
Sergey Konstantinov

The API

Sergey Konstantinov. The API.
yatwirl@gmail.com · linkedin.com/in/twirl ·
patreon.com/yatwirl

The API-first development is one of the hottest technical
topics nowadays, since many companies started to realize
that API serves as a multiplicator to their opportunities—
but it also amplifies the design mistakes as well.

This book is written to share the expertise and describe the
best practices in designing and developing APIs. In Section
I, we'll discuss the API architecture as a concept: how to
build the hierarchy properly, from high-level planning
down to final interfaces. Section II is dedicated to
expanding existing APIs in a backwards-compatible
manner. Finally, in Section III we will talk about the API as
a product.

Illustrations & inspiration by Maria
Konstantinova · art.mari.ka

This book is distributed under the Creative
Commons Attribution-NonCommercial 4.0
International licence.

Source code available at github.com/twirl/The-API-Book

Share: facebook · twitter · linkedin · reddit

mailto:yatwirl@gmail.com
https://www.linkedin.com/in/twirl/
https://www.patreon.com/yatwirl
https://www.instagram.com/art.mari.ka/
http://creativecommons.org/licenses/by-nc/4.0/
https://github.com/twirl/The-API-Book
https://www.facebook.com/sharer.php?u=https%3A%2F%2Ftwirl.github.io%2FThe-API-Book%2F
https://twitter.com/intent/tweet?text=The%20API%20by%20Sergey%20Konstantinov%20%E2%80%94%20a%20book%20about%20designing%20APIs%2C%20extending%20them%20and%20finding%20a%20proper%20place%20in%20the%20market&url=https%3A%2F%2Ftwirl.github.io%2FThe-API-Book%2F&hashtags=API%2CTheAPIBook&via=blogovodoved
https://www.linkedin.com/sharing/share-offsite/?url=https%3A%2F%2Ftwirl.github.io%2FThe-API-Book%2F
http://www.reddit.com/submit?url=https%3A%2F%2Ftwirl.github.io%2FThe-API-Book%2F&title=The%20API%20by%20Sergey%20Konstantinov%20%E2%80%94%20a%20book%20about%20designing%20APIs%2C%20extending%20them%20and%20finding%20a%20proper%20place%20in%20the%20market

TABLE OF CONTENTS

INTRODUCTION
Chapter 1. On the Structure of This Book
Chapter 2. The API Definition
Chapter 3. API Quality Criteria
Chapter 4. On Backward Compatibility
Chapter 5. On Versioning
Chapter 6. Terms and Notation Keys

SECTION I. THE API DESIGN
Chapter 7. The API Contexts Pyramid
Chapter 8. Defining an Application Field
Chapter 9. Separating Abstraction Levels
Chapter 10. Isolating Responsibility Areas
Chapter 11. Describing Final Interfaces
Chapter 12. Annex to Section I. Generic API Example

SECTION II. THE BACKWARD COMPATIBILITY
Chapter 13. The Backward Compatibility Problem
Statement
Chapter 14. On the Waterline of the Iceberg
Chapter 15. Extending through Abstracting
Chapter 16. Strong Coupling and Related Problems
Chapter 17. Weak Coupling
Chapter 18. Interfaces as a Universal Pattern
Chapter 19. The Serenity Notepad

SECTION III. THE API PRODUCT
Chapter 20. API as a Product
Chapter 21. The API Business Models
Chapter 22. Developing a Product Vision
Chapter 23. Communicating with Developers

Chapter 24. Communicating with Business Owners
Chapter 25. The API Services Range
Chapter 26. The API Key Performance Indicators
Chapter 27. Identifying Users and Preventing Fraud
Chapter 28. The Technical Means of Preventing ToS
Violations
Chapter 29. Supporting customers
Chapter 30. The Documentation
Chapter 31. The Testing Environment
Chapter 32. Managing Expectations

INTRODUCTION

Chapter 1. On the Structure of This Book

The book you're holding in your hands comprises this
Introduction and three sections: “The API Design,” “The
Backward Compatibility,” and “The API Product.”

In Section I, we will discuss designing APIs as a concept:
how to build the architecture properly, from high-level
planning down to final interfaces.

Section II is dedicated to an API lifecycle: how interfaces
evolve over time, and how to develop the product to match
users' needs.

Finally, Section III is more about the un-engineering sides
of the API, like API marketing, organizing customer
support, working with a community, etc.

The first two sections are interesting to engineers mostly,
while the third section is more relevant to both engineers
and product managers. However, we insist that the third
section is the most important one for the API software
developer. Since an API is a product for engineers, you
cannot simply pronounce a non-engineering team
responsible for product planning and support. Nobody but
you knows better your API's product features.

Let's start.

Chapter 2. The API Definition

Before we start talking about the API design, we need to
explicitly define what the API is. Encyclopedia tells us that
“API” is an acronym for the “Application Program
Interface.” This definition is fine but useless. Much like the
“Man” definition by Plato: Man stood upright on two legs
without feathers. This definition is fine again, but it gives
us no understanding of what's so important about a Man.
(Actually, not “fine” either. Diogenes of Sinope once
brought a plucked chicken, saying “That's Plato's Man.”
And Plato had to add “with broad nails” to his definition.)

What the API means apart from the formal definition?

You're possibly reading this book using a Web browser. To
make the browser display this page correctly, a bunch of
stuff must work correctly: parsing the URL according to the
specification, the DNS service, the TLS handshake protocol,
transmitting the data over HTTP protocol, HTML document
parsing, CSS document parsing, correct HTML+CSS
rendering, and so on and so forth.

But those are just the tip of the iceberg. To make the HTTP
protocol work you need the entire network stack
(comprising 4-5 or even more different level protocols) to
work correctly. HTML document parsing is being performed
according to hundreds of different specifications. The
document rendering operations call the underlying
operating system APIs, or even directly graphical processor
APIs. And so on: down to modern CISC processor

commands that are implemented on top of the API of
microcommands.

In other words, hundreds or even thousands of different
APIs must work correctly to make basic actions possible,
like viewing a webpage. Modern Internet technologies
simply couldn't exist without these tons of APIs working
fine.

An API is an obligation. A formal obligation to connect
different programmable contexts.

When I'm asked of an example of a well-designed API, I
usually show a picture of a Roman aqueduct:

The Pont-du-Gard aqueduct. Built in the 1st
century AD. Image Credit: igorelick @ pixabay

https://pixabay.com/photos/pont-du-gard-france-aqueduct-bridge-3909998/

it interconnects two areas,
backward compatibility being broken not a single
time in two thousand years.

What differs between a Roman aqueduct and a good API is
that in the case of APIs, the contract is presumed to be
programmable. To connect the two areas, writing some code
is needed. The goal of this book is to help you in designing
APIs that serve their purposes as solidly as a Roman
aqueduct does.

An aqueduct also illustrates another problem of the API
design: your customers are engineers themselves. You are
not supplying water to end-users: suppliers are plugging
their pipes into your engineering structure, building their
own structures upon it. On one hand, you may provide
access to the water to many more people through them, not
spending your time plugging each individual house into
your network. On the other hand, you can't control the
quality of suppliers' solutions, and you are to be blamed
every time there is a water problem caused by their
incompetence.

That's why designing the API implies a larger area of
responsibility. API is a multiplier to both your
opportunities and mistakes.

Chapter 3. API Quality Criteria

Before we start laying out the recommendations, we ought
to specify what API we consider “fine,” and what's the profit
of having a “fine” API.

Let's discuss the second question first. Obviously, API
“finesse” is first of all defined through its capability to solve
developers' and users' problems. (One may reasonably say
that solving problems might not be the main purpose of
offering the API of ours to developers. However,
manipulating public opinion is out of this book's author's
interest. Here we assume that APIs exist primarily to help
people, not for some other covertly declared purposes.)

So, how the “fine” API design might assist developers in
solving their (and their users') problems? Quite simply: a
well-designed API allows developers to do their jobs in the
most efficient and comprehensible manner. The distance
from formulating a task to writing working code must be as
short as possible. Among other things, it means that:

it must be totally obvious out of your API's structure
how to solve a task

ideally, developers at first glance should be
able to understand, what entities are meant to
solve their problem

the API must be readable;

ideally, developers write correct code after just
looking at the methods nomenclature, never
bothering about details (especially API
implementation details!)
it is also very important to mention that not
only problem solution (the “happy path”)
should be obvious, but also possible errors and
exceptions (the “unhappy path”) as well

the API must be consistent
while developing new functionality (i.e., while
using previously unknown API entities)
developers may write new code similar to the
code they have already written using the
known API concepts, and this new code will
work.

However, the static convenience and clarity of APIs are
simple parts. After all, nobody seeks for making an API
deliberately irrational and unreadable. When we are
developing an API, we always start with clear basic
concepts. Providing you've got some experience in APIs, it's
quite hard to make an API core that fails to meet
obviousness, readability, and consistency criteria.

Problems begin when we start to expand our API. Adding
new functionality sooner or later results in transforming
once plain and simple API into a mess of conflicting
concepts, and our efforts to maintain backward
compatibility will lead to illogical, unobvious, and simply
bad design solutions. It is partly related to an inability to
predict the future in detail: your understanding of “fine”

APIs will change over time, both in objective terms (what
problems the API is to solve, and what is the best practice)
and in subjective terms too (what obviousness, readability,
and consistency really mean to your API design).

The principles we are explaining below are specifically
oriented to making APIs evolve smoothly over time, not
being turned into a pile of mixed inconsistent interfaces. It
is crucial to understand that this approach isn't free: a
necessity to bear in mind all possible extension variants
and to preserve essential growth points means interface
redundancy and possibly excessing abstractions being
embedded in the API design. Besides, both make the
developers' jobs harder. Providing excess design
complexities being reserved for future use makes sense
only if this future actually exists for your API.
Otherwise, it's simply overengineering.

Chapter 4. On Backward Compatibility

Backward compatibility is a temporal characteristic of your
API. An obligation to maintain backward compatibility is
the crucial point where API development differs from
software development in general.

Of course, backward compatibility isn't an absolute. In
some subject areas shipping new backwards-incompatible
API versions is a routine. Nevertheless, every time you
deploy a new backwards-incompatible API version, the
developers need to make some non-zero effort to adapt
their code to the new API version. In this sense, releasing
new API versions puts a sort of a “tax” on customers. They
must spend quite real money just to make sure their
product continues working.

Large companies, which occupy firm market positions,
could afford to charge such a tax. Furthermore, they may
introduce penalties for those who refuse to adapt their code
to new API versions, up to disabling their applications.

From our point of view, such a practice cannot be justified.
Don't impose hidden levies on your customers. If you're
able to avoid breaking backward compatibility — never
break it.

Of course, maintaining old API versions is a sort of a tax
either. Technology changes, and you cannot foresee
everything, regardless of how nice your API is initially
designed. At some point keeping old API versions results in

an inability to provide new functionality and support new
platforms, and you will be forced to release a new version.
But at least you will be able to explain to your customers
why they need to make an effort.

We will discuss API lifecycle and version policies in Section
II.

Chapter 5. On Versioning

Here and throughout this book, we firmly stick to semver
principles of versioning.

1. API versions are denoted with three numbers, i.e.,
1.2.3.

2. The first number (a major version) increases when
backwards-incompatible changes in the API are
introduced.

3. The second number (a minor version) increases when
new functionality is added to the API, keeping
backward compatibility intact.

4. The third number (a patch) increases when a new API
version contains bug fixes only.

Sentences “a major API version” and “new API version,
containing backwards-incompatible changes” are therefore
to be considered equivalent ones.

It is usually (though not necessary) agreed that the last
stable API release might be referenced by either a full
version (e.g., 1.2.3) or a reduced one (1.2 or just 1). Some
systems support more sophisticated schemes of defining
the desired version (for example, ^1.2.3 reads like “get the
last stable API release that is backwards-compatible to the
1.2.3 version”) or additional shortcuts (for example, 1.2-
beta to refer to the last beta release of the 1.2 API version
family). In this book, we will mostly use designations like
v1 (v2, v3, etc.) to denote the latest stable release of the
1.x.x version family of an API.

https://semver.org/

The practical meaning of this versioning system and the
applicable policies will be discussed in more detail in “The
Backward Compatibility Problem Statement” chapter.

Chapter 6. Terms and Notation Keys

Software development is characterized, among other
things, by the existence of many different engineering
paradigms, whose adepts sometimes are quite aggressive
towards other paradigms' adepts. While writing this book,
we are deliberately avoiding using terms like “method,”
“object,” “function,” and so on, using the neutral term
“entity” instead. “Entity” means some atomic functionality
unit, like class, method, object, monad, prototype
(underline what you think is right).

As for an entity's components, we regretfully failed to find a
proper term, so we will use the words “fields” and
“methods.”

Most of the examples of APIs will be provided in a form of
JSON-over-HTTP endpoints. This is some sort of notation
that, as we see it, helps to describe concepts in the most
comprehensible manner. A GET /v1/orders endpoint call
could easily be replaced with an orders.get() method call,
local or remote; JSON could easily be replaced with any
other data format. The semantics of statements shouldn't
change.

Let's take a look at the following example:

// Method description
POST /v1/bucket/{id}/some-resource⮠
 /{resource_id}
X-Idempotency-Token: <idempotency token>
{
 …
 // This is a single-line comment
 "some_parameter": "example value",
 …
}
→ 404 Not Found
Cache-Control: no-cache
{
 /* And this is
 a multiline comment */
 "error_reason",
 "error_message":
 "Long error message⮠
 that will span several⮠
 lines"
}

It should be read like this:

a client performs a POST request to a
/v1/bucket/{id}/some-resource resource, where {id}
is to be replaced with some bucket's identifier
({something} notation refers to the nearest term from
the left unless explicitly specified otherwise);
a specific X-Idempotency-Token header is added to the
request alongside standard headers (which we omit);

terms in angle brackets (<idempotency token>)
describe the semantics of an entity value (field,
header, parameter);
a specific JSON, containing a some_parameter field and
some other unspecified fields (indicated by ellipsis) is
being sent as a request body payload;
in response (marked with an arrow symbol →) server
returns a 404 Not Founds status code; the status
might be omitted (treat it like a 200 OK if no status is
provided);
the response could possibly contain additional
notable headers;
the response body is a JSON comprising two fields:
error_reason and error_message; field value absence
means that the field contains exactly what you expect
it should contain — so there is some generic error
reason value which we omitted;
if some token is too long to fit a single line, we will
split it into several lines adding ⮠ to indicate it
continues next line.

The term “client” here stands for an application being
executed on a user's device, either a native or a web one.
The terms “agent” and “user agent” are synonymous to
“client.”

Some request and response parts might be omitted if they
are irrelevant to the topic being discussed.

Simplified notation might be used to avoid redundancies,
like POST /some-resource {…, "some_parameter", …} → {
"operation_id" }; request and response bodies might also
be omitted.

We will be using sentences like “POST
/v1/bucket/{id}/some-resource method” (or simply
“bucket/some-resource method,” “some-resource” method
— if there are no other some-resources in the chapter, so
there is no ambiguity) to refer to such endpoint definitions.

Apart from HTTP API notation, we will employ C-style
pseudocode, or, to be more precise, JavaScript-like or
Python-like one, since types are omitted. We assume such
imperative structures are readable enough to skip detailed
grammar explanations.

SECTION I. THE API DESIGN

Chapter 7. The API Contexts Pyramid

The approach we use to design APIs comprises four steps:

defining an application field
separating abstraction levels
isolating responsibility areas
describing final interfaces.

This four-step algorithm actually builds an API from top to
bottom, from common requirements and use case scenarios
down to a refined nomenclature of entities. In fact, moving
this way will eventually conclude with a ready-to-use API,
and that's why we value this approach highly.

It might seem that the most useful pieces of advice are
given in the last chapter, but that's not true. The cost of a
mistake made at certain levels differs. Fixing the naming is
simple; revising the wrong understanding of what the API
stands for is practically impossible.

NB. Here and throughout we will illustrate the API design
concepts using a hypothetical example of an API allowing
for ordering a cup of coffee in city cafes. Just in case: this
example is totally synthetic. If we were to design such an
API in the real world, it would probably have very little in
common with our fictional example.

Chapter 8. Defining an Application Field

The key question you should ask yourself before we start
developing any software product, including an API, is: what
problem do we solve? It should be asked four times, each
time putting an emphasis on another word.

1. What problem do we solve? Could we clearly outline
the situation in which our hypothetical API is needed
by developers?

2. What problem do we solve? Are we sure that the
abovementioned situation poses a problem? Does
someone really want to pay (literally or figuratively)
to automate a solution for this problem?

3. What problem do we solve? Do we actually possess
the expertise to solve the problem?

4. What problem do we solve? Is it true that the solution
we propose solves the problem indeed? Aren't we
creating another problem instead?

So, let's imagine that we are going to develop an API for
automated coffee ordering in city cafes, and let's apply the
key question to it.

1. Why would someone need an API to make a coffee?
Why ordering a coffee via “human-to-human” or
“human-to-machine” interfaces is inconvenient, why
have a “machine-to-machine” interface?

Possibly, we're solving awareness and selection
problems? To provide humans with full
knowledge of what options they have right now
and right here.
Possibly, we're optimizing waiting times? To
save the time people waste while waiting for
their beverages.
Possibly, we're reducing the number of errors?
To help people get exactly what they wanted to
order, stop losing information in imprecise
conversational communication, or in dealing
with unfamiliar coffee machine interfaces?

The “why” question is the most important of all
questions you must ask yourself. And not only about
global project goals but also locally about every
single piece of functionality. If you can't briefly and
clearly answer the question “what this entity is
needed for” then it's not needed.

Here and throughout we assume, to make our
example more complex and bizarre, that we are
optimizing all three factors.

2. Do the problems we outlined really exist? Do we
really observe unequal coffee-machines utilization in
the mornings? Do people really suffer from the
inability to find nearby a toffee nut latte they long
for? Do they really care about the minutes they spend
in lines?

3. Do we actually have resources to solve the problem?
Do we have access to a sufficient number of coffee
machines and users to ensure the system's efficiency?

4. Finally, will we really solve a problem? How we're
going to quantify the impact our API makes?

In general, there are no simple answers to those questions.
Ideally, you should start the work having all the relevant
metrics measured: how much time is wasted exactly, and
what numbers we're going to achieve providing we have
such coffee machines density. Let us also stress that in the
real world obtaining these numbers is only possible if
you're entering a stable market. If you try to create
something new, your only option is to rely on your
intuition.

Why an API?

Since our book is dedicated not to software development
per se, but to developing APIs, we should look at all those
questions from a different angle: why does solving those
problems specifically require an API, not simply a
specialized software application? In terms of our fictional
example, we should ask ourselves: why provide a service to
developers, allowing for brewing coffee to end users,
instead of just making an app?

In other words, there must be a solid reason to split two
software development domains: there are vendors that
provide APIs, and there are vendors that develop services
for end users. Their interests are somehow different to such
an extent that coupling these two roles in one entity is
undesirable. We will talk about the motivation to
specifically provide APIs instead of apps (or as an addition
to an app) in more detail in Section III.

We should also note that you should try making an API
when, and only when, your answer to question (3) is
"because that's our area of expertise". Developing APIs is a
sort of meta-engineering: you're writing some software to
allow other vendors to develop software to solve users'
problems. You must possess expertise in both domains
(APIs and user products) to design your API well.

As for our speculative example, let us imagine that in the
nearby future, some tectonic shift happened within the
coffee brewing market. Two distinct player groups took
shape: some companies provide “hardware,” i.e., coffee
machines; other companies have access to customer
auditory. Something like the modern-day flights market
looks like: there are air companies, which actually
transport passengers; and there are trip planning services
where users are choosing between trip variants the system
generates for them. We're aggregating hardware access to
allow app vendors for ordering freshly brewed coffee.

What and How

After finishing all these theoretical exercises, we should
proceed right to designing and developing the API, having
a decent understanding of two things:

what we're doing, exactly;
how we're doing it, exactly.

In our coffee case, we are:

providing an API to services with a larger audience,
so their users may order a cup of coffee in the most
efficient and convenient manner;
abstracting access to coffee machines' “hardware”
and developing generalized software methods to
select a beverage kind and some location to make an
order.

Chapter 9. Separating Abstraction Levels

“Separate abstraction levels in your code” is possibly the
most general advice to software developers. However, we
don't think it would be a grave exaggeration to say that
abstraction level separation is also the most difficult task
for API developers.

Before proceeding to the theory, we should formulate
clearly why abstraction levels are so important, and what
goals we're trying to achieve by separating them.

Let us remember that software product is a medium
connecting two outstanding contexts, thus transforming
terms and operations belonging to one subject area into
another area's concepts. The more these areas differ, the
more interim connecting links we have to introduce.

Back to our coffee example. What entity abstraction levels
do we see?

1. We're preparing an order via the API: one (or more)
cups of coffee, and receive payments for this.

2. Each cup of coffee is prepared according to some
recipe, which implies the presence of different
ingredients and sequences of preparation steps.

3. Each beverage is being prepared on some physical
coffee machine, occupying some position in space.

Every level presents a developer-facing “facet” in our API.
While elaborating on the hierarchy of abstractions, we are
first of all trying to reduce the interconnectivity of different
entities. That would help us to reach several goals.

1. Simplifying developers' work and the learning curve.
At each moment of time, a developer is operating
only those entities which are necessary for the task
they're solving right now. And conversely, badly
designed isolation leads to the situation when
developers have to keep in mind lots of concepts
mostly unrelated to the task being solved.

2. Preserving backward compatibility. Properly
separated abstraction levels allow for adding new
functionality while keeping interfaces intact.

3. Maintaining interoperability. Properly isolated low-
level abstractions help us to adapt the API to
different platforms and technologies without
changing high-level entities.

Let's say we have the following interface:

// Returns lungo recipe
GET /v1/recipes/lungo

// Posts an order to make a lungo
// using specified coffee-machine,
// and returns an order identifier
POST /v1/orders
{
 "coffee_machine_id",
 "recipe": "lungo"
}

// Returns order state
GET /v1/orders/{id}

Let's consider the question: how exactly developers should
determine whether the order is ready or not? Let's say we
do the following:

add a reference beverage volume to the lungo recipe;
add the currently prepared volume of beverage to the
order state.

