaws.

We highly recommend never doing that. Remember that the API is a multiplier of your
mistakes either. What we recommend is to keep a serenity notepad — to fix the lessons
learned, and not to forget to apply this knowledge when the major API version is
released.