GET /v1/recipes/lungo
→
{
 …
 "volume": "100ml"
}

GET /v1/orders/{id}
→
{
 …
 "volume": "80ml"
}

Then a developer just needs to compare two numbers to
find out whether the order is ready.

This solution intuitively looks bad, and it really is: it
violates all the abovementioned principles.

First, to solve the task “order a lungo” a developer needs to
refer to the “recipe” entity and learn that every recipe has
an associated volume. Then they need to embrace the
concept that an order is ready at that particular moment
when the prepared beverage volume becomes equal to the
reference one. This concept is simply unguessable, and
knowing it is mostly useless.

Second, we will have automatically got problems if we need
to vary the beverage size. For example, if one day we decide
to offer a choice to a customer, how many milliliters of
lungo they desire exactly, then we have to perform one of
the following tricks.

Option I: we have a list of possible volumes fixed and
introduce bogus recipes like /recipes/small-lungo or
recipes/large-lungo. Why “bogus”? Because it's still the
same lungo recipe, same ingredients, same preparation

steps, only volumes differ. We will have to start the mass
production of recipes, only different in volume, or
introduce some recipe “inheritance” to be able to specify
the “base” recipe and just redefine the volume.

Option II: we modify an interface, pronouncing volumes
stated in recipes being just the default values. We allow
requesting different cup volumes while placing an order:

POST /v1/orders
{
 "coffee_machine_id",
 "recipe": "lungo",
 "volume": "800ml"
}

For those orders with an arbitrary volume requested, a
developer will need to obtain the requested volume, not
from the GET /v1/recipes endpoint, but the GET
/v1/orders one. Doing so we're getting a whole bunch of
related problems:

there is a significant chance that developers will
make mistakes in this functionality implementation
if they add arbitrary volume support in the code
working with the POST /v1/orders handler, but forget
to make corresponding changes in the order
readiness check code;

the same field (coffee volume) now means different
things in different interfaces. In the context of the
GET /v1/recipes endpoint, the volume field means “a
volume to be prepared if no arbitrary volume is
specified in the POST /v1/orders request”; and it
cannot be renamed to “default volume” easily.

So we will get this:

GET /v1/orders/{id}
→
{
 …
 // this is a currently
 // prepared volume, bearing
 // the legacy name
 "volume": "80ml",
 // and this is the volume
 // requested by user
 "volume_requested": "800ml"
}

Third, the entire scheme becomes totally inoperable if
different types of coffee machines produce different
volumes of lungo. To introduce the “lungo volume depends
on machine type” constraint we have to do quite a nasty
thing: make recipes depend on coffee machine ids. By
doing so we start actively “stir” abstraction levels: one part
of our API (recipe endpoints) becomes unusable without
explicit knowledge of another part (coffee machines
listing). And what is even worse, developers will have to

change the logic of their apps: previously it was possible to
choose volume first, then a coffee machine; but now this
step must be rebuilt from scratch.

Okay, we understood how to make things naughty. But how
to make them nice?

Abstraction levels separation should go in three directions:

1. From user scenarios to their internal representation:
high-level entities and their method nomenclatures
must directly reflect the API usage scenarios; low-
level entities reflect the decomposition of the
scenarios into smaller parts.

2. From user to “raw” data subject field terms — in our
case from high-level terms like “order,” “recipe,” and
“café” to low-level terms like “beverage
temperature,” “coffee machine geographical
coordinates,” etc.

3. Finally, from data structures suitable for end users to
“raw” data structures — in our case, from “lungo
recipe” and “the "Chamomile" café chain” to the raw
byte data stream from “Good Morning” coffee
machine sensors.

The more the distance between programmable contexts our
API connects, the deeper the hierarchy of the entities we
are to develop.

In our example with coffee readiness detection, we clearly
face the situation when we need an interim abstraction
level:

on one hand, an “order” should not store the data
regarding coffee machine sensors;
on the other hand, a coffee machine should not store
the data regarding order properties (and its API
probably doesn't provide such functionality).

A naïve approach to this situation is to design an interim
abstraction level as a “connecting link,” which reformulates
tasks from one abstraction level into another. For example,
introduce a task entity like that:

{
 …
 "volume_requested": "800ml",
 "volume_prepared": "200ml",
 "readiness_policy": "check_volume",
 "ready": false,
 "coffee_machine_id",
 "operation_state": {
 "status": "executing",
 "operations": [
 // description of commands
 // being executed on
 // a physical coffee machine
]
 }
 …
}

So an order entity will keep links to a recipe and a task,
thus not dealing with other abstraction layers directly:

GET /v1/orders/{id}
→
{
 "recipe": "lungo",
 "task": {
 "id": <task id>
 }
}

We call this approach “naïve” not because it's wrong; on the
contrary, that's quite a logical “default” solution if you
don't know yet (or don't understand yet) how your API will
look like. The problem with this approach lies in its
speculativeness: it doesn't reflect the subject area's
organization.

An experienced developer in this case must ask: what
options do exist? how should we really determine the
readiness of the beverage? If it turns out that comparing
volumes is the only working method to tell whether the
beverage is ready, then all the speculations above are
wrong. You may safely include readiness-by-volume
detection into your interfaces since no other methods exist.
Before abstracting something we need to learn what exactly
we're abstracting.

In our example let's assume that we have studied coffee
machines' API specs, and learned that two device types
exist:

coffee machines capable of executing programs
coded in the firmware; the only customizable options
are some beverage parameters, like the desired
volume, a syrup flavor, and a kind of milk;
coffee machines with built-in functions, like “grind
specified coffee volume,” “shed the specified amount
of water,” etc.; such coffee machines lack
“preparation programs,” but provide access to
commands and sensors.

To be more specific, let's assume those two kinds of coffee
machines provide the following physical API.

Coffee machines with pre-built programs:

// Returns a list of programs
GET /programs
→
{
 // program identifier
 "program": 1,
 // coffee type
 "type": "lungo"
}

// Starts an execution
// of a specified program
// and returns execution status
POST /execute
{
 "program": 1,
 "volume": "200ml"
}
→
{
 // Unique identifier of the execution
 "execution_id": "01-01",
 // Identifier of the program
 "program": 1,
 // Beverage volume requested
 "volume": "200ml"
}

// Cancels current program
POST /cancel

// Returns execution status.
// The format is the same
// as in the `POST /execute` method
GET /execution/status

NB. Just in case: this API violates a number of design
principles, starting with a lack of versioning; it's
described in such a manner because of two reasons:
(1) to demonstrate how to design a more convenient
API, (2) in the real life, you will really get something
like that from vendors, and this API is actually quite
a sane one.

Coffee machines with built-in functions:

// Returns a list of functions available
GET /functions
→
{
 "functions": [
 {
 // Operation type:
 // * set_cup
 // * grind_coffee
 // * pour_water
 // * discard_cup
 "type": "set_cup",
 // Arguments available
 // to each operation.
 // To keep it simple,
 // let's limit these to one:
 // * volume
 // — a volume of a cup,
 // coffee, or water
 "arguments": ["volume"]
 },
 …
]
}

// Takes arguments values
// and starts executing a function
POST /functions
{
 "type": "set_cup",
 "arguments": [{
 "name": "volume",
 "value": "300ml"
 }]
}

// Returns sensors' state
GET /sensors
→
{
 "sensors": [
 {
 // Values allowed:
 // * cup_volume
 // * ground_coffee_volume
 // * cup_filled_volume
 "type": "cup_volume",
 "value": "200ml"
 },
 …
]
}

NB. The example is intentionally fictitious to model
the situation described above: to determine beverage
readiness you have to compare the requested volume
with volume sensor readings.

Now the picture becomes more apparent: we need to
abstract coffee machine API calls so that the “execution
level” in our API provides general functions (like beverage
readiness detection) in a unified form. We should also note
that these two coffee machine API kinds belong to different
abstraction levels themselves: the first one provides a
higher-level API than the second one. Therefore, a
“branch” of our API working with second-kind machines
will be deeper.

The next step in abstraction level separating is determining
what functionality we're abstracting. To do so, we need to
understand the tasks developers solve at the “order” level
and to learn what problems they get if our interim level is
missing.

1. Obviously, the developers desire to create an order
uniformly: list high-level order properties (beverage
kind, volume, and special options like syrup or milk
type), and don't think about how the specific coffee
machine executes it.

2. Developers must be able to learn the execution state:
is the order ready? If not — when to expect it's ready
(and is there any sense to wait in case of execution
errors)?

3. Developers need to address the order's location in
space and time — to explain to users where and when
they should pick the order up.

4. Finally, developers need to run atomic operations,
like canceling orders.

Note, that the first-kind API is much closer to developers'
needs than the second-kind API. An indivisible “program”
is a way more convenient concept than working with raw
commands and sensor data. There are only two problems
we see in the first-kind API:

absence of explicit “programs” to “recipes” relation;
program identifier is of no use to developers since
there is a “recipe” concept;
absence of explicit “ready” status.

But with the second-kind API, it's much worse. The main
problem we foresee is an absence of “memory” for actions
being executed. Functions and sensors API is totally
stateless, which means we don't even understand who
called a function being currently executed, when, or to
what order it relates.

So we need to introduce two abstraction levels.

1. Execution control level, which provides a uniform
interface to indivisible programs. “Uniform interface”
means here that, regardless of a coffee machine's
kind, developers may expect:

statuses and other high-level execution
parameters nomenclature (for example,
estimated preparation time or possible
execution errors) being the same;
methods nomenclature (for example, order
cancellation method) and their behavior being
the same.

2. Program runtime level. For the first-kind API, it will
provide just a wrapper for existing programs API; for
the second-kind API, the entire “runtime” concept is
to be developed from scratch by us.

What does this mean in a practical sense? Developers will
still be creating orders, dealing with high-level entities
only:

POST /v1/orders
{
 "coffee_machin
 "recipe": "lungo",
 "volume": "800ml"
}
→
{ "order_id" }

The POST /orders handler checks all order parameters, puts
a hold of the corresponding sum on the user's credit card,
forms a request to run, and calls the execution level. First, a
correct execution program needs to be fetched:

POST /v1/program-matcher
{ "recipe", "coffee-machine" }
→
{ "program_id" }

Now, after obtaining a correct program identifier, the
handler runs a program:

POST /v1/programs/{id}/run
{
 "order_id",
 "coffee_machine_id",
 "parameters": [
 {
 "name": "volume",
 "value": "800ml"
 }
]
}
→
{ "program_run_id" }

Please note that knowing the coffee machine API kind isn't
required at all; that's why we're making abstractions! We
could possibly make interfaces more specific, implementing
different run and match endpoints for different coffee
machines:

POST /v1/program-matcher/{api_type}
POST /v1/{api_type}/programs/{id}/run

This approach has some benefits, like the possibility to
provide different sets of parameters, specific to the API
kind. But we see no need for such fragmentation. run
method handler is capable of extracting all the program
metadata and performing one of two actions:

call POST /execute physical API method, passing
internal program identifier — for the first API kind;
initiate runtime creation to proceed with the second
API kind.

Out of general considerations, the runtime level for the
second-kind API will be private, so we are more or less free
in implementing it. The easiest solution would be to
develop a virtual state machine that creates a “runtime”
(i.e., a stateful execution context) to run a program and
control its state.

POST /v1/runtimes
{
 "coffee_machine",
 "program",
 "parameters"
}
→
{ "runtime_id", "state" }

The program here would look like that:

{
 "program_id",
 "api_type",
 "commands": [
 {
 "sequence_id",
 "type": "set_cup",
 "parameters"
 },
 …
]
}

And the state like that:

{
 // Runtime status:
 // * "pending" — awaiting execution
 // * "executing" — performing some command
 // * "ready_waiting" — beverage is ready
 // * "finished" — all operations done
 "status": "ready_waiting",
 // Command being currently executed.
 // Similar to line numbers
 // in computer programs
 "command_sequence_id",
 // How the execution concluded:
 // * "success"
 // — beverage prepared and taken
 // * "terminated"
 // — execution aborted
 // * "technical_error"
 // — preparation error
 // * "waiting_time_exceeded"
 // — beverage prepared,
 // but not taken;
 // timed out then disposed
 "resolution": "success",
 // All variables values,
 // including sensors state
 "variables"
}

NB: while implementing the orders → match → run →
runtimes call sequence we have two options:

either POST /orders handler requests the data
regarding the recipe, the coffee machine model, and
the program on its own behalf, and forms a stateless
request which contains all the necessary data (the
API kind, command sequence, etc.);
or the request contains only data identifiers, and the
next handler in the chain will request pieces of data
it needs via some internal APIs.

Both variants are plausible, selecting one of them depends
on implementation details.

Abstraction Levels Isolation

A crucial quality of properly separated abstraction levels
(and therefore a requirement to their design) is a level
isolation restriction: only adjacent levels may interact. If
“jumping over” is needed in the API design, then clearly
mistakes were made.

Get back to our example. How retrieving order status would
work? To obtain a status the following call chain is to be
performed:

a user initiates a call to the GET /v1/orders method;
the orders handler completes operations on its level
of responsibility (for example, checks user
authorization), finds program_run_id identifier and
performs a call to the runs/{program_run_id}
endpoint;

the runs endpoint in its turn completes operations
corresponding to its level (for example, checks the
coffee machine API kind) and, depending on the API
kind, proceeds with one of two possible execution
branches:

either calls the GET /execution/status method
of a physical coffee machine API, gets the
coffee volume, and compares it to the reference
value;
or invokes the GET /v1/runtimes/{runtime_id}
method to obtain the state.status and
converts it to the order status;

in the case of the second-kind API, the call chain
continues: the GET /runtimes handler invokes the GET
/sensors method of a physical coffee machine API
and performs some manipulations with the data, like
comparing the cup / ground coffee / shed water
volumes with the reference ones, and changing the
state and the status if needed.

NB: The “call chain” wording shouldn't be treated literally.
Each abstraction level might be organized differently in a
technical sense:

there might be explicit proxying of calls down the
hierarchy;
there might be a cache at each level, being updated
upon receiving a callback call or an event. In
particular, a low-level runtime execution cycle
obviously must be independent of upper levels,

which implies renewing its state in the background,
and not waiting for an explicit call.

Note what happens here: each abstraction level wields its
own status (e.g., order, runtime, sensors status), being
formulated in subject area terms corresponding to this
level. Forbidding the “jumping over” results in the
necessity to spawn statuses at each level independently.

Let's now look at how the order cancel operation flows
through our abstraction levels. In this case, the call chain
will look like that:

a user initiates a call to the POST
/v1/orders/{id}/cancel method;
the method handler completes operations on its level
of responsibility:

checks the authorization;
solves money issues, i.e., whether a refund is
needed;
finds the program_run_id identifier and calls the
runs/{program_run_id}/cancel method;

the runs/cancel handler completes operations on its
level of responsibility and, depending on the coffee
machine API kind, proceeds with one of two possible
execution branches:

either calls the POST /execution/cancel
method of a physical coffee machine API;
or invokes the POST
/v1/runtimes/{id}/terminate method;

in the second case, the call chain continues as the
terminate handler operates its internal state:

changes the resolution to "terminated";
runs the "discard_cup" command.

Handling state-modifying operations like the cancel one
requires more advanced abstraction levels juggling skills
compared to non-modifying calls like the GET /status one.
There are two important moments:

1. At each abstraction level the idea of “order
canceling” is reformulated:

at the orders level, this action in fact splits into
several “cancels” of other levels: you need to
cancel money holding and to cancel an order
execution;
at the second API kind, physical level the
“cancel” operation itself doesn't exist: “cancel”
means “executing the discard_cup command,”
which is quite the same as any other command.
The interim API level is needed to make this
transition between different level “cancels”
smooth and rational without jumping over
canyons.

2. From a high-level point of view, canceling an order is
a terminal action since no further operations are
possible. From a low-level point of view, the
processing continues until the cup is discarded, and
then the machine is to be unlocked (i.e., new

runtimes creation allowed). It's a task to the
execution control level to couple those two states,
outer (the order is canceled) and inner (the execution
continues).

It might look like forcing the abstraction levels isolation is
redundant and makes interfaces more complicated. In fact,
it is: it's very important to understand that flexibility,
consistency, readability, and extensibility come with a
price. One may construct an API with zero overhead,
essentially just providing access to the coffee machine's
microcontrollers. However using such an API would be a
disaster for a developer, not to mention the inability to
extend it.

Separating abstraction levels is first of all a logical
procedure: how we explain to ourselves and developers
what our API consists of. The abstraction gap between
entities exists objectively, no matter what interfaces we
design. Our task is just to sort this gap into levels explicitly.
The more implicitly abstraction levels are separated (or
worse — blended into each other), the more complicated is
your API's learning curve, and the worse is the code that
uses it.

The Data Flow

One useful exercise allowing us to examine the entire
abstraction hierarchy is excluding all the particulars and
constructing (on paper or just in your head) a data flow
chart: what data is flowing through your API entities, and

how it's being altered at each step.

This exercise doesn't just help but also allows us design
really large APIs with huge entity nomenclatures. Human
memory isn't boundless; any project which grows
extensively will eventually become too big to keep the
entire entity hierarchy in mind. But it's usually possible to
keep in mind the data flow chart, or at least keep a much
larger portion of the hierarchy.

What data flow do we have in our coffee API?

1. It starts with the sensors data, e.g., volumes of coffee
/ water / cups. This is the lowest data level we have,
and here we can't change anything.

2. A continuous sensors data stream is being
transformed into discrete command execution
statuses, injecting new concepts which don't exist
within the subject area. A coffee machine API doesn't
provide a “coffee is being poured” or a “cup is being
set” notion. It's our software that treats incoming
sensor data and introduces new terms: if the volume
of coffee or water is less than the target one, then the
process isn't over yet. If the target value is reached,
then this synthetic status is to be switched, and the
next command is executed. It is important to note
that we don't calculate new variables out of sensor
data: we need to create a new dataset first, a context,
an “execution program” comprising a sequence of
steps and conditions, and fill it with initial values. If

this context is missing, it's impossible to understand
what's happening with the machine.

3. Having logical data about the program execution
state, we can (again via creating a new high-level
data context) merge two different data streams from
two different kinds of APIs into a single stream,
which provides in a unified form the data regarding
executing a beverage preparation program with
logical variables like the recipe, volume, and
readiness status.

Each API abstraction level, therefore corresponds to some
data flow generalization and enrichment, converting low-
level (and in fact useless to end users) context terms into
higher-level context terms.

We may also traverse the tree backward.

1. At the order level, we set its logical parameters:
recipe, volume, execution place and possible statuses
set.

2. At the execution level, we read the order level data
and create a lower level execution context: the
program as a sequence of steps, their parameters,
transition rules, and initial state.

3. At the runtime level, we read the target parameters
(which operation to execute, and what the target
volume is) and translate them into coffee machine
API microcommands and statuses for each command.

Also, if we take a deeper look into the “bad” decision
(forcing developers to determine actual order status on
their own), being discussed at the beginning of this
chapter, we could notice a data flow collision there:

on one hand, in the order context “leaked” physical
data (beverage volume prepared) is injected,
therefore stirring abstraction levels irreversibly;
on the other hand, the order context itself is
deficient: it doesn't provide new meta-variables non-
existent at the lower levels (the order status, in
particular), doesn't initialize them, and doesn't set
the game rules.

We will discuss data contexts in more detail in Section II.
Here we will just state that data flows and their
transformations might be and must be examined as a
specific API facet, which helps us to separate abstraction
levels properly and to check if our theoretical concepts
work as intended.

Chapter 10. Isolating Responsibility Areas

In the previous chapter, we concluded that the hierarchy of
abstractions in our hypothetical project would comprise:

the user level (the entities formulated in terms
understandable by users and acted upon by them:
orders, coffee recipes);
the program execution control level (the entities
responsible for transforming orders into machine
commands);
the runtime level for the second API kind (the
entities describing the command execution state
machine).

We are now to define each entity's responsibility area:
what's the reasoning for keeping this entity within our API
boundaries? What operations are applicable to the entity
directly (and which are delegated to other objects)? In fact,
we are to apply the “why”-principle to every single API
entity.

To do so, we must iterate all over the API and formulate in
subject area terms what every object is. Let us remind that
the abstraction levels concept implies that each level is
some interim subject area per se; a step we take in the
journey from describing a task in terms belonging to the
first connected context (“a lungo ordered by a user”) terms
belonging to the second connected context (“a command
performed by a coffee machine”).

As for our fictional example, it would look as follows.

1. User-level entities.
An order describes some logical unit in app-
user interaction. An order might be:

created
checked for its status
retrieved
canceled.

A recipe describes an “ideal model” of some
coffee beverage type, i.e., its customer
properties. A recipe is an immutable entity for
us, which means we could only read it.
A coffee-machine is a model of a real-world
device. We must be able to retrieve the coffee
machine's geographical location and the
options it supports from this model (which will
be discussed below).

2. Program execution control-level entities.
A program describes a general execution plan
for a coffee machine. Programs could only be
read.
The programs/matcher entity is capable of
coupling a recipe and a program, which in fact
means retrieving a dataset needed to prepare a
specific recipe on a specific coffee machine.
The programs/run entity describes a single fact
of running a program on a coffee machine. A
run might be:

initialized (created)
checked for its status

canceled.
3. Runtime-level entities.

A runtime describes a specific execution data
context, i.e., the state of each variable. A
runtime might be:

initialized (created)
checked for its status
terminated.

If we look closely at the entities, we may notice that each
entity turns out to be a composite. For example, a program
will operate high-level data (recipe and coffee-machine),
enhancing them with its subject area terms
(program_run_id for instance). This is totally fine:
connecting contexts is what APIs do.

Use Case Scenarios

At this point, when our API is in general clearly outlined
and drafted, we must put ourselves into the developer's
shoes and try writing code. Our task is to look at the entity
nomenclature and make some guesses regarding their
future usage.

So, let us imagine we've got a task to write an app for
ordering a coffee, based on our API. What code would we
write?

Obviously, the first step is offering a choice to a user, to
make them point out what they want. And this very first
step reveals that our API is quite inconvenient. There are
no methods allowing for choosing something. Developers
have to implement these steps:

retrieve all possible recipes from the GET /v1/recipes
endpoint;
retrieve a list of all available coffee machines from
the GET /v1/coffee-machines endpoint;
write a code that traverses all this data.

If we try writing pseudocode, we will get something like
that:

// Retrieve all possible recipes
let recipes =
 api.getRecipes();
// Retrieve a list of
// all available coffee machines
let coffeeMachines =
 api.getCoffeeMachines();
// Build a spatial index
let coffeeMachineRecipesIndex =
 buildGeoIndex(
 recipes,
 coffeeMachines
);
// Select coffee machines
// matching user's needs
let matchingCoffeeMachines =
 coffeeMachineRecipesIndex.query(
 parameters,
 { "sort_by": "distance" }
);
// Finally, show offers to the user
app.display(matchingCoffeeMachines);

As you see, developers are to write a lot of redundant code
(to say nothing about the complexity of implementing
spatial indexes). Besides, if we take into consideration our
Napoleonic plans to cover all coffee machines in the world
with our API, then we need to admit that this algorithm is
just a waste of computational resources on retrieving lists
and indexing them.

The necessity of adding a new endpoint for searching
becomes obvious. To design such an interface we must
imagine ourselves being UX designers, and think about how
an app could try to arouse users' interest. Two scenarios are
evident:

display all cafes in the vicinity and the types of coffee
they offer (a “service discovery” scenario) — for new
users or just users with no specific preferences;
display nearby cafes where a user could order a
particular type of coffee — for users seeking a certain
beverage type.

Then our new interface would look like this:

POST /v1/offers/search
{
 // optional
 "recipes": ["lungo", "americano"],
 "position": <geographical coordinates>,
 "sort_by": [
 { "field": "distance" }
],
 "limit": 10
}
→
{
 "results": [
 {
 "coffee_machine",
 "place",
 "distance",
 "offer"
 }
],
 "cursor"
}

Here:

an offer — a marketing bid: on what conditions a
user could have the requested coffee beverage (if
specified in the request), or some kind of a marketing
offer — prices for the most popular or interesting
products (if no specific preference was set);

a place — a spot (café, restaurant, street vending
machine) where the coffee machine is located; we
never introduced this entity before, but it's quite
obvious that users need more convenient guidance to
find a proper coffee machine than just geographical
coordinates.

NB. We could have enriched the existing /coffee-machines
endpoint instead of adding a new one. This decision,
however, looks less semantically viable: coupling different
modes of listing entities in one interface, by relevance and
by order, is usually a bad idea because these two types of
rankings imply different features and usage scenarios.
Furthermore, enriching the search with “offers” pulls this
functionality out of the coffee-machines namespace: the
fact of getting offers to prepare specific beverages in
specific conditions is a key feature to users, with specifying
the coffee machine being just a part of an offer. And users
actually rarely care about coffee machine models.

NB. Actually, having coffee_machine_id in the interface is
to some extent violating the abstraction separation
principle. It should be organized in a more complex way:
coffee shops shall somehow map the incoming orders
against available coffee machines, and only the type of the
coffee machine (if a coffee shop really operates several of
them) is something meaningful in the context of the order
creation. However, we make it deliberately simplified by
making a coffee machine selectable in the API to keep our
API example readable enough.

Coming back to the code developers are writing, it would
now look like that:

// Searching for offers
// matching a user's intent
let offers = api.search(parameters);
// Display them to a user
app.display(offers);

Helpers

Methods similar to the newly invented offers/search one
are called helpers. The purpose they exist is to generalize
known API usage scenarios and facilitate implementing
them. By “facilitating” we mean not only reducing
wordiness (getting rid of “boilerplates”) but also helping
developers to avoid common problems and mistakes.

For instance, let's consider the order price question. Our
search function returns some “offers” with prices. But
“price” is volatile; coffee could cost less during “happy
hours,” for example. Developers could make a mistake
thrice while implementing this functionality:

cache search results on a client device for too long
(as a result, the price will always be outdated);
contrary to the previous, call the search endpoint
excessively just to actualize prices, thus overloading
the network and the API servers;

create an order with an invalid price (therefore
deceiving a user, displaying one sum, and debiting
another).

To solve the third problem we could demand including the
displayed price in the order creation request, and return an
error if it differs from the actual one. (In fact, any API
working with money shall do so.) But it isn't helping with
the first two problems and deteriorates the user experience.
Displaying the actual price is always a much more
convenient behavior than displaying errors upon pressing
the “place an order” button.

One solution is to provide a special identifier to an offer.
This identifier must be specified in an order creation
request.

{
 "results": [
 {
 "coffee_machine",
 "place",
 "distance",
 "offer": {
 "id",
 "price",
 "currency_code",
 // Date and time
 // when the offer expires
 "valid_until"
 }
 }
],
 "cursor"
}

By doing so we're not only helping developers to grasp the
concept of getting the relevant price but also solving a UX
task of telling users about “happy hours.”

As an alternative, we could split endpoints: one for
searching, and one for obtaining offers. This second
endpoint would only be needed to actualize prices if
needed.

Error Handling

And one more step towards making developers' life easier:
how an “invalid price” error would look like?

POST /v1/orders
{ "offer_id", … }
→ 409 Conflict
{ "message": "Invalid price" }

Formally speaking, this error response is enough: users get
the “Invalid price” message, and they have to repeat the
order. But from the UX point of view that would be a
horrible decision: the user hasn't made any mistakes, and
this message isn't helpful at all.

The main rule of error interfaces in the APIs is that an error
response must help a client to understand what to do with
this error. An error response content must address the
following questions:

1. Which party is the problem's source: the client or the
server?
HTTP APIs traditionally employ the 4xx status codes
to indicate client problems and 5xx to indicate server
problems (with the exception of the 404 code, which
is an uncertainty status).

2. If the error is caused by a server, is there any sense to
repeat the request? If yes, then when?

3. If the error is caused by a client, is it resolvable, or
not?
The invalid price error is resolvable: a client could
obtain a new price offer and create a new order with
it. But if the error occurred because of a mistake in
the client code, then eliminating the cause is
impossible, and there is no need to make the user
push the “place an order” button again: this request
will never succeed.
NB: here and throughout we indicate resolvable
problems with the 409 Conflict code, and
unresolvable ones with the 400 Bad Request code.

4. If the error is resolvable then what's the kind of
problem? Obviously, a client couldn't resolve a
problem it's unaware of. For every resolvable
problem, developers must write some code
(reobtaining the offer in our case), so there must be a
list of possible error reasons and the corresponding
field in the error response.

5. If the same kind of errors arise because of different
parameters being invalid then which parameter value
is wrong exactly?

6. Finally, if some parameter value is unacceptable then
what values are acceptable?

In our case, the price mismatch error should look like this:

409 Conflict
{
 // Error kind
 "reason": "offer_invalid",
 "localized_message":
 "Something goes wrong.⮠
 Try restarting the app."
 "details": {
 // What's wrong exactly?
 // Which validity checks failed?
 "checks_failed": [
 "offer_lifetime"
]
 }
}

After getting this error, a client is to check the error's kind
(“some problem with the offer”), check the specific error
reason (“order lifetime expired”), and send an offer
retrieving request again. If the checks_failed field
indicated another error reason (for example, the offer isn't
bound to the specified user), client actions would be
different (re-authorize the user, then get a new offer). If
there was no error handler for this specific reason, a client
should show the localized_message to the user, and invoke
the standard error recovery procedure.

It is also worth mentioning that unresolvable errors are
useless to a user at the time when the error occurs (since
the client couldn't react meaningfully to unknown errors),
but it doesn't mean that providing extended error data is

excessive. A developer will read it while fixing the issue in
their code.

Decomposing Interfaces. The “7±2” Rule

Out of our own API development experience, we can tell
without any doubt that the greatest final interface design
mistake (and the greatest developers' pain accordingly) is
the excessive overloading of entities' interfaces with fields,
methods, events, parameters, and other attributes.

Meanwhile, there is the “Golden Rule” of interface design
(applicable not only to APIs but almost to anything):
humans could comfortably keep 7±2 entities in short-term
memory. Manipulating a larger number of chunks
complicates things for most humans. The rule is also
known as the Miller's law.

The only possible method of overcoming this law is
decomposition. Entities should be grouped under a single
designation at every concept level of the API, so developers
are never to operate more than a reasonable amount of
entities (let's say, ten) at a time.

Let's take a look at the coffee machine search function
response in our API. To ensure an adequate UX of the app,
quite bulky datasets are required:

https://en.wikipedia.org/wiki/Working_memory#Capacity

{
 "results": [{
 "coffee_machine_id",
 "coffee_machine_type":
 "drip_coffee_maker",
 "coffee_machine_brand",
 "place_name": "The Chamomile",
 // Coordinates of a place
 "place_location_latitude",
 "place_location_longitude",
 "place_open_now",
 "working_hours",
 // Walking route parameters
 "walking_distance",
 "walking_time",
 // How to find the place
 "place_location_tip",
 "offers": [{
 "recipe": "lungo",
 "recipe_name":
 "Our brand new Lungo®™",
 "recipe_description",
 "volume": "800ml",
 "offer_id",
 "offer_valid_until",
 "localized_price":
 "Just $19 for a large coffee cup",
 "price": "19.00",
 "currency_code": "USD",
 "estimated_waiting_time": "20s"
 }, …]
 }, …]
}

This approach is regretfully quite usual and could be found
in almost every API. As we see, the number of entities'
fields exceeds recommended seven, and even nine. Fields
are mixed into one single list, grouped by a common prefix.

In this situation, we are to split this structure into data
domains: which fields are logically related to a single
subject area. In our case we may identify at least 7 data
clusters:

data regarding the place where the coffee machine is
located;
properties of the coffee machine itself;
route data;
recipe data;
recipe options specific to the particular place;
offer data;
pricing data.

Let's try to group it together:

{
 "results": [{
 // Place data
 "place": { "name", "location" },
 // Coffee machine properties
 "coffee-machine": { "id", "brand", "type" },
 // Route data
 "route": {
 "distance",
 "duration",
 "location_tip"
 },
 "offers": [{
 // Recipe data
 "recipe": {
 "id",
 "name",
 "description"
 },
 // Recipe specific options
 "options":
 { "volume" },
 // Offer metadata
 "offer":
 { "id", "valid_until" },
 // Pricing
 "pricing": {
 "currency_code",
 "price",
 "localized_price"
 },
 "estimated_waiting_time"
 }, …]

 }, …]
}

Such a decomposed API is much easier to read than a long
list of different attributes. Furthermore, it's probably better
to group even more entities in advance. For example, a
place and a route could be nested fields under a synthetic
location property, or offer and pricing fields might be
combined into some generalized object.

It is important to say that readability is achieved not only
by merely grouping the entities. Decomposing must be
performed in such a manner that a developer, while reading
the interface, instantly understands, “Here is the place
description of no interest to me right now, no need to
traverse deeper.” If the data fields needed to complete some
action are scattered all over different composites, the
readability doesn't improve and even degrades.

Proper decomposition also helps with extending and
evolving an API. We'll discuss the subject in Section II.

Chapter 11. Describing Final Interfaces

When all entities, their responsibilities, and their relations
to each other are defined, we proceed to the development
of the API itself. We are to describe the objects, fields,
methods, and functions nomenclature in detail. In this
chapter, we're giving purely practical advice on making
APIs usable and understandable.

An important assertion at number 0:

0. Rules Must Not Be Applied Unthinkingly

Rules are just simply formulated generalizations from one's
experience. They are not to be applied unconditionally, and
they don't make thinking redundant. Every rule has a
rational reason to exist. If your situation doesn't justify
following the rule — then you shouldn't do it.

For example, demanding a specification be consistent
exists to help developers spare time on reading docs. If you
need developers to read some entity's doc, it is totally
rational to make its signature deliberately inconsistent.

This idea applies to every concept listed below. If you get
an unusable, bulky, unobvious API because you follow the
rules, it's a motivation to revise the rules (or the API).

It is important to understand that you can always introduce
concepts of your own. For example, some frameworks
willfully reject paired set_entity / get_entity methods in a
favor of a single entity() method, with an optional
argument. The crucial part is being systematic in applying
the concept. If it's rendered into life, you must apply it to
every single API method, or at the very least elaborate a
naming rule to discern such polymorphic methods from
regular ones.

Ensuring Readability and Consistency

The most important task for the API vendor is to make code
written by third-party developers atop of the API easily
readable and maintainable. Remember that the law of large
numbers works against you: if some concept or a signature
might be treated wrong, they will be inevitably treated
wrong by a number of partners, and this number will be
increasing with the API popularity growth.

1. Explicit Is Always Better Than Implicit

Entity name must explicitly tell what it does and what side
effects to expect while using it.

Bad:

// Cancels an order
order.canceled = true;

It's unobvious that a state field might be set, and that this
operation will cancel the order.

Better:

// Cancels an order
order.cancel();

Bad:

// Returns aggregated statistics
// since the beginning of time
orders.getStats()

Even if the operation is non-modifying but
computationally expensive, you should explicitly indicate
that, especially if clients got charged for computational
resource usage. Even more so, default values must not be
set in a manner leading to maximum resource
consumption.

Better:

// Calculates and returns
// aggregated statistics
// for a specified period of time
orders.calculateAggregatedStats({
 begin_date,
 end_date
});

Try to design function signatures to be absolutely
transparent about what the function does, what
arguments it takes, and what's the result. While reading
a code working with your API, it must be easy to
understand what it does without reading docs.

Two important implications:

1.1. If the operation is modifying, it must be obvious from
the signature. In particular, there might be no modifying
operations using the GET verb.

1.2. If your API's nomenclature contains both synchronous
and asynchronous operations, then (a)synchronicity must
be apparent from signatures, or a naming convention must
exist.

2. Specify Which Standards Are Used

Regretfully, humanity is unable to agree on the most trivial
things, like which day starts the week, to say nothing about
more sophisticated standards.

So always specify exactly which standard is applied.
Exceptions are possible if you're 100% sure that only one
standard for this entity exists in the world, and every
person on Earth is totally aware of it.

Bad: "date": "11/12/2020" — there are tons of date
formatting standards; you can't even tell which number
means the day number and which number means the
month.

Better: "iso_date": "2020-11-12".

Bad: "duration": 5000 — five thousand of what?

Better:
"duration_ms": 5000
or
"duration": "5000ms"
or
"iso_duration": "PT5S"
or
"duration": {"unit": "ms", "value": 5000}.

One particular implication of this rule is that money sums
must always be accompanied by a currency code.

It is also worth saying that in some areas the situation with
standards is so spoiled that, whatever you do, someone got
upset. A “classical” example is geographical coordinates
order (latitude-longitude vs longitude-latitude). Alas, the
only working method of fighting frustration there is the
“Serenity Notepad” to be discussed in Section II.

3. Entities Must Have Concrete Names

Avoid single amoeba-like words, such as “get,” “apply,”
“make,” etc.

Bad: user.get() — hard to guess what is actually returned.

Better: user.get_id().

4. Don't Spare the Letters

In the 21st century, there's no need to shorten entities'
names.

Bad: order.time() — unclear, what time is actually
returned: order creation time, order preparation time,
order waiting time?…

Better: order.get_estimated_delivery_time()

Bad:

// Returns a pointer to the first occurrence
// in str1 of any of the characters
// that are part of str2
strpbrk (str1, str2)

Possibly, an author of this API thought that the pbrk
abbreviature would mean something to readers; clearly
mistaken. Also, it's hard to tell from the signature which
string (str1 or str2) stands for a character set.

Better:

str_search_for_characters(
 str,
 lookup_character_set
)

— though it's highly disputable whether this function
should exist at all; a feature-rich search function would be
much more convenient. Also, shortening a string to an str
bears no practical sense, regretfully being a routine in
many subject areas.

NB: sometimes field names are shortened or even omitted
(e.g., a heterogenous array is passed instead of a set of
named fields) to lessen the amount of traffic. In most cases,
this is absolutely meaningless as usually the data is
compressed at the protocol level.

5. Naming Implies Typing

A field named recipe must be of a Recipe type. A field
named recipe_id must contain a recipe identifier that we
could find within the Recipe entity.

Same for primitive types. Arrays must be named in a plural
form or as collective nouns, e.g., objects, children. If that's
impossible, better add a prefix or a postfix to avoid doubt.

Bad: GET /news — unclear whether a specific news item is
returned, or a list of them.

Better: GET /news-list.

Similarly, if a Boolean value is expected, entity naming
must describe some qualitative state, e.g., is_ready,
open_now.

Bad: "task.status": true
— statuses are not explicitly binary; also such API isn't
extendable.

Better: "task.is_finished": true.

Specific platforms imply specific additions to this rule with
regard to the first-class citizen types they provide. For
example, JSON doesn't have a Date object type, so the dates
are to be passed as numbers or strings. In this case, it's
convenient to mark dates somehow, for example, by adding
_at or _date postfixes, i.e. created_at, occurred_at.

If an entity name is a polysemantic term itself, which could
confuse developers, better add an extra prefix or postfix to
avoid misunderstanding.

Bad:

// Returns a list of
// coffee machine builtin functions
GET /coffee-machines/{id}/functions

The word “function” is many-valued. It could mean built-in
functions, but also “a piece of code,” or a state (machine is
functioning).

Better: GET /v1/coffee-machines/{id}/builtin-
functions-list

6. Matching Entities Must Have Matching Names and
Behave Alike

Bad: begin_transition / stop_transition
— begin and stop terms don't match; developers will have
to dig into the docs.

Better: either begin_transition / end_transition or
start_transition / stop_transition.

Bad:

// Find the position of the first occurrence
// of a substring in a string
strpos(haystack, needle)

// Replace all occurrences
// of the search string
// with the replacement string
str_replace(needle, replace, haystack)

Several rules are violated:

inconsistent underscore using;
functionally close methods have different
needle/haystack argument ordering;
the first function finds the first occurrence while the
second one finds them all, and there is no way to
deduce that fact out of the function signatures.

We're leaving the exercise of making these signatures better
for the reader.

7. Avoid Double Negations

Bad: "dont_call_me": false
— humans are bad at perceiving double negation; make
mistakes.

Better: "prohibit_calling": true or "avoid_calling":
true
— it's easier to read, though you shouldn't deceive yourself.
Avoid semantical double negations, even if you've found a
“negative” word without a “negative” prefix.

Also worth mentioning is that making mistakes in de
Morgan's laws usage is even simpler. For example, if you
have two flags:

GET /coffee-machines/{id}/stocks
→
{
 "has_beans": true,
 "has_cup": true
}

“Coffee might be prepared” condition would look like
has_beans && has_cup — both flags must be true. However,
if you provide the negations of both flags:

{
 "beans_absence": false,
 "cup_absence": false
}

— then developers will have to evaluate the flag
!beans_absence && !cup_absence which is equivalent to !
(beans_absence || cup_absence) conditions, and in this
transition, people tend to make mistakes. Avoiding double
negations helps little, and regretfully only general advice
could be given: avoid the situations when developers have
to evaluate such flags.

https://en.wikipedia.org/wiki/De_Morgan's_laws

8. Avoid Implicit Type Conversion

This advice is opposite to the previous one, ironically.
When developing APIs you frequently need to add a new
optional field with a non-empty default value. For example:

const orderParams = {
 contactless_delivery: false
};
const order = api.createOrder(
 orderParams
);

This new contactless_delivery option isn't required, but
its default value is true. A question arises: how developers
should discern explicit intention to abolish the option
(false) from knowing not it exists (the field isn't set)? They
have to write something like:

if (
 Type(
 orderParams.contactless_delivery
) == 'Boolean' &&
 orderParams
 .contactless_delivery == false) {
 …
}

This practice makes the code more complicated, and it's
quite easy to make mistakes, which will effectively treat the
field in an opposite manner. The same could happen if
some special values (e.g., null or -1) to denote value
absence are used.

NB: this observation is not valid if both the platform and
the protocol unambiguously support special tokens to reset
a field to its default value with zero abstraction overhead.
However, full and consistent support of this functionality
rarely sees implementation. Arguably, the only example of
such an API among those being popular nowadays is SQL:
the language has the NULL concept, default field values
functionality, and support for operations like UPDATE … SET
field = DEFAULT (in most dialects). Though working with
the protocol is still complicated (for example, in many
dialects there is no simple method of getting back those
values reset by an UPDATE … DEFAULT query), SQL features
operating defaults conveniently enough to use this
functionality as is.

If the protocol does not support resetting to default values
as a first-class citizen, the universal rule is to make all new
Boolean flags false by default.

Better

const orderParams = {
 force_contact_delivery: true
};
const order = api.createOrder(
 orderParams
);

If a non-Boolean field with specially treated value absence
is to be introduced, then introduce two fields.

Bad:

// Creates a user
POST /v1/users
{ … }
→
// Users are created with a monthly
// spending limit set by default
{
 "spending_monthly_limit_usd": "100",
 …
}
// To cancel the limit null value is used
PUT /v1/users/{id}
{
 "spending_monthly_limit_usd": null,
 …
}

Better

POST /v1/users
{
 // true — user explicitly cancels
 // monthly spending limit
 // false — limit isn't canceled
 // (default value)
 "abolish_spending_limit": false,
 // Non-required field
 // Only present if the previous flag
 // is set to false
 "spending_monthly_limit_usd": "100",
 …
}

NB: the contradiction with the previous rule lies in the
necessity of introducing “negative” flags (the “no limit”
flag), which we had to rename to abolish_spending_limit.
Though it's a decent name for a negative flag, its semantics
is still unobvious, and developers will have to read the docs.
That's the way.

9. No Results Is a Result

If a server processed a request correctly and no exceptional
situation occurred — there must be no error. Regretfully, an
antipattern is widespread — of throwing errors when zero
results are found.

Bad

POST /v1/coffee-machines/search
{
 "query": "lungo",
 "location": <customer's location>
}
→ 404 Not Found
{
 "localized_message":
 "No one makes lungo nearby"
}

4xx statuses imply that a client made a mistake. But no
mistakes were made by either a customer or a developer: a
client cannot know whether the lungo is served in this
location beforehand.

Better:

POST /v1/coffee-machines/search
{
 "query": "lungo",
 "location": <customer's location>
}
→ 200 OK
{
 "results": []
}

This rule might be reduced to: if an array is the result of the
operation, then the emptiness of that array is not a
mistake, but a correct response. (Of course, if an empty
array is acceptable semantically; an empty array of
coordinates is a mistake for sure.)

10. Errors Must Be Informative

While writing the code developers face problems, many of
them quite trivial, like invalid parameter types or some
boundary violations. The more convenient the error
responses your API return, the less the amount of time
developers waste struggling with it, and the more
comfortable working with the API.

Bad:

POST /v1/coffee-machines/search
{
 "recipes": ["lngo"],
 "position": {
 "latitude": 110,
 "longitude": 55
 }
}
→ 400 Bad Request
{}

— of course, the mistakes (typo in the "lngo", wrong
coordinates) are obvious. But the handler checks them
anyway, so why not return readable descriptions?

Better:

{
 "reason": "wrong_parameter_value",
 "localized_message":
 "Something is wrong.⮠
 Contact the developer of the app."
 "details": {
 "checks_failed": [
 {
 "field": "recipe",
 "error_type": "wrong_value",
 "message":
 "Unknown value: 'lngo'.⮠
 Did you mean 'lungo'?"
 },
 {
 "field": "position.latitude",
 "error_type":
 "constraint_violation",
 "constraints": {
 "min": -90,
 "max": 90
 },
 "message":
 "'position.latitude' value⮠
 must fall within⮠
 the [-90, 90] interval"
 }
]
 }
}

It is also a good practice to return all detectable errors at
once to spare developers' time.

11. Maintain a Proper Error Sequence

First, always return unresolvable errors before the
resolvable ones:

POST /v1/orders
{
 "recipe": "lngo",
 "offer"
}
→ 409 Conflict
{
 "reason": "offer_expired"
}
// Request repeats
// with the renewed offer
POST /v1/orders
{
 "recipe": "lngo",
 "offer"
}
→ 400 Bad Request
{
 "reason": "recipe_unknown"
}

— what was the point of renewing the offer if the order
cannot be created anyway?

Second, maintain such a sequence of unresolvable errors
which leads to a minimal amount of customers' and
developers' irritation. In particular, this means returning
the most significant errors first, solving which requires
more effort.

Bad:

POST /v1/orders
{
 "items": [{
 "item_id": "123",
 "price": "0.10"
 }]
}
→
409 Conflict
{
 "reason": "price_changed",
 "details": [{
 "item_id": "123",
 "actual_price": "0.20"
 }]
}
// Request repeats
// with an actual price
POST /v1/orders
{
 "items": [{
 "item_id": "123",
 "price": "0.20"
 }]
}
→
409 Conflict
{
 "reason": "order_limit_exceeded",
 "localized_message":
 "Order limit exceeded"
}

— what was the point of showing the price changed dialog,
if the user still can't make an order, even if the price is
right? When one of the concurrent orders has finished, and
the user is able to commit another one, prices, item
availability, and other order parameters will likely need
another correction.

Third, draw a chart: which error resolution might lead to
the emergence of another one. Otherwise, you might
eventually return the same error several times, or worse,
make a cycle of errors.

// Create an order
// with a paid delivery
POST /v1/orders
{
 "items": 3,
 "item_price": "3000.00"
 "currency_code": "MNT",
 "delivery_fee": "1000.00",
 "total": "10000.00"
}
→ 409 Conflict
// Error: if the order sum
// is more than 9000 tögrögs,
// delivery must be free
{
 "reason": "delivery_is_free"
}
// Create an order
// with a free delivery
POST /v1/orders
{
 "items": 3,
 "item_price": "3000.00"
 "currency_code": "MNT",
 "delivery_fee": "0.00",
 "total": "9000.00"
}
→ 409 Conflict
// Error: minimal order sum
// is 10000 tögrögs
{
 "reason": "below_minimal_sum",
 "currency_code": "MNT",

 "minimal_sum": "10000.00"
}

You may note that in this setup the error can't be resolved
in one step: this situation must be elaborated over, and
either order calculation parameters must be changed
(discounts should not be counted against the minimal order
sum), or a special type of error must be introduced.

Developing Machine-Readable Interfaces

In pursuit of API clarity for humans, we frequently forget
that it's not developers themselves who interact with the
endpoints, but the code they've written. Many concepts
that work well with user interfaces are badly suited for the
program ones: specifically, developers can't make decisions
based on textual information, and they can't “refresh” the
state in case of some confusing situation.

12. The State of the System Must Be Observable by
Clients

Sometimes, program systems provide interfaces that do not
expose to the clients all the data on what is now being
executed on the user's behalf, specifically — which
operations are running and what their statuses are.

Bad:

// Creates an order and returns its id
POST /v1/orders
{ … }
→
{ "order_id" }

// Returns an order by its id
GET /v1/orders/{id}
// The order isn't confirmed
// and awaits checking
→ 404 Not Found

— though the operation looks to be executed successfully,
the client must store the order id and recurrently check the
GET /v1/orders/{id} state. This pattern is bad per se, but
gets even worse when we consider two cases:

clients might lose the id if system failure happened
in between sending the request and getting the
response, or if app data storage was damaged or
cleansed;
customers can't use another device; in fact, the
knowledge of orders being created is bound to a
specific user agent.

In both cases, customers might consider order creating
failed, and make a duplicate order, with all the
consequences to be blamed on you.

Better:

// Creates an order and returns it
POST /v1/orders
{ <order parameters> }
→
{
 "order_id",
 // The order is created in explicit
 // «checking» status
 "status": "checking",
 …
}

// Returns an order by its id
GET /v1/orders/{id}
→
{ "order_id", "status" … }

// Returns all customer's orders
// in all statuses
GET /v1/users/{id}/orders

This rule is applicable to errors as well, especially client
ones. If the error might be corrected, the related data must
be machine-readable.

Bad: { "error": "email malformed" } — the only thing
developers might do with this error is to show the message
to the end user.

Better:

{
 // Machine-readable status
 "status": "validation_failed",
 // An array; if there are several
 // errors, the user might correct
 // them all at once
 "failed_checks": [
 {
 "field: "email",
 "error_type": "malformed",
 // Localized
 // human-readable message
 "message": "email malformed"
 }
]
}

13. Specify Caching Policies and Lifespans of
Resources

In modern systems, clients usually have their own state and
almost universally cache results of requests — no matter,
session-wise or long-term, every entity has some period of
autonomous existence. So it's highly desirable to make
clarifications; it should be understandable how the data is

supposed to be cached, if not from operation signatures,
but at least from the documentation.

Let's stress that we understand “cache” in the extended
sense: which variation of operation parameters (not just
the request time, but other variables as well) should be
considered close enough to some previous request to use
the cached result?

Bad:

// Returns lungo price in cafes
// closest to the specified location
GET /price?recipe=lungo⮠
 &longitude={longitude}⮠
 &latitude={latitude}
→
{ "currency_code", "price" }

Two questions arise:

until when the price is valid?
in what vicinity of the location the price is valid?

Better: you may use standard protocol capabilities to
denote cache options, like the Cache-Control header. If you
need caching in both temporal and spatial dimensions, you
should do something like that:

// Returns an offer: for what money sum
// our service commits to make a lungo
GET /price?recipe=lungo⮠
 &longitude={longitude}⮠
 &latitude={latitude}
→
{
 "offer": {
 "id",
 "currency_code",
 "price",
 "conditions": {
 // Until when the price is valid
 "valid_until",
 // What vicinity
 // the price is valid within
 // * city
 // * geographical object
 // * …
 "valid_within"
 }
 }
}

14. Pagination, Filtration, and Cursors

Any endpoints returning data collections must be
paginated. No exclusions exist.

Any paginated endpoint must provide an interface to
iterate over all the data.

Bad:

// Returns a limited number of records
// sorted by creation date
// starting with a record with an index
// equals to `offset`
GET /v1/records?limit=10&offset=100

At the first glance, this is the most standard way of
organizing the pagination in APIs. But let's ask ourselves
some questions.

1. How clients could learn about new records being
added at the beginning of the list? Obviously, a client
could only retry the initial request (offset=0) and
compare identifiers to those it already knows. But
what if the number of new records exceeds the limit?
Imagine the situation:

the client process records sequentially;
some problem occurred, and a batch of new
records awaits processing;
the client requests new records (offset=0) but
can't find any known records on the first page;
the client continues iterating over records page
by page until it finds the last known identifier;
all this time the order processing is idle;
the client might never start processing, being
preoccupied with chaotic page requests to
restore the sequence of records.

2. What happens if some record is deleted from the
head of the list?
Easy: the client will miss one record and will never
learn this.

3. What cache parameters to set for this endpoint?
None could be set: repeating the request with the
same limit and offset parameters each time
produces a new record set.

Better: in such unidirectional lists the pagination must use
the key that implies the order. Like this:

// Returns a limited number of records
// sorted by creation date
// starting with a record with an identifier
// following the specified one
GET /v1/records⮠
 ?older_than={record_id}&limit=10
// Returns a limited number of records
// sorted by creation date
// starting with a record with an identifier
// preceding the specified one
GET /v1/records⮠
 ?newer_than={record_id}&limit=10

With the pagination organized like that, clients never
bother about records being added or removed in the
processed part of the list: they continue to iterate over the
records, either getting new ones (using newer_than) or older
ones (using older_than). If there is no record removal

operation, clients may easily cache responses — the URL
will always return the same record set.

Another way to organize such lists is by returning a cursor
to be used instead of the record_id, making interfaces
more versatile.

// Initial data request
POST /v1/records/list
{
 // Some additional filtering options
 "filter": {
 "category": "some_category",
 "created_date": {
 "older_than": "2020-12-07"
 }
 }
}
→
{ "cursor" }

// Follow-up requests
GET /v1/records?cursor=<cursor value>
{ "records", "cursor" }

One advantage of this approach is the possibility to keep
initial request parameters (i.e. the filter in our example)
embedded into the cursor itself, thus not copying them in
follow-up requests. It might be especially actual if the

initial request prepares the full dataset, for example,
moving it from the “cold” storage to a “hot” one (then the
cursor might simply contain the encoded dataset id and the
offset).

There are several approaches to implementing cursors (for
example, making a single endpoint for initial and follow-up
requests and returning the first data portion in the first
response). As usual, the crucial part is maintaining
consistency across all such endpoints.

NB: some sources discourage this approach because in this
case user can't see a list of all pages and can't choose an
arbitrary one. We should note here that:

such a case (pages list and page selection) exists if we
deal with user interfaces; we could hardly imagine a
program interface that needs to provide access to
random data pages;
if we still talk about an API to some application,
which has a “paging” user control, then a proper
approach would be to prepare “paging” data on the
server side, including generating links to pages;
cursor-based solutions don't prohibit using the
offset/limit parameters; nothing could prevent us
from creating a dual interface, which might serve
both GET /items?cursor=… and GET /items?offset=…
&limit=… requests;

finally, if there is a necessity to provide access to
arbitrary pages in the user interface, we should ask
ourselves a question, which problem is being solved
that way; probably, users use this functionality to
find something: a specific element on the list, or the
position they ended while working with the list last
time; probably, we should provide more convenient
controls to solve those tasks than accessing data
pages by their indexes.

Bad:

// Returns a limited number of records
// sorted by a specified field
// in a specified order
// starting with a record with an index
// equals to `offset`
GET /records?sort_by=date_modified⮠
 &sort_order=desc&limit=10&offset=100

Sorting by the date of modification usually means that data
might be modified. In other words, some records might
change after the first data chunk is returned, but before the
next chunk is requested. Modified records will simply
disappear from the listing because of moving to the first
page. Clients will never get those records that were
changed during the iteration process, even if the cursor-
based scheme is implemented, and they never learn the
sheer fact of such an omission. Also, this particular

interface isn't extendable as there is no way to add sorting
by two or more fields.

Better: there is no general solution to this problem in this
formulation. Listing records by modification time will
always be unpredictably volatile, so we have to change the
approach itself; we have two options.

Option one: fix the records ordering at the moment we've
got the initial request, i.e., our server produces the entire
list and stores it in the immutable form:

// Creates a view based on the parameters passed
POST /v1/record-views
{
 sort_by: [{
 "field": "date_modified",
 "order": "desc"
 }]
}
→
{ "id", "cursor" }

// Returns a portion of the view
GET /v1/record-views/{id}⮠
 ?cursor={cursor}

Since the produced view is immutable, access to it might be
organized in any form, including a limit-offset scheme,
cursors, Range header, etc. However, there is a downside:
records modified after the view was generated will be
misplaced or outdated.

Option two: guarantee a strict records order, for example,
by introducing a concept of record change events:

// `cursor` is optional
GET /v1/records/modified/list⮠
 ?[cursor={cursor}]
→
{
 "modified": [
 { "date", "record_id" }
],
 "cursor"
}

This scheme's downsides are the necessity to create
separate indexed event storage, and the multiplication of
data items, since for a single record many events might
exist.

Ensuring the Technical Quality of APIs

Fine APIs must not only solve developers' and end users'
problems but also ensure the quality of the solution, i.e., do
not contain logical and technical mistakes (and do not
provoke developers to make them), save computational
resources, and in general implement the best practices
applicable to the subject area.

15. Keep the Precision of Fractional Numbers Intact

If the protocol allows, fractional numbers with fixed
precision (like money sums) must be represented as a
specially designed type like Decimal or its equivalent.

If there is no Decimal type in the protocol (for instance,
JSON doesn't have one), you should either use integers
(e.g., apply a fixed multiplicator) or strings.

If conversion to a float number will certainly lead to losing
the precision (let's say if we translate “20 minutes” into
hours as a decimal fraction), it's better to either stick to a
fully precise format (e.g., opt for 00:20 instead of 0.33333…)
or to provide an SDK to work with this data, or as a last
resort describe the rounding principles in the
documentation.

16. All API Operations Must Be Idempotent

Let us remind the reader that idempotency is the following
property: repeated calls to the same function with the same
parameters won't change the resource state. Since we're
discussing client-server interaction in the first place,
repeating requests in case of network failure isn't an
exception, but a norm of life.

If the endpoint's idempotency can't be assured naturally,
explicit idempotency parameters must be added, in a form
of either a token or a resource version.

Bad:

// Creates an order
POST /orders

A second order will be produced if the request is repeated!

Better:

// Creates an order
POST /v1/orders
X-Idempotency-Token: <random string>

A client on its side must retain the X-Idempotency-Token in
case of automated endpoint retrying. A server on its side
must check whether an order created with this token exists.

An alternative:

// Creates order draft
POST /v1/orders/drafts
→
{ "draft_id" }

// Confirms the draft
PUT /v1/orders/drafts⮠
 /{draft_id}/confirmation
{ "confirmed": true }

Creating order drafts is a non-binding operation since it
doesn't entail any consequences, so it's fine to create drafts
without the idempotency token.

Confirming drafts is a naturally idempotent operation, with
the draft_id being its idempotency key.

Also worth mentioning that adding idempotency tokens to
naturally idempotent handlers isn't meaningless either,
since it allows to distinguish two situations:

a client didn't get the response because of some
network issues, and is now repeating the request;
a client made a mistake by posting conflicting
requests.

Consider the following example: imagine there is a shared
resource, characterized by a revision number, and a client
tries updating it.

POST /resource/updates
{
 "resource_revision": 123
 "updates"
}

The server retrieves the actual resource revision and finds it
to be 124. How to respond correctly? 409 Conflict might be
returned, but then the client will be forced to understand
the nature of the conflict and somehow resolve it,
potentially confusing the user. It's also unwise to fragment
the conflict-resolving algorithm, allowing each client to
implement it independently.

The server may compare request bodies, assuming that
identical updates values mean retrying, but this
assumption might be dangerously wrong (for example if the
resource is a counter of some kind, then repeating identical
requests are routine).

Adding the idempotency token (either directly as a random
string, or indirectly in a form of drafts) solves this problem.

POST /resource/updates
X-Idempotency-Token: <token>
{
 "resource_revision": 123
 "updates"
}
→ 201 Created

— the server found out that the same token was used in
creating revision 124, which means the client is retrying
the request.

Or:

POST /resource/updates
X-Idempotency-Token: <token>
{
 "resource_revision": 123
 "updates"
}
→ 409 Conflict

— the server found out that a different token was used in
creating revision 124, which means an access conflict.

Furthermore, adding idempotency tokens not only resolves
the issue but also makes advanced optimizations possible.
If the server detects an access conflict, it could try to
resolve it, “rebasing” the update like modern version

control systems do, and return a 200 OK instead of a 409
Conflict. This logic dramatically improves user experience,
being fully backward-compatible, and helps to avoid
conflict-resolving code fragmentation.

Also, be warned: clients are bad at implementing
idempotency tokens. Two problems are common:

you can't really expect clients generate truly random
tokens — they may share the same seed or simply use
weak algorithms or entropy sources; therefore you
must put constraints on token checking: token must
be unique to a specific user and resource, not
globally;
clients tend to misunderstand the concept and either
generate new tokens each time they repeat the
request (which deteriorates the UX, but otherwise
healthy) or conversely use one token in several
requests (not healthy at all and could lead to
catastrophic disasters; another reason to implement
the suggestion in the previous clause); writing
detailed doc and/or client library is highly
recommended.

17. Avoid Non-Atomic Operations

There is a common problem with implementing the
changes list approach: what to do if some changes were
successfully applied, while others are not? The rule is
simple: if you may ensure the atomicity (i.e., either apply
all changes or none of them) — do it.

Bad:

// Returns a list of recipes
api.getRecipes();
→
{
 "recipes": [{
 "id": "lungo",
 "volume": "200ml"
 }, {
 "id": "latte",
 "volume": "300ml"
 }]
}
// Changes recipes' parameters
api.updateRecipes({
 "changes": [{
 "id": "lungo",
 "volume": "300ml"
 }, {
 "id": "latte",
 "volume": "-1ml"
 }]
});
→ Bad Request
// Re-reading the list
api.getRecipes();
→
{
 "recipes": [{
 "id": "lungo",
 // This value changed
 "volume": "300ml"
 }, {
 "id": "latte",
 // and this did not

 "volume": "300ml"
 }]
}

— there is no way how the client might learn that failed
operation was actually partially applied. Even if there is an
indication of this fact in the response, the client still
cannot tell, whether the lungo volume changed because of
the request, or if some other client changed it.

If you can't guarantee the atomicity of an operation, you
should elaborate in detail on how to deal with it. There
must be a separate status for each individual change.

Better:

api.updateRecipes({
 "changes": [{
 "recipe_id": "lungo",
 "volume": "300ml"
 }, {
 "recipe_id": "latte",
 "volume": "-1ml"
 }]
});
// You may actually return
// a “partial success” status
// if the protocol allows it
→
{
 "changes": [{
 "change_id",
 "occurred_at",
 "recipe_id": "lungo",
 "status": "success"
 }, {
 "change_id",
 "occurred_at",
 "recipe_id": "latte",
 "status": "fail",
 "error"
 }]
}

Here:

the change_id field is a unique identifier of each
atomic change;

the occurred_at field is a moment of time when the
change was actually applied;
the error field contains the error data related to the
specific change.

Might be of use:

introducing sequence_id parameters in the request to
guarantee execution order and to align item order in
response with the requested one;
expose a separate /changes-history endpoint for
clients to get the history of applied changes even if
the app crashed while getting a partial success
response or there was a network timeout.

Non-atomic changes are undesirable because they erode
the idempotency concept. Let's take a look at the example:

api.updateRecipes({
 "idempotency_token",
 "changes": [{
 "recipe_id": "lungo",
 "volume": "300ml"
 }, {
 "recipe_id": "latte",
 "volume": "400ml"
 }]
});
→
{
 "changes": [{
 …
 "status": "success"
 }, {
 …
 "status": "fail",
 "error": {
 "reason":
 "too_many_requests"
 }
 }]
}

Imagine the client failed to get a response because of a
network error, and it repeats the request:

api.updateRecipes({
 "idempotency_token",
 "changes": [{
 "recipe_id": "lungo",
 "volume": "300ml"
 }, {
 "recipe_id": "latte",
 "volume": "400ml"
 }]
});
→
{
 "changes": [{
 …
 "status": "success"
 }, {
 …
 "status": "success",
 }]
}

To the client, everything looks normal: changes were
applied, and the last response got is always actual. But the
resource state after the first request was inherently
different from the resource state after the second one,
which contradicts the very definition of “idempotency.”

It would be more correct if the server did nothing upon
getting the second request with the same idempotency
token, and returned the same status list breakdown. But it
implies that storing these breakdowns must be

implemented.

Just in case: nested operations must be idempotent
themselves. If they are not, separate idempotency tokens
must be generated for each nested operation.

18. Don't Invent Security Practices

If the author of this book was given a dollar each time he
had to implement the additional security protocol invented
by someone, he would already retire. The API developers'
passion for signing request parameters or introducing
complex schemes of exchanging passwords for tokens is as
obvious as meaningless.

First, almost all security-enhancing procedures for every
kind of operation are already invented. There is no need to
re-think them anew; just take the existing approach and
implement it. No self-invented algorithm for request
signature checking provides the same level of preventing
the Man-in-the-Middle attack as a TLS connection with
mutual certificate pinning.

Second, it's quite presumptuous (and dangerous) to
assume you're an expert in security. New attack vectors
come every day, and being aware of all the actual threats is
a full-day job. If you do something different during
workdays, the security system designed by you will contain
vulnerabilities that you have never heard about — for
example, your password-checking algorithm might be

https://en.wikipedia.org/wiki/Man-in-the-middle_attack

susceptible to the timing attack, and your webserver, to the
request splitting attack.

19. Explicitly Declare Technical Restrictions

Every field in your API comes with restrictions: the
maximum allowed text length, the size of attached
documents, the allowed ranges for numeric values, etc.
Often, describing those limits is neglected by API
developers — either because they consider it obvious, or
because they simply don't know the boundaries themselves.
This is of course an antipattern: not knowing what are the
limits automatically implies that partners' code might stop
working at any moment because of the reasons they don't
control.

Therefore, first, declare the boundaries for every field in the
API without any exceptions, and, second, generate proper
machine-readable errors describing which exact boundary
was violated should such a violation occur.

The same reasoning applies to quotas as well: partners
must have access to the statistics on which part of the
quota they have already used, and the errors in the case of
exceeding quotas must be informative.

20. Count the Amount of Traffic

https://en.wikipedia.org/wiki/Timing_attack
https://capec.mitre.org/data/definitions/105.html

Nowadays the amount of traffic is rarely taken into account
— the Internet connection is considered unlimited almost
universally. However, it's still not entirely unlimited: with
some degree of carelessness, it's always possible to design a
system generating the amount of traffic that is
uncomfortable even for modern networks.

There are three obvious reasons for inflating network
traffic:

no data pagination is provided;
no limits on the data fields set, or too large binary
data (graphics, audio, video, etc.) is being
transmitted;
clients query for the data too frequently or cache
them too little.

If the first two problems are solved by applying pure
technical measures (see the corresponding paragraphs), the
third one is more of a logical kind: how to organize the
client updates stream to find a balance between the
responsiveness of the system and the resources spent to
ensure it. Here are several recommendations:

do not rely too heavily on asynchronous interfaces;

on one side, they allow tackling many technical
problems related to the API performance,
which, in turn, allows for maintaining
backward compatibility: if some method is
asynchronous from the very beginning, the

latencies and the data consistency models
might be easily tuned if needed;
from the other side, the number of requests
clients generate becomes hardly predicable, as
a client in order to retrieve a result needs to
make some unpredictable number of attempts;

declare an explicit retry policy (for example, with the
Retry-After header);

yes, some partners will ignore it as developers
will get too lazy to implement it, but some will
not (especially if you provide the SDKs as well);

if you expect a significant number of asynchronous
operations in the API, allow developers to choose
between the poll model (clients make repeated
requests to an endpoint to check the asynchronous
procedure status) and the push model (the server
notifies clients of status changes, for example, via
webhooks or server-push mechanics);

if some entity comprises both “lightweight” data
(let's say, the name and the description of the recipe)
and “heavy” data (let's say, the promo picture of the
beverage which might easily be a hundred times
larger than the text fields), it's better to split
endpoints and pass only a reference to the “heavy”
data (a link to the image, in our case) — this will
allow at least setting different cache policies for
different kinds of data.

As a useful exercise, try modeling the typical lifecycle of a
partner's app's main functionality (for example, making a
single order) to count the number of requests and the
amount of traffic that it takes.

21. Avoid Implicit Partial Updates

One of the most common API design antipatterns is an
attempt to spare something on detailed state change
descriptions.

Bad:

// Creates an order comprising
// two items
POST /v1/orders/
{
 "delivery_address",
 "items": [{
 "recipe": "lungo",
 }, {
 "recipe": "latte",
 "milk_type": "oats"
 }]
}
→
{ "order_id" }

// Partially rewrites the order,
// updates the volume
// of the second item
PATCH /v1/orders/{id}
{
 "items": [null, {
 "volume": "800ml"
 }]
}
→
{ /* updates accepted */ }

This signature is bad per se as it's unreadable. What does
null as the first array element mean — is it a deletion of an
element or an indication that no actions are needed
towards it? What happens with the fields that are not
stated in the update operation body (delivery_address,
milk_type) — will they be reset to defaults, or stay
unchanged?

The nastiest part is that whatever option you choose, the
number of problems will only multiply further. Let's say we
agreed that the {"items":[null, {…}]} statement means
that the first element of the array is left untouched, i.e., no
changes are needed. Then, how shall we encode its
deletion? Invent one more “magical” value meaning
“remove it”? Similarly, if the fields that are not explicitly
mentioned retain their value — how would you reset them
to defaults?

The simple solution is always rewriting the data entirely,
i.e., to require passing the entire object, to replace the
current state with it, and to return the full state as a result
of the operation. This obvious solution is frequently
rejected with the following reasoning:

increased requests sizes and therefore, the amount of
traffic;
the necessity to detect which fields are changed (for
instance, to generate proper state change events for
subscribers);
the inability of organizing cooperative editing when
two clients are editing different object properties
simultaneously.

However, if we take a deeper look, all these disadvantages
are actually imaginative:

the reasons for increasing the amount of traffic were
described in the previous paragraphs, and serving
extra fields is not one of them (and if it is, it's rather a
rationale to decompose the endpoint);
the concept of sending only those fields that changed
is in fact about shifting the responsibility of change
detection to clients;

it doesn't make the task any easier, and also
introduces the problem of client code
fragmentation as several independent
implementations of the change detection
algorithm will occur;

furthermore, the existence of the client
algorithm for finding the fields that changed
doesn't mean that the server might skip
implementing it as client developers might
make mistakes or simply spare the effort and
always send all the fields;

finally, this naïve approach to organizing
collaborative editing works only with transitive
changes (i.e., if the final result does not depend on
the order in which the operations were executed),
and in our case, it's already not true: deletion of the
first element and editing the second element are
non-transitive;

often, in addition to sparing traffic on requests,
the same concept is applied to responses as
well, i.e., no data is returned for modifying
operations; thus two clients making
simultaneous edits do not see one another's
changes.

Better: split the functionality. This also correlates well
with the decomposition principle we discussed in the
previous chapter.

// Creates an order comprising
// two items
POST /v1/orders/
{
 "parameters": {
 "delivery_address"
 }
 "items": [{
 "recipe": "lungo",
 }, {
 "recipe": "latte",
 "milk_type": "oats"
 }]
}
→
{
 "order_id",
 "created_at",
 "parameters": {
 "delivery_address"
 }
 "items": [
 { "item_id", "status"},
 { "item_id", "status"}
]
}

// Changes the order parameters
// that affect all items
PUT /v1/orders/{id}/parameters
{ "delivery_address" }
→
{ "delivery_address" }

// Partially updates one item,
// sets the volume of one of
// the beverages
PUT /v1/orders/{id}/items/{item_id}
{
 // All the fields are passed,
 // even if only one has changed
 "recipe", "volume", "milk_type"
}
→
{ "recipe", "volume", "milk_type" }

// Deletes one order item
DELETE /v1/orders/{id}/items/{item_id}

Now to reset volume to its default value it's enough to omit
it in the PUT /items/{item_id} request body. Also, the
operations of deleting one item while simultaneously
modifying another one are now transitive.

This approach also allows for separating non-mutable and
calculated fields (in our case, created_at and status) from
editable ones without creating ambiguous situations (what
should happen if a client tries to change the created_at
field?)

It is also possible to return full order objects from PUT
endpoints instead of just the sub-resource that was
overwritten (though it requires some naming convention).

NB: while decomposing endpoints, the idea of splitting
them into mutable and non-mutable data often looks
tempting. It makes it possible to mark the latter as
infinitely cacheable and never bother about pagination
ordering and update format consistency. The plan looks
solid on paper, but with the API expansion, it frequently
happens that immutable fields eventually cease being
immutable, and the entire concept not only stops working
properly but even starts looking like a design flaw. We
would rather recommend designating data as immutable in
one of the two cases: (1) making them editable will really
mean breaking backward compatibility, or (2) the link to
the resource (for example, an image) is served via the API
as well, and you do possess the capability of making those
links persistent (e.g., you might generate a new link to the
image instead of rewriting the contents of the old one).

Even better: design a format for atomic changes.

POST /v1/order/changes
X-Idempotency-Token: <idempotency token>
{
 "changes": [{
 "type": "set",
 "field": "delivery_address",
 "value": <new value>
 }, {
 "type": "unset_item_field",
 "item_id",
 "field": "volume"
 }],
 …
}

This approach is much harder to implement, but it's the
only viable method to implement collaborative editing
since it explicitly reflects what a user was actually doing
with entity representation. With data exposed in such a
format, you might actually implement offline editing, when
user changes are accumulated and then sent at once, while
the server automatically resolves conflicts by “rebasing”
the changes.

Ensuring API Product Quality

Apart from the technological limitations, any real API will
soon face the imperfection of the surrounding reality. Of
course, any one of us would prefer living in the world of
pink unicorns, free of piles of legacy code, evil-doers,

national conflicts, and competitors' scheming. Fortunately
or not, we live in the real world, and API vendors have to
mind all of those while developing the API.

22. Use Globally Unique Identifiers

It's considered a good form to use globally unique strings as
entity identifiers, either semantic (e.g., "lungo" for
beverage types) or random ones (e.g., UUID-4). It might
turn out to be extremely useful if you need to merge data
from several sources under a single identifier.

In general, we tend to advise using urn-like identifiers, e.g.,
urn:order:<uuid> (or just order:<uuid>). That helps a lot in
dealing with legacy systems with different identifiers
attached to the same entity. Namespaces in urns help to
understand quickly which identifier is used and if there is a
usage mistake.

One important implication: never use increasing
numbers as external identifiers. Apart from the
abovementioned reasons, it allows counting how many
entities of each type there are in the system. Your
competitors will be able to calculate a precise number of
orders you have each day, for example.

NB: in this book, we often use short identifiers like "123" in
code examples; that's for the convenience of reading the
book on small screens. Do not replicate this practice in a
real-world API.

https://en.wikipedia.org/wiki/Universally_unique_identifier#Version_4_(random)

23. Stipulate Future Restrictions

With the API popularity growth, it will inevitably become
necessary to introduce technical means of preventing illicit
API usage, such as displaying captchas, setting honeypots,
raising the “too many requests” exceptions, installing anti-
DDoS proxies, etc. All these things cannot be done if the
corresponding errors and messages were not described in
the docs from the very beginning.

You are not obliged to actually generate those exceptions,
but you might stipulate this possibility in the Terms of
Service (ToS). For example, you might describe the 429 Too
Many Requests error or captcha redirect but implement the
functionality when it's actually needed.

It is extremely important to leave room for multi-factored
authentication (such as TOTP, SMS, or 3D-secure-like
technologies) if it's possible to make payments through the
API. In this case, it's a must-have from the very beginning.

24. No Bulk Access to Sensitive Data

If it's possible to get through the API users' personal data,
bank card numbers, private messages, or any other kind of
information, exposing which might seriously harm users,
partners, and/or you — there must be no methods of bulk
getting the data, or at least there must be rate limiters,
page size restrictions, and, ideally, multi-factored
authentication in front of them.

Often, making such offloads on an ad-hoc basis, i.e.,
bypassing the API, is a reasonable practice.

25. Localization and Internationalization

All endpoints must accept language parameters (for
example, in a form of the Accept-Language header), even if
they are not being used currently.

It is important to understand that the user's language and
the user's jurisdiction are different things. Your API
working cycle must always store the user's location. It
might be stated either explicitly (requests contain
geographical coordinates) or implicitly (initial location-
bound request initiates session creation which stores the
location), but no correct localization is possible in absence
of location data. In most cases reducing the location to just
a country code is enough.

The thing is that lots of parameters potentially affecting
data formats depend not on language, but on a user's
location. To name a few: number formatting (integer and
fractional part delimiter, digit groups delimiter), date
formatting, the first day of the week, keyboard layout,
measurement units system (which might be non-decimal!),
etc. In some situations, you need to store two locations:
user residence location and user “viewport.” For example, if
a US citizen is planning a European trip, it's convenient to
show prices in local currency, but measure distances in
miles and feet.

Sometimes explicit location passing is not enough since
there are lots of territorial conflicts in the world. How the
API should behave when user coordinates lie within
disputed regions is a legal matter, regretfully. The author of
this book once had to implement a “state A territory
according to state B official position” concept.

Important: mark a difference between localization for end
users and localization for developers. Take a look at the
example in rule #12: the localized_message is meant for
the user; the app should show it if there is no specific
handler for this error exists in the code. This message must
be written in the user's language and formatted according
to the user's location. But the
details.checks_failed[].message is meant to be read by
developers examining the problem. So it must be written
and formatted in a manner that suits developers best. In
the software development world, it usually means “in
English.”

Worth mentioning is that the localized_ prefix in the
example is used to differentiate messages to users from
messages to developers. A concept like that must be, of
course, explicitly stated in your API docs.

And one more thing: all strings must be UTF-8, no
exclusions.

Chapter 12. Annex to Section I. Generic API Example

Let's summarize the current state of our API study.

1. Offer Search

POST /v1/offers/search
{
 // optional
 "recipes": ["lungo", "americano"],
 "position": <geographical coordinates>,
 "sort_by": [
 { "field": "distance" }
],
 "limit": 10
}
→
{
 "results": [{
 // Place data
 "place":
 { "name", "location" },
 // Coffee machine properties
 "coffee-machine":
 { "id", "brand", "type" },
 // Route data
 "route": {
 "distance",
 "duration",
 "location_tip"
 },
 "offers": [{
 // Recipe data
 "recipe":
 { "id", "name", "description" },
 // Recipe specific options
 "options":
 { "volume" },
 // Offer metadata
 "offer":

 { "id", "valid_until" },
 // Pricing
 "pricing": {
 "currency_code",
 "price",
 "localized_price"
 },
 "estimated_waiting_time"
 }, …]
 }, …],
 "cursor"
}

2. Working with Recipes

// Returns a list of recipes
// Cursor parameter is optional
GET /v1/recipes?cursor=<cursor>
→
{ "recipes", "cursor" }

// Returns the recipe by its id
GET /v1/recipes/{id}
→
{
 "recipe_id",
 "name",
 "description"
}

3. Working with Orders

// Creates an order
POST /v1/orders
{
 "coffee_machine_id",
 "currency_code",
 "price",
 "recipe": "lungo",
 // Optional
 "offer_id",
 // Optional
 "volume": "800ml"
}
→
{ "order_id" }

// Returns the order by its id
GET /v1/orders/{id}
→
{ "order_id", "status" }

// Cancels the order
POST /v1/orders/{id}/cancel

4. Working with Programs

// Returns an identifier of the program
// corresponding to specific recipe
// on specific coffee-machine
POST /v1/program-matcher
{ "recipe", "coffee-machine" }
→
{ "program_id" }

// Return program description
// by its id
GET /v1/programs/{id}
→
{
 "program_id",
 "api_type",
 "commands": [
 {
 "sequence_id",
 "type": "set_cup",
 "parameters"
 },
 …
]
}

5. Running Programs

// Runs the specified program
// on the specified coffee-machine
// with specific parameters
POST /v1/programs/{id}/run
{
 "order_id",
 "coffee_machine_id",
 "parameters": [
 {
 "name": "volume",
 "value": "800ml"
 }
]
}
→
{ "program_run_id" }

// Stops program running
POST /v1/runs/{id}/cancel

6. Managing Runtimes

// Creates a new runtime
POST /v1/runtimes
{
 "coffee_machine_id",
 "program_id",
 "parameters"
}
→
{ "runtime_id", "state" }

// Returns the state
// of the specified runtime
GET /v1/runtimes/{runtime_id}/state
{
 "status": "ready_waiting",
 // Command being currently executed
 // (optional)
 "command_sequence_id",
 "resolution": "success",
 "variables"
}

// Terminates the runtime
POST /v1/runtimes/{id}/terminate

SECTION II. THE BACKWARD COMPATIBILITY

Chapter 13. The Backward Compatibility Problem Statement

As usual, let's conceptually define “backward compatibility”
before we start.

Backward compatibility is a feature of the entire API
system to be stable in time. It means the following: the
code that developers have written using your API
continues working functionally correctly for a long
period of time. There are two important questions to this
definition and two explanations:

1. What does “functionally correctly” mean?

It means that the code continues to serve its
function, i.e., to solve some users' problems. It
doesn't mean it continues working indistinguishably
from the previous version: for example, if you're
maintaining a UI library, changing functionally
insignificant design details like shadow depth or
border stroke type is backward-compatible, whereas
changing the sizes of the visual components is not.

2. What does “a long period of time” mean?

From our point of view, the backward compatibility
maintenance period should be reconciled with the
typical lifetime of applications in the subject area.
Platform LTS periods are decent guidance in most
cases. Since the applications will be rewritten

anyway when the platform maintenance period ends,
it is reasonable to expect developers to move to the
new API version as well. In mainstream subject areas
(i.e., desktop and mobile operating systems) this
period lasts several years.

From the definition becomes obvious why backward
compatibility needs to be maintained (including taking
necessary measures at the API design stage). An outage,
full or partial, caused by an API vendor, is an extremely
uncomfortable situation for every developer, if not a
disaster — especially if they pay money for the API usage.

But let's take a look at the problem from another angle:
why the problem of maintaining backward compatibility
exists in the first place? Why would anyone want to break
it? This question, though it looks quite trivial, is much
more complicated than the previous one.

We could say that we break backward compatibility to
introduce new features to the API. But that would be
deceiving: new features are called “new” for a reason, as
they cannot affect existing implementations which are not
using them. We must admit there are several associated
problems, which lead to the aspiration to rewrite our code,
the code of the API itself, and ship a new major version:

the codebase eventually becomes outdated; making
changes, even introducing totally new functionality,
becomes impractical;

the old interfaces aren't suited to encompass new
features; we would love to extend existing
functionality with new properties, but we simply
couldn't;

finally, with years passing since the initial release, we
have understood more about the subject area and API
best practices, and we would implement many things
differently.

These arguments could be summarized frankly as “the API
vendors don't want to support the old code.” But this
explanation is still incomplete: even if you're not going to
rewrite the API code to add new functionality, or you're not
going to add it at all, you still have to ship new API
versions, minor and major alike.

NB: in this chapter, we don't make any difference between
minor versions and patches: “minor version” means any
backwards-compatible API release.

Let us remind the reader that an API is a bridge, a meaning
of connecting different programmable contexts. No matter
how strong our desire to keep the bridge intact is, our
capabilities are limited: we could lock the bridge, but we
cannot command the rifts and the canyon itself. That's the
source of the problems: we can't guarantee that our own
code won't change. So at some point, we will have to ask
the clients to rewrite their code.

Apart from our aspirations to change the API architecture,
three other tectonic processes are happening at the same
time: user agents, subject areas, and underlying platforms
erosion.

the Fragmentation of Consumer Applications

When you shipped the very first API version, and the very
first clients started to use it, the situation was perfect.
There was only one version, and all clients were using only
it. When this perfection ends, two scenarios are possible.

1. If the platform allows for fetching code on-demand
as the good old Web does, and you weren't too lazy to
implement that code-on-demand feature (in a form
of a platform SDK — for example, JS API), then the
evolution of your API is more or less under your
control. Maintaining backward compatibility
effectively means keeping the client library
backwards-compatible. As for client-server
interaction, you're free.

It doesn't mean that you can't break backward
compatibility. You still can make a mess with cache-
control headers or just overlook a bug in the code.
Besides, even code-on-demand systems don't get
updated instantly. The author of this book faced a
situation when users were deliberately keeping a
browser tab open for weeks to get rid of updates. But
still, you usually don't have to support more than two
API versions — the last one and the penultimate one.

Furthermore, you may try to rewrite the previous
major version of the library, implementing it on top
of the actual API version.

2. If the code-on-demand feature isn't supported or is
prohibited by the platform, as in modern mobile
operating systems, then the situation becomes more
severe. Each client effectively borrows a snapshot of
the code working with your API, frozen at the
moment of compilation. Client application updates
are scattered over time to much more extent than
Web application updates. The most painful thing is
that some clients will never be up to date, because one
of three reasons:

developers simply don't want to update the
app, i.e., its development stopped;
users don't want to get updates (sometimes
because users think that developers “spoiled”
the app in new versions);
users can't get updates because their devices
are no longer supported.

In modern times these three categories combined
could easily constitute tens of per cent of auditory. It
implies that cutting the support of any API version
might be a nightmare experience — especially if
developers' apps continue supporting a more broad
spectrum of platforms than the API does.

You could have never issued any SDK, providing just
the server-side API, for example in a form of HTTP
endpoints. You might think that the backward
compatibility problem is mitigated (by making your
API less competitive on the market because of a lack
of SDKs). That's not true: if you don't provide an SDK,
then developers will either adopt an unofficial one (if
someone bothered to make it) or just write a
framework themselves — independently. “Your
framework — your problems” strategy, fortunately, or
not, works badly: if developers write low-quality code
atop your API, then your API is of low quality itself —
definitely in the view of developers, possibly in the
view of end-users, if the API performance within the
app is visible to them.

Certainly, if you provide a stateless API that doesn't require
client SDKs (or they might be auto-generated from the
spec), those problems will be much less noticeable, but not
fully avoidable unless you never issue any new API version.
If you do, you will still have to deal with some
fragmentation of users by API and SDK versions.

Subject Area Evolution

The other side of the canyon is the underlying functionality
you're exposing via the API. It's, of course, not static and
somehow evolves:

new functionality emerges;
older functionality shuts down;

interfaces change.

As usual, the API provides an abstraction to a much more
granular subject area. In the case of our coffee machine API
example, one might reasonably expect new machine
models to pop up, which are to be supported by the
platform. New models tend to provide new APIs, and it's
hard to guarantee they might be adopted while preserving
the same high-level API. And anyway, the code needs to be
altered, which might lead to incompatibility, albeit
unintentional.

Let us also stress that vendors of low-level API are not
always as resolute regarding maintaining backward
compatibility for their APIs (actually, any software they
provide) as (we hope so) you are. You should be warned that
keeping your API in an operational state, i.e., writing and
supporting facades to the shifting subject area landscape,
will be a problem of yours, and sometimes rather a sudden
one.

Platform Drift

Finally, there is a third side to the story — the “canyon”
you're crossing over with a bridge of your API. Developers
write code that is executed in some environment you can't
control, and it's evolving. New versions of operating
systems, browsers, protocols, and programming language
SDKs emerge. New standards are being developed and new
arrangements made, some of them being backwards-
incompatible, and nothing could be done about that.

Older platform versions lead to fragmentation just like
older app versions do, because developers (including the
API developers) are struggling with supporting older
platforms, and users are struggling with platform updates
— and often can't get updated at all, since newer platform
versions require newer devices.

The nastiest thing here is that not only does incremental
progress in a form of new platforms and protocols demand
changing the API, but also does a vulgar fashion. Several
years ago realistic 3d icons were popular, but since then the
public taste changed in a favor of flat and abstract ones. UI
components developers had to follow the fashion,
rebuilding their libraries, either shipping new icons or
replacing the old ones. Similarly, right now the “night
mode” feature is introduced everywhere, demanding
changes in a broad range of APIs.

Backward Compatibility Policy

To summarize the above:

you will have to deploy new API versions because of
apps, platforms, and subject areas evolution;
different areas are evolving at a different pace, but
never stop doing so;
that will lead to fragmenting the API versions usage
over different platforms and apps;
you have to make decisions that greatly affect how
sustainable your API is in your customers' view.

Let's briefly describe these decisions and the key factors for
making them.

1. How often new major API versions should be
released?

That's primarily a product question. A new major API
version is to be released when the critical mass of
functionality is reached — a critical mass of features
that couldn't be introduced in the previous API
versions, or introducing them is too expensive. In
stable markets, such a situation occurs once in
several years, usually. In emerging markets, new
major API versions might be shipped more
frequently, only depending on your ability to support
the zoo of the previous versions. However, we should
note that deploying a new version before the
previous one was stabilized (which commonly takes
from several months up to a year) is always a
troubling sign to developers meaning they're risking
dealing with the platform glitches permanently.

2. How many major versions should be supported at a
time?

Theoretically, all of them. Practically, you should look
at the size of the auditory which continues using
older versions, and develop some guidance on when
the support ends.

3. How many minor versions (within one major version)
should be supported at a time?

As for minor versions, there are two options:

if you provide server-side APIs and compiled
SDKs only, you may basically not expose minor
versions at all (see below); however, at some
maturity stage providing at least two latest
versions becomes a must.
if you provide code-on-demand SDKs, it is
considered a good form to provide an access to
previous minor versions of SDK for a period of
time sufficient enough for developers to test
their applications and fix issues if necessary.
Since minor changes do not require rewriting
large portions of code, it's fine to align the
lifecycle of a minor version with the app
release cycle duration in your industry, which
is usually several months in the worst cases.

Keeping Several API Versions

In modern professional software development, especially if
we talk about internal APIs, a new API version usually fully
replaces the previous one. If some problems are found, it
might be rolled back (by releasing the previous version),
but the two builds never co-exist. However, in the case of
public APIs, the more the number of partner integrations
is, the more dangerous this approach becomes.

Indeed, with the growth of the number of users, the
“rollback the API version in case of problems” paradigm
becomes increasingly destructive. To a partner, the optimal
solution is rigidly referencing the specific API version —
the one that had been tested (ideally, at the same time
having the API vendor somehow seamlessly fix security
concerns and make their software compliant with newly
introduced legislation).

NB. From the same considerations, providing beta (or
maybe even alpha) versions of the popular APIs becomes
more and more desirable as well, to make partners test the
upcoming versions and address the possible issues in
advance.

The important (and undeniable) advantage of the semver
system is that it provides the proper version granularity:

stating the first digit (major version) allows for
getting a backwards-compatible version of the API;
stating two digits (major and minor versions) allows
guaranteeing that some functionality that was added
after the initial release will be available;
finally, stating all three numbers (major version,
minor version, and patch) allows for fixing a concrete
API release with all its specificities (and errors),
which — theoretically — means that the integration
will remain operable till this version is physically
available.

Of course, preserving minor versions infinitely isn't
possible (partly because of security and compliance issues
that tend to pile up). However, providing such access for a
reasonable period of time is rather a hygienic norm for
popular APIs.

NB. Sometimes to defend the single accessible API version
concept, the following argument is put forward: preserving
the SDK or API application server code is not enough to
maintain strict backward compatibility as it might be
relying on some un-versioned services (for example, some
data in the DB that are shared between all the API
versions). We, however, consider this an additional reason
to isolate such dependencies (see “The Serenity Notepad”
chapter) as it means that changes to these subsystems
might lead to the inoperability of the API.

Chapter 14. On the Waterline of the Iceberg

Before we start talking about the extensible API design, we
should discuss the hygienic minimum. A huge number of
problems would have never happened if API vendors had
paid more attention to marking their area of responsibility.

Provide a Minimal Amount of Functionality

At any moment in its lifetime, your API is like an iceberg: it
comprises an observable (i.e., documented) part and a
hidden one, undocumented. If the API is designed properly,
these two parts correspond to each other just like the
above-water and under-water parts of a real iceberg do, i.e.
one to ten. Why so? Because of two obvious reasons.

Computers exist to make complicated things easy,
not vice versa. The code developers write upon your
API must describe a complicated problem's solution
in neat and straightforward sentences. If developers
have to write more code than the API itself
comprises, then there is something rotten here.
Probably, this API simply isn't needed at all.

Revoking the API functionality causes losses. If
you've promised to provide some functionality, you
will have to do so “forever” (until this API version's
maintenance period is over). Pronouncing some
functionality deprecated is a tricky thing, potentially
alienating your customers.

Rule #1 is the simplest: if some functionality might be
withheld — then never expose it until you really need to. It
might be reformulated like that: every entity, every field,
and every public API method is a product decision. There
must be solid product reasons why some functionality is
exposed.

1. Avoid Gray Zones and Ambiguities

Your obligations to maintain some functionality must be
stated as clearly as possible. Especially regarding those
environments and platforms where no native capability to
restrict access to undocumented functionality exists.
Unfortunately, developers tend to consider some private
features they found to be eligible for use, thus presuming
the API vendor shall maintain them intact. Policy on such
“findings” must be articulated explicitly. At the very least,
in case of such non-authorized usage of undocumented
functionality, you might refer to the docs and be in your
own rights in the eyes of the community.

However, API developers often legitimize such gray zones
themselves, for example, by:

returning undocumented fields in endpoints
responses;
using private functionality in code samples — in the
docs, while responding to support messages, in
conference talks, etc.

One cannot make a partial commitment. Either you
guarantee this code will always work or do not slip the
slightest note such functionality exists.

2. Codify Implicit Agreements

The third principle is much less obvious. Pay close
attention to the code which you're suggesting developers to
develop: are there any conventions that you consider
evident, but never wrote them down?

Example #1. Let's take a look at this order processing SDK
example:

// Creates an order
let order = api.createOrder();
// Returns the order status
let status = api.getStatus(order.id);

Let's imagine that you're struggling with scaling your
service, and at some point moved to the asynchronous
replication of the database. This would lead to the situation
when querying for the order status right after the order
creation might return 404 if an asynchronous replica hasn't
got the update yet. In fact, thus we abandon a strict
consistency policy in a favor of an eventual one.

https://en.wikipedia.org/wiki/Consistency_model

What would be the result? The code above will stop
working. A user creates an order, then tries to get its status
— but gets the error. It's very hard to predict what approach
developers would implement to tackle this error. Probably,
they would not expect this to happen at all.

You may say something like, “But we've never promised
strict consistency in the first place” — and that is obviously
not true. You may say that if, and only if, you have really
described the eventual consistency in the createOrder docs,
and all your SDK examples look like this:

let order = api.createOrder();
let status;
while (true) {
 try {
 status = api.getStatus(order.id);
 } catch (e) {
 if (e.httpStatusCode != 404 ||
 timeoutExceeded()) {
 break;
 }
 }
}
if (status) {
 …
}

We presume we may skip the explanations why such code
must never be written under any circumstances. If you're
really providing a non-strictly consistent API, then either
the createOrder operation must be asynchronous and
return the result when all replicas are synchronized, or the
retry policy must be hidden inside the getStatus operation
implementation.

If you failed to describe the eventual consistency in the first
place, then you simply couldn't make these changes in the
API. You will effectively break backward compatibility,
which will lead to huge problems with your customers'
apps, intensified by the fact they can't be simply
reproduced by QA engineers.

Example #2. Take a look at the following code:

let resolve;
let promise = new Promise(
 function (innerResolve) {
 resolve = innerResolve;
 }
);
resolve();

This code presumes that the callback function passed to a
new Promise will be executed synchronously, and the
resolve variable will be initialized before the resolve()
function call is executed. But this assumption is based on

nothing: there are no clues indicating the new Promise
constructor executes the callback function synchronously.

Of course, the developers of the language standard can
afford such tricks; but you as an API developer cannot. You
must at least document this behavior and make the
signatures point to it; actually, the best practice is to avoid
such conventions, since they are simply unobvious while
reading the code. And of course, under no circumstances
dare you change this behavior to an asynchronous one.

Example #3. Imagine you're providing animations API,
which includes two independent functions:

// Animates object's width,
// beginning with the first value,
// ending with the second
// in the specified time frame
object.animateWidth(
 '100px', '500px', '1s'
);
// Observes the object's width changes
object.observe(
 'widthchange', observerFunction
);

A question arises: how frequently and at what time
fractions the observerFunction will be called? Let's assume
in the first SDK version we emulated step-by-step
animation at 10 frames per second. Then the
observerFunction will be called 10 times, getting values

'140px', '180px', etc., up to '500px'. But then, in a new
API version, we have switched to implementing both
functions atop of a system's native functionality — and so
you simply don't know, when and how frequently the
observerFunction will be called.

Just changing call frequency might result in making some
code dysfunctional — for example, if the callback function
makes some complex calculations, and no throttling is
implemented since developers just relied on your SDK's
built-in throttling. And if the observerFunction ceases to be
called when exactly '500px' is reached because of some
system algorithms specifics, some code will be broken
beyond any doubt.

In this example, you should document the concrete
contract (how often the observer function is called) and
stick to it even if the underlying technology is changed.

Example #4. Imagine that customer orders are passing
through a specific pipeline:

GET /v1/orders/{id}/events/history
→
{ "event_history": [
 {
 "iso_datetime":
 "2020-12-29T00:35:00+03:00",
 "new_status": "created"
 }, {
 "iso_datetime":
 "2020-12-29T00:35:10+03:00",
 "new_status": "payment_approved"
 }, {
 "iso_datetime":
 "2020-12-29T00:35:20+03:00",
 "new_status": "preparing_started"
 }, {
 "iso_datetime":
 "2020-12-29T00:35:30+03:00",
 "new_status": "ready"
 }
]}

Suppose at some moment we decided to allow trustworthy
clients to get their coffee in advance before the payment is
confirmed. So an order will jump straight to
"preparing_started" or even "ready" without a
"payment_approved" event being emitted. It might appear to
you that this modification is backwards-compatible since
you've never really promised any specific event order being
maintained, but it is not.

Let's assume that a developer (probably, your company's
business partner) wrote some code implementing some
valuable business procedures, for example, gathering
income and expenses analytics. It's quite logical to expect
this code operates a state machine, which switches from
one state to another depending on getting (or getting not)
specific events. This analytical code will be broken if the
event order changes. In the best-case scenario, a developer
will get some exceptions and will have to cope with the
error's cause; in the worst case, partners will operate wrong
statistics for an indefinite period of time until they find the
issue.

A proper decision would be, first, documenting the event
order and the allowed states; second, continuing
generating the "payment_approved" event before the
"preparing_started" one (since you're making a decision to
prepare that order, so you're in fact approving the payment)
and add extended payment information.

This example leads us to the last rule.

3. Product Logic Must Be Backwards-Compatible as
Well

State transition graph, event order, possible causes of
status changes — such critical things must be documented.
However, not every piece of business logic might be defined
in a form of a programmatical contract; some cannot be
represented in a machine-readable form at all.

Imagine that one day you start to take phone calls. A client
may contact the call center to cancel an order. You might
even make this functionality technically backwards-
compatible, introducing new fields to the “order” entity.
But the end-user might simply know the number, and call it
even if the app wasn't suggesting anything like that.
Partner's business analytical code might be broken likewise,
or start displaying weather on Mars since it was written
knowing nothing about the possibility of canceling orders
somehow in circumvention of the partner's systems.

A technically correct decision would be to add a “canceling
via call center allowed” parameter to the order creation
function. Conversely, call center operators might only
cancel those orders which were created with this flag set.
But that would be a bad decision from a product point of
view as it's quite unobvious to users that they can cancel
some orders by phone and can't cancel others. The only
“good” decision in this situation is to foresee the possibility
of external order cancellations in the first place. If you
haven't foreseen it, your only option is the “Serenity
Notepad” to be discussed in the last chapter of this Section.

Chapter 15. Extending through Abstracting

In the previous chapters, we have tried to outline
theoretical rules and illustrate them with practical
examples. However, understanding the principles of the
change-proof API design requires practice above all things.
An ability to anticipate future growth problems comes from
a handful of grave mistakes once made. One cannot foresee
everything but can develop a certain technical intuition.

So, in the following chapters, we will try to probe our study
API from the previous Section, testing its robustness from
every possible viewpoint, thus carrying out some
“variational analysis” of our interfaces. More specifically,
we will apply a “What If?” question to every entity, as if we
are to provide a possibility to write an alternate
implementation of every piece of logic.

NB. In our examples, the interfaces will be constructed in a
manner allowing for dynamic real-time linking of different
entities. In practice, such integrations usually imply
writing an ad hoc server-side code in accordance with
specific agreements made with specific partners. But for
educational purposes, we will pursue more abstract and
complicated ways. Dynamic real-time linking is more
typical in complex program constructs like operating
system APIs or embeddable libraries; giving educational
examples based on such sophisticated systems would be
too inconvenient.

Let's start with the basics. Imagine that we haven't exposed
any other functionality but searching for offers and making
orders, thus providing an API of two methods: POST
/offers/search and POST /orders.

Let us make the next logical step there and suppose that
partners will wish to dynamically plug their own coffee
machines (operating some previously unknown types of
API) into our platform. To allow doing so, we have to
negotiate a callback format that would allow us to call
partners' APIs and expose two new endpoints providing the
following capabilities:

registering new API types in the system;
providing the list of the coffee machines and their
API types;

For example, we might provide a second API family (the
partner-bound one) with the following methods:

// 1. Register a new API type
PUT /v1/api-types/{api_type}
{
 "order_execution_endpoint": {
 // Callback function description
 }
}

// 2. Provide a list of coffee machines
// with their API types
PUT /v1/partners/{partnerId}/coffee-machines
{
 "coffee_machines": [{
 "api_type",
 "location",
 "supported_recipes"
 }, …]
}

So the mechanics are like that:

a partner registers their API types, coffee machines,
and supported recipes;
with each incoming order, our server will call the
callback function, providing the order data in the
stipulated format.

Now the partners might dynamically plug their coffee
machines in and get the orders. But we now will do the
following exercise:

enumerate all the implicit assumptions we have
made;
enumerate all the implicit coupling mechanisms we
need to have the platform functioning properly.

It may look like there are no such things in our API since
it's quite simple and basically just describes making some
HTTP call — but that's not true.

1. It is implied that every coffee machine supports every
order option like varying the beverage volume.

2. There is no need to display some additional data to
the end-user regarding coffee being brewed on these
new coffee machines.

3. The price of the beverage doesn't depend on the
selected partner or coffee machine type.

We have written down this list having one purpose in mind:
we need to understand, how exactly will we make these
implicit arrangements explicit if we need that. For example,
if different coffee machines provide different functionality
— let's say, some of them are capable of brewing fixed
beverage volumes only — what would change in our API?

The universal approach to making such amendments is: to
consider the existing interface as a reduction of some more
general one like if some parameters were set to defaults
and therefore omitted. So making a change is always a
three-step process:

1. Explicitly define the programmatical contract as it
works right now.

2. Extend the functionality: add a new method allowing
for tackling those restrictions set in the previous
paragraph.

3. Pronounce the existing interfaces (those defined in
#1) being “helpers” to new ones (those defined in #2)
which sets some options to default values.

More specifically, if we talk about changing available order
options, we should do the following.

1. Describe the current state. All coffee machines,
plugged via the API, must support three options:
sprinkling with cinnamon, changing the volume, and
contactless delivery.

2. Add new “with-options” endpoint:

PUT /v1/partners/{partner_id}⮠
 /coffee-machines-with-options
{
 "coffee_machines": [{
 "id",
 "api_type",
 "location",
 "supported_recipes",
 "supported_options": [
 {"type": "volume_change"}
]
 }, …]
}

3. Pronounce PUT /coffee-machines endpoint as it now
stands in the protocol being equivalent to calling PUT
/coffee-machines-with-options if we pass those
three options to it (sprinkling with cinnamon,
changing the volume, contactless delivery) and

therefore being a partial case — a helper to a more
general call.

Usually, just adding a new optional parameter to the
existing interface is enough; in our case, adding non-
mandatory options to the PUT /coffee-machines endpoint.

NB. When we talk about defining the contract as it works
right now, we're talking about internal agreements. We
must have asked partners to support those three options
while negotiating the interaction format. If we had failed to
do so from the very beginning, and now are defining these
in a course of expanding the public API, it's a very strong
claim to break backward compatibility, and we should never
do that (see the previous chapter).

Limits of Applicability

Though this exercise looks very simple and universal, its
consistent usage is possible only if the hierarchy of entities
is well-designed from the very beginning and, which is
more important, the vector of the further API expansion is
clear. Imagine that after some time passed, the options list
got new items; let's say, adding syrup or a second espresso
shot. We are totally capable of expanding the list — but not
the defaults. So the “default” PUT /coffee-machines
interface will eventually become totally useless because the
default set of three options will not only be any longer of
use but will also look ridiculous: why these three options,
what are the selection criteria? In fact, the defaults and the
method list will be reflecting the historical stages of our

API development, and that's totally not what you'd expect
from the helpers and defaults nomenclature.

Alas, this dilemma can't be easily resolved. On one hand,
we want developers to write neat and laconic code, so we
must provide useful helpers and defaults. On the other
hand, we can't know in advance which sets of options will
be the most useful after several years of expanding the API.

NB. We might mask this problem in the following manner:
one day gather all these oddities and re-define all the
defaults with one single parameter. For example, introduce
a special method like POST /use-defaults {"version":
"v2"} which would overwrite all the defaults with more
suitable values. That will ease the learning curve, but your
documentation will become even worse after that.

In the real world, the only viable approach to somehow
tackle the problem is the weak entity coupling, which we
will discuss in the next chapter.

Chapter 16. Strong Coupling and Related Problems

To demonstrate the strong coupling problematics let us
move to really interesting things. Let's continue our
“variation analysis”: what if the partners wish to offer not
only the standard beverages but their own unique coffee
recipes to end-users? The catch is that the partner API as
we described it in the previous chapter does not expose the
very existence of the partner network to the end user, and
thus describes a simple case. Once we start providing
methods to alter the core functionality, not just API
extensions, we will soon face next-level problems.

So, let us add one more endpoint for registering the
partner's own recipe:

// Adds new recipe
POST /v1/recipes
{
 "id",
 "product_properties": {
 "name",
 "description",
 "default_volume"
 // Other properties to describe
 // the beverage to end-user
 …
 }
}

At first glance, again, it looks like a reasonably simple
interface, explicitly decomposed into abstraction levels.
But let us imagine the future — what would happen with
this interface when our system evolves further?

The first problem is obvious to those who read the
“Describing Final Interfaces” chapter thoroughly: product
properties must be localized. That will lead us to the first
change:

"product_properties": {
 // "l10n" is the standard abbreviation
 // for "localization"
 "l10n" : [{
 "language_code": "en",
 "country_code": "US",
 "name",
 "description"
 }, /* other languages and countries */ …]
}

And here the first big question arises: what should we do
with the default_volume field? From one side, that's an
objective property measured in standardized units, and it's
being passed to the program execution engine. On the
other side, in countries like the United States, we had to
specify beverage volumes not like “300 ml,” but “10 fl oz.”
We may propose two solutions:

either the partner provides the corresponding
number only, and we will make readable descriptions
on our own behalf,
or the partner provides both the number and all of its
localized representations.

The flaw in the first option is that a partner might be
willing to use the service in some new country or language
— and will be unable to do so until the API supports them.
The flaw in the second option is that it works with
predefined volumes only, so you can't order an arbitrary
beverage volume. So the very first step we've made
effectively has us trapped.

The localization flaws are not the only problem with this
API. We should ask ourselves a question — why do we really
need these name and description? They are simply non-
machine-readable strings with no specific semantics. At
first glance, we need them to return them back in the
/v1/search method response, but that's not a proper
answer: why do we really return these strings from search?

The correct answer lies a way beyond this specific interface.
We need them because some representation exists. There is a
UI for choosing beverage type. Probably the name and
description fields are simply two designations of the
beverage for a user to read, a short one (to be displayed on
the search results page) and a long one (to be displayed in
the extended product specification block). It actually means
that we set the requirements to the API based on some
specific design. But what if a partner is making their own UI

for their own app? Not only they might not actually need
two descriptions, but we are also deceiving them. The name
is not “just a name”, it implies some restrictions: it has
recommended length which is optimal to some specific UI,
and it must look consistently on the search results page.
Indeed, the “our best quality™ coffee” or “Invigorating
Morning Freshness®” designations would look very weird
in-between “Cappuccino,” “Lungo,” and “Latte.”

There is also another side to this story. As UIs (both ours'
and partners') tend to evolve, new visual elements will be
eventually introduced. For example, a picture of the
beverage, its energy value, allergen information, etc. The
product_properties entity will become a scrapyard for tons
of optional fields, and learning how setting what field
results in what effects in the UI will be an interesting quest,
full of probes and mistakes.

The problems we're facing are the problems of strong
coupling. Each time we offer an interface like described
above, we in fact prescript implementing one entity
(recipe) based on implementations of other entities (UI
layout, localization rules). This approach disrespects the
very basic principle of the “top to bottom” API design
because low-level entities must not define high-level
ones.

The Rule of Contexts

To make things worse, let us state that the inverse principle
is also correct: high-level entities must not define low-level
ones as well, since that simply isn't their responsibility. The
exit from this logical labyrinth is that high-level entities
must define a context, which other objects are to interpret.
To properly design the interfaces for adding a new recipe
we shouldn't try to find a better data format; we need to
understand what contexts, both explicit and implicit, exist
in our subject area.

We have already noted a localization context. There is some
set of languages and regions we support in our API, and
there are the requirements — what exactly partners must
provide to make our API work in a new region. More
specifically, there must be some formatting function to
represent beverage volume somewhere in our API code,
either internally or within an SDK:

l10n.volume.format = function(
 value, language_code, country_code
) { … }
/*
 l10n.formatVolume(
 '300ml', 'en', 'UK'
) → '300 ml'
 l10n.formatVolume(
 '300ml', 'en', 'US'
) → '10 fl oz'
*/

To make our API work correctly with a new language or
region, the partner must either define this function or
point which pre-existing implementation to use through
the partner API. Like this:

// Add a general formatting rule
// for the Russian language
PUT /formatters/volume/ru
{
 "template": "{volume} мл"
}
// Add a specific formatting rule
// for the Russian language
// in the “US” region
PUT /formatters/volume/ru/US
{
 // in the US, we need to recalculate
 // the number, then add a postfix
 "value_transform": {
 "action": "divide",
 "divisor": 30
 },
 "template": "{volume} ун."
}

so the above-mentioned l10n.volume.format function
implementation might retrieve the formatting rules for the
new language-region pair and use them.

NB: we are more than aware that such a simple format isn't
enough to cover real-world localization use cases, and one
either relies on existing libraries or designs a sophisticated
format for such templating, which takes into account such
things as grammatical cases and rules of rounding numbers
up or allow defining formatting rules in a form of function
code. The example above is simplified for purely
educational purposes.

Let us deal with the name and description problem then. To
lower the coupling level there, we need to formalize
(probably just to ourselves) a “layout” concept. We are
asking for providing the name and description fields not
because we just need them, but for representing them in
some specific user interface. This specific UI might have an
identifier or a semantic name.

GET /v1/layouts/{layout_id}
{
 "id",
 // We would probably have lots of layouts,
 // so it's better to enable extensibility
 // from the beginning
 "kind": "recipe_search",
 // Describe every property we require
 // to have this layout rendered properly
 "properties": [{
 // Since we learned that `name`
 // is actually a title for a search
 // result snippet, it's much more
 // convenient to have explicit
 // `search_title` instead
 "field": "search_title",
 "view": {
 // Machine-readable description
 // of how this field is rendered
 "min_length": "5em",
 "max_length": "20em",
 "overflow": "ellipsis"
 }
 }, …],
 // Which fields are mandatory
 "required": [
 "search_title",
 "search_description"
]
}

So the partner may decide, which option better suits them.
They can provide mandatory fields for the standard layout:

PUT /v1/recipes/{id}/properties/l10n/{lang}
{
 "search_title", "search_description"
}

or create a layout of their own and provide the data fields it
requires, or they may ultimately design their own UI and
don't use this functionality at all, defining neither layouts
nor corresponding data fields.

Then our interface would ultimately look like this:

POST /v1/recipes
{ "id" }
→
{ "id" }

This conclusion might look highly counter-intuitive, but
lacking any fields in a Recipe simply tells us that this entity
possesses no specific semantics of its own, and is simply an
identifier of a context; a method to point out where to look
for the data needed by other entities. In the real world, we
should implement a builder endpoint capable of creating
all the related contexts with a single request:

POST /v1/recipe-builder
{
 "id",
 // Recipe's fixed properties
 "product_properties": {
 "default_volume",
 "l10n"
 },
 // Create all the desirable layouts
 "layouts": [{
 "id", "kind", "properties"
 }],
 // Add all the formatters needed
 "formatters": {
 "volume": [
 {
 "language_code",
 "template"
 }, {
 "language_code",
 "country_code",
 "template"
 }
]
 },
 // Other actions needed to be done
 // to register new recipe in the system
 …
}

We should also note that providing a newly created entity
identifier by the requesting side isn't exactly the best
practice. However, since we decided from the very
beginning to keep recipe identifiers semantically
meaningful, we have to live on with this convention.
Obviously, we're risking getting lots of collisions on recipe
names used by different partners, so we actually need to
modify this operation: either a partner must always use a
pair of identifiers (e.g., the recipe id plus the partner's own
id), or we need to introduce composite identifiers, as we
recommended earlier in the “Describing Final Interfaces”
chapter.

POST /v1/recipes/custom
{
 // The first part of the composite
 // identifier, for example,
 // the partner's own id
 "namespace": "my-coffee-company",
 // The second part of the identifier
 "id_component": "lungo-customato"
}
→
{
 "id":
 "my-coffee-company:lungo-customato"
}

Also note that this format allows us to maintain an
important extensibility point: different partners might
have both shared and isolated namespaces. Furthermore,
we might introduce special namespaces (like common, for
example) to allow editing standard recipes (and thus
organizing our own recipes backoffice).

NB: a mindful reader might have noted that this technique
was already used in our API study much earlier in the
“Separating Abstraction Levels” chapter with regards to the
“program” and “program run” entities. Indeed, we might do
it without the program-matcher endpoint and make it this
way:

GET /v1/recipes/{id}/run-data/{api_type}
→
{ /* A description, how to
 execute a specific recipe
 using a specified API type */ }

Then developers would have to make this trick to get coffee
prepared:

learn the API type of the specific coffee machine;
get the execution description, as stated above;
depending on the API type, run some specific
commands.

Obviously, such an interface is absolutely unacceptable,
simply because in the majority of use cases developers
don't care at all, which API type the specific coffee machine
runs. To avoid the necessity of introducing such bad
interfaces we created a new “program” entity, which
constitutes merely a context identifier, just like a “recipe”
entity does. A program_run_id entity is also organized in
this manner, it also possesses no specific properties, being
just a program run identifier.

Chapter 17. Weak Coupling

In the previous chapter, we've demonstrated how breaking
strong coupling of components leads to decomposing
entities and collapsing their public interfaces down to a
reasonable minimum. But let us return to the question we
have previously mentioned in the “Extending through
Abstracting” chapter: how should we parametrize the order
preparation process implemented via a third-party API? In
other words, what is the order_execution_endpoint
required in the API type registration handler?

PUT /v1/api-types/{api_type}
{
 …
 "order_execution_endpoint": {
 // ???
 }
}

Out of general considerations, we may assume that every
such API would be capable of executing three functions:
run a program with specified parameters, return the
current execution status, and finish (cancel) the order. An
obvious way to provide the common interface is to require
these three functions to be executed via a remote call, let's
say, like this:

PUT /v1/api-types/{api_type}
{
 …
 "order_execution_endpoint": {
 "program_run_endpoint": {
 /* Some description of
 the remote function call */
 "type": "rpc",
 "endpoint": <URL>,
 "parameters"
 },
 "program_get_state_endpoint",
 "program_cancel_endpoint"
 }
}

NB: by doing so, we transfer the complexity of developing
the API onto the plane of developing appropriate data
formats, i.e., developing formats for order parameters to
the program_run_endpoint, and what format the
program_get_state_endpoint shall return, etc., but in this
chapter, we're focusing on different questions.

Though this API looks absolutely universal, it's quite easy
to demonstrate how once simple and clear API ends up
being confusing and convoluted. This design presents two
main problems:

1. It describes nicely the integrations we've already
implemented (it costs almost nothing to support the
API types we already know) but brings no flexibility
to the approach. In fact, we simply described what
we'd already learned, not even trying to look at the
larger picture.

2. This design is ultimately based on a single principle:
every order preparation might be codified with these
three imperative commands.

We may easily disprove the #2 statement, and that will
uncover the implications of the #1. For the beginning, let
us imagine that on a course of further service growth, we
decided to allow end-users to change the order after the
execution started. For example, request a contactless
takeout. That would lead us to the creation of a new
endpoint, let's say, program_modify_endpoint, and new
difficulties in data format development (as new fields for
contactless delivery requested and satisfied flags need to be
passed both directions). What is important is that both the
endpoint and the new data fields would be optional because
of the backward compatibility requirement.

Now let's try to imagine a real-world example that doesn't
fit into our “three imperatives to rule them all” picture.
That's quite easy as well: what if we're plugging not a coffee
house, but a vending machine via our API? From one side,
it means that the modify endpoint and all related stuff are
simply meaningless: the contactless takeout requirement
means nothing to a vending machine. On the other side,
the machine, unlike the people-operated café, requires

takeout approval: the end-user places an order while being
somewhere in some other place then walks to the machine
and pushes the “get the order” button in the app. We
might, of course, require the user to stand up in front of the
machine when placing an order, but that would contradict
the entire product concept of users selecting and ordering
beverages and then walking to the takeout point.

Programmable takeout approval requires one more
endpoint, let's say, program_takeout_endpoint. And so we've
lost our way in a forest of five endpoints:

to have vending machines integrated a partner must
implement the program_takeout_endpoint, but
doesn't need the program_modify_endpoint;
to have regular coffee houses integrated a partner
must implement the program_modify_endpoint, but
doesn't need the program_takeout_endpoint.

Furthermore, we have to describe both endpoints in the
docs. It's quite natural that the takeout endpoint is very
specific; unlike requesting contactless delivery, which we
hid under the pretty general modify endpoint, operations
like takeout approval will require introducing a new unique
method every time. After several iterations, we would have
a scrapyard, full of similarly looking methods, mostly
optional — but developers would need to study the docs
nonetheless to understand, which methods are needed in
your specific situation, and which are not.

NB: in this example, we assumed that passing
program_takeout_endpoint parameter is the flag to the
application to display the “get the order” button; it would
be better to add something like a supported_flow field to
the PUT /api-types/ endpoint to provide an explicit flag
instead of this implicit convention; however, this wouldn't
change the problematics of stockpiling optional methods in
the interface, so we skipped it to keep examples laconic.

We actually don't know, whether in the real world of coffee
machine APIs this problem will occur or not. But we can say
with all confidence regarding “bare metal” integrations
that the processes we described always happen. The
underlying technology shifts; an API that seemed clear and
straightforward, becomes a trash bin full of legacy
methods, half of which borrows no practical sense under
any specific set of conditions. If we add technical progress
to the situation, e.g., imagine that after a while all coffee
houses have become automated, we will finally end up with
the situation with half of the methods aren't actually needed
at all, like requesting a contactless takeout one.

It is also worth mentioning that we unwittingly violated the
abstraction levels isolation principle. At the vending
machine API level, there is no such thing as a “contactless
takeout,” that's actually a product concept.

So, how would we tackle this issue? Using one of two
possible approaches: either thoroughly study the entire
subject area and its upcoming improvements for at least
several years ahead, or abandon strong coupling in favor of

a weak one. How would the ideal solution look to both
parties? Something like this:

the higher-level program API level doesn't actually
know how the execution of its commands works; it
formulates the tasks at its own level of
understanding: brew this recipe, send user's requests
to a partner, allow the user to collect their order;
the underlying program execution API level doesn't
care what other same-level implementations exist; it
just interprets those parts of the task that make
sense to it.

If we take a look at the principles described in the previous
chapter, we would find that this principle was already
formulated: we need to describe informational contexts at
every abstraction level and design a mechanism to translate
them between levels. Furthermore, in a more general sense,
we formulated it as early as in “The Data Flow” paragraph
of the “Separating Abstraction Levels” chapter.

In our case we need to implement the following
mechanisms:

running a program creates a corresponding context
comprising all the essential parameters;
there is the information stream regarding the state
modifications: the execution level may read the
context, learn about all the changes and report back
the changes of its own.

There are different techniques to organize this data flow,
but, basically, we always have two contexts and a two-way
data pipe in between. If we were developing an SDK, we
would express the idea with emitting and listening events,
like this:

/* Partner's implementation of the program
 run procedure for a custom API type */
registerProgramRunHandler(
 apiType,
 (program) => {
 // Initiating an execution
 // on partner's side
 let execution = initExecution(…);
 // Listen to parent context changes
 program.context.on(
 'takeout_requested',
 () => {
 // If a takeout is requested, initiate
 // corresponding procedures
 await execution.prepareTakeout();
 // When the cup is ready for takeout,
 // emit corresponding event for
 // a higher-level entity to catch it
 execution.context.emit('takeout_ready');
 }
);
 program.context.on(
 'order_canceled',
 () => {
 await execution.cancel();
 execution.context.emit('canceled');
 }
);

 return execution.context;
 }
);

NB: In the case of HTTP API, a corresponding example
would look rather bulky as it would require implementing
several additional endpoints for the message exchange like
GET /program-run/events and GET
/partner/{id}/execution/events. We would leave this
exercise to the reader. Also, it's worth mentioning that in
real-world systems such event queues are usually organized
using external event messaging systems like Apache Kafka
or Amazon SNS/SQS.

At this point, a mindful reader might begin protesting
because if we take a look at the nomenclature of the new
entities, we will find that nothing changed in the problem
statement. It actually became even more complicated:

instead of calling the takeout method, we're now
generating a pair of takeout_requested /
takeout_ready events;
instead of a long list of methods that shall be
implemented to integrate the partner's API, we now
have a long list of context entities and events they
generate;
and with regards to technological progress, we've
changed nothing: now we have deprecated fields and
events instead of deprecated methods.

And this remark is totally correct. Changing API formats
doesn't solve any problems related to the evolution of
functionality and underlying technology. Changing API
formats serves another purpose: to make the code written
by developers stay clean and maintainable. Why would

strong-coupled integration (i.e. making entities interact via
calling methods) render the code unreadable? Because both
sides are obliged to implement the functionality which is
meaningless in their corresponding subject areas. Code
that integrates vending machines into the system must
respond “ok” to the contactless delivery request — so after
a while, these implementations would comprise a handful
of methods that just always return true (or false).

The difference between strong coupling and weak coupling
is that the field-event mechanism isn't obligatory for both
actors. Let us remember what we sought to achieve:

a higher-level context doesn't know how low-level
API works — and it really doesn't; it describes the
changes that occur within the context itself, and
reacts only to those events that mean something to
it;
a low-level context doesn't know anything about
alternative implementations — and it really doesn't;
it handles only those events which mean something
at its level and emits only those events that could
happen under its specific conditions.

It's ultimately possible that both sides would know nothing
about each other and wouldn't interact at all, and this
might happen with the evolution of underlying
technologies.

NB: in the real world this might not be the case, i.e., we
might want the application to know, whether the takeout
request was successfully served or not, i.e., listen to the
takeout_ready event and require the takeout_ready flag in
the state of the execution context. Still, the general
possibility of not caring about the implementation details is
a very powerful technique that makes the application code
much less complex — of course, unless this knowledge is
important to the user.

One more important feature of weak coupling is that it
allows an entity to have several higher-level contexts. In
typical subject areas, such a situation would look like an
API design flaw, but in complex systems, with several
system state-modifying agents present, such design
patterns are not that rare. Specifically, you would likely face
it while developing user-facing UI libraries. We will cover
this issue in detail in the “SDK and UI Libraries” section of
this book.

The Inversion of Responsibility

It becomes obvious from what was said above that two-way
weak coupling means a significant increase in code
complexity on both levels, which is often redundant. In
many cases, two-way event linking might be replaced with
one-way linking without significant loss of design quality.
That means allowing a low-level entity to call higher-level
methods directly instead of generating events. Let's alter
our example:

/* Partner's implementation of program
 run procedure for a custom API type */
registerProgramRunHandler(
 apiType,
 (program) => {
 // Initiating an execution
 // on partner's side
 let execution = initExecution(…);
 // Listen to parent context changes
 program.context.on(
 'takeout_requested',
 () => {
 // If a takeout is requested, initiate
 // corresponding procedures
 await execution.prepareTakeout();
 /* When the order is ready
 for takeout, signalize about that
 by calling the parent context
 method, not with event emitting */
 // execution.context
 // .emit('takeout_ready')
 program.context
 .set('takeout_ready');
 // Or even more rigidly
 // program.setTakeoutReady();
 }
);
 /* Since we're modifying parent context
 instead of emitting events, we don't
 actually need to return anything */
 // return execution.context;
 }
);

Again, this solution might look counter-intuitive, since we
efficiently returned to strong coupling via strictly defined
methods. But there is an important difference: we're
bothering ourselves with weak coupling because we expect
alternative implementations of the lower abstraction level
to pop up. Situations with different realizations of higher
abstraction levels emerging are, of course, possible, but
quite rare. The tree of alternative implementations usually
grows from root to leaves.

Another reason to justify this solution is that major
changes occurring at different abstraction levels have
different weights:

if the technical level is under change, that must not
affect product qualities and the code written by
partners;
if the product is changing, e.g., we start selling flight
tickets instead of preparing coffee, there is literally
no sense to preserve backward compatibility at
technical abstraction levels. Ironically, we may
actually make our API sell tickets instead of brewing
coffee without breaking backward compatibility, but
the partners' code will still become obsolete.

In conclusion, as higher-level APIs are evolving more
slowly and much more consistently than low-level APIs,
reverse strong coupling might often be acceptable or even
desirable, at least from the price-quality ratio point of view.

NB: many contemporary frameworks explore a shared state
approach, Redux being probably the most notable example.
In the Redux paradigm, the code above would look like this:

program.context.on(
 'takeout_requested',
 () => {
 await execution.prepareTakeout();
 // Instead of generating events
 // or calling higher-level methods,
 // an `execution` entity calls
 // a global or quasi-global `dispatch`
 // callback to change a global state
 dispatch(takeoutReady());
 }
);

Let us note that this approach in general doesn't contradict
the weak coupling principle, but violates another one — of
abstraction levels isolation, and therefore isn't very well
suited for writing branchy APIs with high hierarchy trees.
In such systems, it's still possible to use a global or quasi-
global state manager, but you need to implement event or
method call propagation through the hierarchy, i.e., ensure
that a low-level entity always interacts with its closest
higher-level neighbors only, delegating the responsibility
of calling high-level or global methods to them.

program.context.on(
 'takeout_requested',
 () => {
 await execution.prepareTakeout();
 // Instead of calling the global
 // `dispatch` method, an `execution`
 // entity invokes its superior's
 // dispatch functionality
 program.context.dispatch(takeoutReady());
 }
);

// program.context.dispatch implementation
ProgramContext.dispatch = (action) => {
 // program.context calls its own
 // superior or global object
 // if there are no superiors
 globalContext.dispatch(
 // The action itself may and
 // must be reformulated
 // in appropriate terms
 this.generateAction(action)
);
}

Delegate!

From what was said, one more important conclusion
follows: doing a real job, i.e., implementing some concrete
actions (making coffee, in our case) should be delegated to
the lower levels of the abstraction hierarchy. If the upper
levels try to prescribe some specific implementation
algorithms, then (as we have demonstrated on the
order_execution_endpoint example) we will soon face a
situation of inconsistent methods and interaction protocols
nomenclature, most of which have no specific meaning
when we talk about some specific hardware context.

Contrariwise, applying the paradigm of concretizing the
contexts at each new abstraction level, we will eventually
fall into the bunny hole deep enough to have nothing to
concretize: the context itself unambiguously matches the
functionality we can programmatically control. And at that
level, we must stop detailing contexts further, and just
realize the algorithms needed. It's worth mentioning that
the abstraction deepness for different underlying platforms
might vary.

NB. In the “Separating Abstraction Levels” chapter we have
illustrated exactly this: when we speak about the first
coffee machine API type, there is no need to extend the
tree of abstractions further than running programs, but
with the second API type, we need one more intermediary
abstraction level, namely the runtimes API.

Chapter 18. Interfaces as a Universal Pattern

Let us summarize what we have written in the three
previous chapters:

1. Extending API functionality is implemented through
abstracting: the entity nomenclature is to be
reinterpreted so that existing methods become
partial (ideally — the most frequent) simplified cases
to more general functionality.

2. Higher-level entities are to be the informational
contexts for low-level ones, i.e., don't prescribe any
specific behavior but translate their state and expose
functionality to modify it (directly through calling
some methods or indirectly through firing events).

3. Concrete functionality, i.e., working with “bare
metal” hardware or underlying platform APIs, should
be delegated to low-level entities.

NB. There is nothing novel about these rules: one might
easily recognize them being the SOLID architecture
principles. There is no surprise in that either, because
SOLID concentrates on contract-oriented development, and
APIs are contracts by definition. We've just added the
“abstraction levels” and “informational contexts” concepts
there.

However, there is an unanswered question: how should we
design the entity nomenclature from the beginning so that
extending the API won't make it a mess of different
inconsistent methods of different ages? The answer is

https://en.wikipedia.org/wiki/SOLID

pretty obvious: to avoid clumsy situations while abstracting
(as with the recipe properties), all the entities must be
originally considered being a specific implementation of a
more general interface, even if there are no planned
alternative implementations for them.

For example, we should have asked ourselves a question
while designing the POST /search API: what is a “search
result”? What abstract interface does it implement? To
answer this question we must neatly decompose this entity
to find which facet of it is used for interacting with which
objects.

Then we would have come to the understanding that a
“search result” is actually a composition of two interfaces:

when we create an order, we need the search result to
provide those fields which describe the order itself; it
might be a structure like:

{coffee_machine_id, recipe_id, volume,
currency_code, price},

or we can encode this data in the single offer_id;

to have this search result displayed in the app, we
need a different data set: name, description, and
formatted and localized prices.

So our interface (let us call it ISearchResult) is actually a
composition of two other interfaces: IOrderParameters (an
entity that allows for creating an order) and
ISearchItemViewParameters (some abstract representation
of the search result in the UI). This interface split should
automatically lead us to additional questions:

1. How will we couple the former and the latter?
Obviously, these two sub-interfaces are related: the
machine-readable price must match the human-
readable one, for example. This will naturally lead us
to the “formatter” concept described in the “Strong
Coupling and Related Problems” chapter.

2. And what is the “abstract representation of the
search result in the UI”? Do we have other kinds of
search, should the ISearchItemViewParameters
interface be a subtype of some even more general
interface, or maybe a composition of several such
ones?

Replacing specific implementations with interfaces not
only allows us to respond more clearly to many concerns
that pop up during the API design phase but also helps us
to outline many possible API evolution directions, which
should help us in avoiding API inconsistency problems in
the future.

Chapter 19. The Serenity Notepad

Apart from the abovementioned abstract principles, let us
give a list of concrete recommendations: how to make
changes in existing APIs to maintain backward
compatibility.

1. Remember the Iceberg's Waterline

If you haven't given any formal guarantee, it doesn't mean
that you can violate informal ones. Often, just fixing bugs
in APIs might render some developers' code inoperable. We
might illustrate it with a real-life example that the author
of this book has actually faced once:

there was an API to place a button into a visual
container; according to the docs, it was taking its
position (offsets to the container's corner) as a
mandatory argument;
in reality, there was a bug: if the position was not
supplied, no exception was thrown; buttons were
simply stacked in the corner one after another;
after the error had been fixed, we got a bunch of
complaints: clients did really use this flaw to stack
the buttons in the container's corner.

If fixing an error might somehow affect real customers, you
have no other choice but to emulate this erroneous
behavior until the next major release. This situation is
quite common if you develop a large API with a huge

audience. For example, operating systems developers
literally have to transfer old bugs to new OS versions.

2. Test the Formal Interface

Any software must be tested, and APIs ain't an exclusion.
However, there are some subtleties there: as APIs provide
formal interfaces, it's the formal interfaces that are needed
to be tested. That leads to several kinds of mistakes:

1. Often the requirements like “the getEntity function
returns the value previously being set by the
setEntity function” appear to be too trivial to both
developers and QA engineers to have a proper test.
But it's quite possible to make a mistake there, and
we have actually encountered such bugs several
times.

2. The interface abstraction principle must be tested
either. In theory, you might have considered each
entity as an implementation of some interface; in
practice, it might happen that you have forgotten
something and alternative implementations aren't
actually possible. For testing purposes, it's highly
desirable to have an alternative realization, even a
provisional one, for every interface.

3. Isolate the Dependencies

In the case of a gateway API that provides access to some
underlying API or aggregates several APIs behind a single
façade, there is a strong temptation to proxy the original
interface as is, thus not introducing any changes to it and
making life much simpler by sparing an effort needed to
implement the weak-coupled interaction between services.
For example, while developing program execution
interfaces as described in the “Separating Abstraction
Levels” chapter we might have taken the existing first-kind
coffee-machine API as a role model and provided it in our
API by just proxying the requests and responses as is.
Doing so is highly undesirable because of several reasons:

usually, you have no guarantees that the partner will
maintain backward compatibility or at least keep new
versions more or less conceptually akin to the older
ones;
any partner's problem will automatically ricochet
into your customers.

The best practice is quite the opposite: isolate the third-
party API usage, i.e., develop an abstraction level that will
allow for:

keeping backward compatibility intact because of
extension capabilities incorporated in the API
design;
negating partner's problems by technical means:

limiting the partner's API usage in case of load
surges;

implementing the retry policies or other
methods of recovering after failures;
caching some data and states to have the
ability to provide some (at least partial)
functionality even if the partner's API is fully
unreachable;
finally, configuring an automatic fallback to
another partner or alternative API.

4. Implement Your API Functionality Atop Public
Interfaces

There is an antipattern that occurs frequently: API
developers use some internal closed implementations of
some methods which exist in the public API. It happens
because of two reasons:

often the public API is just an addition to the existing
specialized software, and the functionality, exposed
via the API, isn't being ported back to the closed part
of the project, or the public API developers simply
don't know the corresponding internal functionality
exists;
in the course of extending the API, some interfaces
become abstract, but the existing functionality isn't
affected; imagine that while implementing the PUT
/formatters interface described in the “Strong
Coupling and Related Problems” chapter API
developers have created a new, more general version
of the volume formatter but hasn't changed the

implementation of the existing one, so it continues
working for pre-existing languages.

There are obvious local problems with this approach (like
the inconsistency in functions' behavior, or the bugs which
were not found while testing the code), but also a bigger
one: your API might be simply unusable if a developer tries
any non-mainstream approach, because of performance
issues, bugs, instability, etc., as the API developers
themselves never tried to use this public interface for
anything important.

NB. The perfect example of avoiding this anti-pattern is the
development of compilers; usually, the next compiler's
version is compiled with the previous compiler's version.

5. Keep a Notepad

Whatever tips and tricks described in the previous chapters
you use, it's often quite probable that you can't do anything
to prevent API inconsistencies from piling up. It's possible
to reduce the speed of this stockpiling, foresee some
problems, and have some interface durability reserved for
future use. But one can't foresee everything. At this stage,
many developers tend to make some rash decisions, e.g.,
releasing a backwards-incompatible minor version to fix
some design flaws.

We highly recommend never doing that. Remember that
the API is also a multiplier of your mistakes. What we
recommend is to keep a serenity notepad — to write down
the lessons learned, and not to forget to apply this
knowledge when a new major API version is released.

SECTION III. THE API PRODUCT

Chapter 20. API as a Product

There are two important statements regarding APIs viewed
as products.

1. APIs are proper products, just like any other kind of
software. You're “selling” them in the same manner,
and all the principles of product management are
fully applicable to them. It's quite doubtful you would
be able to develop APIs well unless you conducted
proper market research, learned customers' needs,
and studied competitors, supply, and demand.

2. Still, APIs are quite special products. You're selling the
possibility to make some actions programmatically
by writing code, and this fact puts some restrictions
on product management.

To properly develop the API product, you must be able to
answer exactly this question: why would your customers
prefer making some actions programmatically? It's not an
idle question: out of this book's author's experience, the
product owners' lack of expertise in working with APIs
exactly is the largest problem of API product development.

End users interact with your API indirectly, through
applications built upon it by software engineers acting on
behalf of some company (and sometimes there is more than
one engineer in between you and an end user). From this

point of view, the API's target audience resembles a
Maslow-like pyramid:

users constitute the pyramid's base; they look for the
fulfillment of their needs and don't think about
technicalities;
business owners form a middle level; they match
users' needs against technical capabilities declared
by developers and build products;
developers make up the pyramid's apex; it is
developers who work with APIs directly, and they
decide which of the competing APIs to choose.

The obvious conclusion of this model is that you must
advertise the advantages of your API to developers. They
will select the technology, and business owners will
translate the concept to end users. If former or acting
developers manage the API product, they often tend to
evaluate the API market competitiveness in this dimension
only and mainly channel the product promotion efforts to
the developers' auditory.

“Stop!” the mindful reader must yell at this moment. “The
actual order of things is exactly the opposite!”

Developers are normally a hired workforce
implementing the tasks set by business owners (and
even if a developer implements a project of his own,
they still choose an API that fits the project best,
thus being an employer of themselves).

Business leaders don't set tasks out of their sense of
style or code elegance; they need some functionality
being implemented — one that is needed to solve
their customers' problems.
Finally, customers don't care about the technical
aspects of the solution; they choose the product they
need and ask for some specific functionality
implemented.

So it turns out that customers are at the apex of the
pyramid: it is customers you need to convince they need
not any cup of coffee, but a cup of coffee brewed using our
API (interesting question: how will we convey the
knowledge which API works under the hood, and why
customers should pay their money for it!); then business
owners will set the task to integrate the API, and
developers will have no other choice but to implement it
(which, by the way, means that investing into API's
readability and consistency is not that important).

The truth, of course, lies somewhere in between. In some
markets and subject areas, it is developers who make
decisions (e.g., which framework to choose); in other
markets and areas, it might be business owners or
customers. It also depends on the competitiveness of the
market: introducing a new frontend framework does not
meet any resistance while developing, let's say, a new
mobile operating system requires million-dollar
investments into promotions and strategic partnerships.

Here and after, we will describe some “averaged”
situations, meaning that all three pyramid levels are
important: customers choosing the product which fits their
needs best, business owners seeking quality guarantees and
lower development costs, as well as software engineers
caring about the API capabilities and the convenience of
working with it.

Chapter 21. The API Business Models

Before we proceed to the API product management
principles, let us draw your attention to the matter of
profits that the API vendor company might extract from it.
As we will demonstrate in the next chapters, this is not an
idle question as it directly affects making product decisions
and setting KPIs for the API team. In this chapter, we will
enumerate the main API monetization models. [In
brackets, we will provide examples of such models
applicable to our coffee-machine API study.]

1. Developers = End Users

The easiest and the most understandable case is that of
providing a service for developers, with no end users
involved. First of all, we talk about software engineering
tools: APIs of programming languages, frameworks,
operating systems, UI libraries, game engines, etc. —
general-purpose interfaces, in other words. [In our coffee
API case, it means the following: we've developed a library
for ordering a cup of coffee, possibly furnished with UI
components, and now selling it to coffeeshop chains
owners whoever willing to buy it to ease the development
of their own applications.] In this case, the answer to the
“why have an API” question is self-evident.

There is also a plethora of monetizing techniques; in fact,
we're just talking about monetizing software for developers.

1. The framework / library / platform might be paid per
se, i.e., distributed under a commercial license.
Nowadays such models are becoming less and less
popular with the rise of free and open-source
software but are still quite common.

2. The API may be licensed under an open license with
some restrictions that might be lifted by buying an
extended license. It might be either functional
limitations (an inability to publish the app in the app
store or an incapacity to build the app in the
production mode) or usage restrictions (for example,
using the API for some purposes might be prohibited
or an open license might be “contagious,” i.e.,
require publishing the derived code under the same
license).

3. The API itself might be free, but the API vendor
might provide additional paid services (for example,
consulting or integrating ones), or just sell the
extended technical support.

4. The API development might be sponsored (explicitly
or implicitly) by the platform or operating system
owners [in our coffee case — by the vendors of smart
coffee machines] who are interested in providing a
wide range of convenient tools for developers to work
with the platform.

5. Finally, by publishing the API under a free license,
the API vendor might be attracting attention to other
programming tools it makes to increase sales.

Remarkably, such APIs are probably the only “pure” case
when developers choose the solution solely because of its
clean design, elaborate documentation, thought-out use
cases, etc. There are examples of copying the API design
(which is the sincerest form of flattery, as we all know!) by
other companies or even enthusiastic communities — that
happened, for example, with the Java language API (an
alternate implementation by Google) and the C# one (the
Mono project) — or just borrowing apt solutions — as it
happened with the concept of selecting DOM elements with
CSS selectors, initially implemented in the cssQuery
project, then adopted by jQuery, and after the latter became
popular, incorporated as a part of the DOM standard itself.

2. API = the Main and/or the Only Access to the
Service

This case is close to the previous one as developers again,
not end users, are API consumers. The difference is that the
API is not a product per se, but the service exposed via the
API is. The purest examples are cloud platforms APIs like
Amazon AWS or Braintree API. Some operations are
possible through end-user interfaces, but generally
speaking, the services are useless without APIs. [In our
coffee example, imagine we are an operator of “cloud”
coffee machines equipped with drone-powered delivery,
and the API is the only mean of making an order.]

Usually, customers pay for the service usage, not for the
API itself, though frequently the tariffs depend on the
number of API calls.

3. API = a Partner Program

Many commercial services provide the access to their
platforms for third-party developers to increase sales or
attract additional audiences. Examples include the Google
Books partner program, Skyscanner Travel APIs, and Uber
API. [In our case study, it might be the following model: we
are a large chain of coffee shops, and we encourage
partners to sell our coffee through their websites or
applications.] Such partnerships are fully commercial:
partners monetize their own audience, and the API
provider company yearns to get access to extended auditory
and additional advertisement channels. As a rule, the API
provider company pays for users reaching target goals and
sets requirements for the integration performance level (for
example, in a form of a minimum acceptable click-target
ratio) to avoid misusing the API.

4. API = Additional Access to the Service

If a company possesses some unique expertise, usually in a
form of some dataset that couldn't be easily gathered if
needed, quite logically a demand for the API exposing this
expertise arises. The most classical examples of such APIs
are cartographical APIs: collecting detailed and precise
geodata and keeping it up-to-date are extremely expensive,
while a wide range of services would become much more
useful if they featured an integrated map. [Our coffee
example hardly matches this pattern as the data we
accumulate — coffee machines locations, beverages types

— is something useless in any other context but ordering a
cup of coffee.]

This case is the most interesting one from the API
developers' point of view as the existence of the API does
really serve as a multiplier to the opportunities as the
expertise owner could not physically develop all imaginable
services utilizing the expertise but might help others to do
it. Providing the API is a win-win: third-party services got
their functionality improved, and the API provider got
some profits.

Access to the API might be unconditionally paid. However,
hybrid models are more common: the API is free until some
threshold is reached, such as usage limits or constraints
(for example, only non-commercial projects are allowed).
Sometimes the API is provided for free with minimal
restrictions to popularize the platform (for example, Apple
Maps).

B2B services are a special case. As B2B Service providers
benefit from offering diverse capabilities to partners, and
conversely partners often require maximum flexibility to
cover their specific needs, providing an API might be the
optimal solution for both. Large companies have their own
IT departments and more frequently need APIs to connect
them to internal systems and integrate into business
processes. Also, the API provider company itself might play
the role of such a B2B customer if its own products are built
on top of the API.

NB: we rather disapprove the practice of providing an
external API merely as a byproduct of the internal one
without making any changes to bring value to the market.
The main problem with such APIs is that partners' interests
are not taken into account, which leads to numerous
problems:

The API doesn't cover integration use cases well:
internal customers employ quite a specific
technological stack, and the API is poorly
optimized to work with other programming
languages / operating systems / frameworks;
for external customers, the learning curve will
be pretty flat as they can't take a look at the
source code or talk to the API developers
directly, unlike internal customers that are
much more familiar with the API concepts;
documentation often covers only some subset
of use cases needed by internal customers;
the API services ecosystem which we will
describe in “The API Services Range” chapter
usually doesn't exist.

Any resources spent are directed to covering internal
customer needs first. It means the following:

API development plans are totally opaque to
partners, and sometimes look just absurd with
obvious problems being neglected for years;
technical support of external customers is
financed on leftovers.

All those problems lead to having an external API that
actually hurts the company's reputation, not improves it.
You're providing a very bad service for a very critical and
skeptical auditory. If you don't have a resource to develop
the API as a product for external customers, better don't
even start.

5. API = an Advertisement Site

In this case, we talk mostly about things like widgets and
search engines as direct access to end users is a must to
display commercials. The most typical examples of such
APIs are advertisement networks APIs. However, mixed
approaches do exist either — meaning that some API,
usually a searching one, goes with commercial insets. [In
our coffee example, it means that the offer searching
function will start promoting paid results on the search
results page.]

6. API = Self-Advertisement and Self-PR

If an API has neither explicit nor implicit monetization, it
might still generate some income, increasing the
company's brand awareness through displaying logos and
other recognizable elements in partners' apps, either native
(if the API goes with UI elements) or agreed-upon ones (if
partners are obliged to embed specific branding in those
places where the API functionality is used or the data
acquired through API is displayed). The API provider
company's goals in this case are either attracting users to

the company's services or just increasing brand awareness
in general. [In the case of our coffee example, let's imagine
that our main business is something totally unrelated to
the coffee machine APIs, like selling tires, and by providing
the API we hope to increase brand recognition and get a
reputation as an IT company.]

The target audiences for such self-promotion might also
differ:

you might seek to increase brand awareness among
end users (by embedding logos and links to your
services on partner's websites and applications), and
even build the brand exclusively through such
integrations [for example if our coffee API provides
coffeeshop ratings, and we're working hard on
making consumers demand the coffeeshops to
publish the ratings];
you might concentrate efforts on increasing
awareness among business owners [for example, for
partners integrating a coffee ordering widget on their
websites to also pay attention to your tires catalog];
finally, you might provide APIs only to make
developers know your company's name to increase
their knowledge of your other products or just to
improve your reputation as an employer (this activity
is sometimes called “tech-PR”).

Additionally, we might talk about forming a community,
i.e., a network of developers (or customers, or business
owners) who are loyal to the product. The benefits of
having such a community might be substantial: lowering
the technical support costs, getting a convenient channel
for publishing announcements regarding new services and
new releases, and obtaining beta users for upcoming
products.

7. API = a Feedback and UGC Tool

If a company possesses some big data, it might be useful to
provide a public API for users to make corrections in the
data or otherwise get involved in working with it. For
example, cartographical API providers usually allow to post
feedback or correct a mistake right on partners' websites
and applications. [In the case of our coffee API, we might
be collecting feedback to improve the service, both
passively through building coffeeshops ratings or actively
through contacting business owners to convey users'
requests or through finding new coffee shops that are still
not integrated with the platform.]

8. Terraforming

Finally, the most altruistic approach to API product
development is providing it free of charge (or as an open
source and open data project) just to change the landscape.
If today nobody's willing to pay for the API, we might invest
in popularizing the functionality hoping to find commercial

niches later (in any of the abovementioned formats) or to
increase the significance and usefulness of the API
integrations for end users (and therefore the readiness of
the partners to pay for the API). [In the case of our coffee
example, imagine a coffee machine maker that starts
providing APIs for free aiming to make having an API a
“must” for every coffee machine vendor thus allowing for
the development of commercial API-based services in the
future.]

9. Gray Zones

One additional source of income for the API provider is the
analysis of the requests that end users make. In other
words — collecting and re-selling some user data. You must
be aware that the difference between acceptable data
collecting (such as aggregating search requests to
understand trends or finding promising locations for
opening a coffee shop) and unacceptable ones are quite
vague, and tends to vary in time and space (e.g., some
actions might be totally legal at the one side of the state
border, and totally illegal at the other side), so making a
decision of monetizing the API with it should be carried out
with extreme caution.

The API-First Approach

Last several years we see the trend of providing some
functionality as an API (i.e., as a product for developers)
instead of developing the service for end users. This
approach, dubbed “API-first,” reflects the growing
specialization in the IT world: developing APIs becomes a
separate area of expertise that businesses are ready to
outsource instead of spending resources to develop internal
APIs for their applications by the in-house IT department.
However, this approach is not universally accepted (yet),
and you should keep in mind the factors that affect the
decision of launching a service in the API-first paradigm:

1. The target market must be sufficiently heated up:
there must be companies there that possess enough
resources to develop services atop third-party APIs
and pay for it (unless your aim is terraforming).

2. The quality of the service must not suffer if the
service is provided only through the API.

3. You must really possess expertise in API
development; otherwise, there are high chances to
make too many design mistakes.

Sometimes providing APIs is a method to “probe the
ground,” i.e., to evaluate the market and decide whether it's
worth having a full-scale user service there. (We rather
condemn this practice as it inevitably leads to
discontinuing the API or limiting its functionality, either
because the market turns out to be not as profitable as

expected, or because the API eventually becomes a
competitor to the main service.)

Chapter 22. Developing a Product Vision

The above-mentioned fragmentation of the API target
audience, i.e., the “developers — business — end users”
triad, makes API product management quite a non-trivial
problem. Yes, the basics are the same: find your auditory's
needs and satisfy them; the problem is that your product
has several different audiences, and their interests
sometimes diverge. The end users' request for an affordable
cup of coffee does not automatically imply business
demand for a coffee machine API.

Generally speaking, the API product vision must include
the same three elements:

grasping how end users would like to have their
problems solved;
projecting how businesses would solve those
problems if appropriate tools existed;
understanding what technical solutions for
developers might exist to help them implement the
functionality businesses would ask for, and where are
the boundaries of their applicability.

In different markets and different situations, the “weight”
of each element differs. If you're creating an API-first
product for developers with no UI components, you might
skip the end users' problems analysis; and, by contrast, if
you're providing an API to extremely valuable functionality
and you're holding a close-to-monopolistic position on the
market, you might actually never care about how

developers love your software architecture or how
convenient your interfaces are for them — as they simply
have no other choice.

Still, in the majority of cases, we have to deal with two-step
heuristics based on either technical capabilities or business
demands:

you might first form the vision of how you might help
business owners given the technical capabilities you
have (heuristics step one); then, the general vision of
how your API will be used to satisfy end users' needs
(heuristics step two);
or, given your understanding of business owners'
problems, you might make one heuristic “step right”
to outline future functionality for end users and one
“step left” to evaluate possible technical solutions.

As both approaches are still heuristic, the API product
vision is inevitably fuzzy, and it's rather normal: if you
could have got a full and clear understanding of what end-
user products might be developed on top of your API, you
might have developed them on your own behalf, skipping
intermediary agents. It is also important to keep in mind
that many APIs pass the “terraforming” stage (see the
previous chapter) thus preparing the ground for new
markets and new types of services — so your idealistic
vision of a nearby future where delivering freshly brewed
coffee by drones will be a norm of life is to be refined and
clarified while new companies providing new kinds of
services are coming to the market. (Which in its turn will

make an impact on the monetization model: detailing the
countenance of the forthcoming will make your abstract
KPIs and theoretical benefits of having an API more and
more concrete.)

The same fuzziness should be kept in mind while making
interviews and getting feedback. Software engineers will
mainly report the problems they've got with the technical
integrations, and rarely speak of business-related issues;
meanwhile, business owners care little about the
inconvenience of writing code. Both will have some
knowledge regarding the end users' problems, but it's
usually limited to the market segment the partner operates
on.

If you do have an access to end users' actions monitoring
(see “The API Key Performance Indicators” chapter), then
you might try to analyze the typical user behavior through
these logs and understand how users interact with the
partners' applications. But you will need to make this
analysis on a per-application basis and try to clusterize the
most common scenarios.

Checking Product Hypotheses

Apart from the general complexity of formulating the
product vision, there are also tactical issues with checking
product hypotheses. “The Holy Grail” of product
management — that is, creating a cheap (in terms of
resource spent) minimal viable product (MVP) — is
normally unavailable for an API product manager. The

thing is that you can't easily test the solution even if you
managed to develop an API MVP: to do so, partners are to
develop some code, i.e., invest their money; and if the
outcome of the experiment is negative (i.e., the further
development looks unpromising), this money will be
wasted. Of course, partners will be a little bit skeptical
towards such proposals. Thus a “cheap” MVP should
include either the compensation for partners' expenses or
the budget to develop a reference implementation (i.e., a
complementary application that is created to support the
API MVP).

You might partially solve the problem by making some
third-party company release the MVP (for example, in a
form of an open-source module published in some
developer's personal repository) but then you will struggle
with hypothesis validation issues as such modules might
easily go unnoticed.

Another option for checking conjectures is recruiting some
other developers within the API provider company to try
the API in their services. Internal customers are usually
much more loyal towards spending some effort to check a
hypothesis, and it's much easier to negotiate MVP
curtailing or freezing with them. The problem is that you
can check only those ideas that are relevant to the
company's internal needs.

Also, applying the “eat your own dog food” concept to APIs
means that the API product team should have their own
test applications (so-called “pet projects”) on top of the
API. Given the complexity of developing such applications,

it makes sense to encourage having them, i.e., giving free
API quotas to team members and providing sufficient free
computational resources.

Such pet projects are also valuable because of the unique
experience they allow to gain: everyone might try a new
role. Developers will learn product managers' typical
problems: it's not enough to write fine code, you also need
to know your customer, understand their demands,
formulate an attractive concept, and communicate it. In
their turn, product managers will get some understanding
of how exactly easy or hard it is to render their product
vision into life, and what problems the implementation will
bring. Finally, both will benefit from taking a fresh look at
the API documentation and putting themselves in the
shoes of a developer who heard about the API product for
the first time and is now struggling with grasping the
basics.

Chapter 23. Communicating with Developers

As we have described in the previous chapters, managing
an API product requires building relations with both
business partners and developers. (Ideally, with end users
as well; though this option is seldom available to API
providers.)

Let's start with developers. The specifics of software
engineers as an auditory are the following:

developers are highly-educated individuals with
practical thinking; as a rule, they choose technical
products with extreme rationality (unless you're
giving them cool backpacks with fancy prints for
free);

this doesn't prevent them from having a
certain aptitude towards, let's say, specific
programming languages or frameworks;
however, affecting those aptitudes is extremely
hard and is normally not in the API vendor's
power;

in particular, developers are quite skeptical towards
promotional materials and overstatements and are
ready to actually check whether your claims are true;

it is very hard to communicate to them via regular
marketing channels; they get information from
highly specialized communities, and they stick to
opinions proved by concrete numbers and examples
(ideally, code samples);

the “influencers” words are not very valuable
to them, as no opinions are trusted if
unsubstantiated;

the Open Source and free software ideas are
widespread among developers; if you try to make
money out of things that must be free and/or open
from their point of view (for example, by proclaiming
interfaces an intellectual property), you will face
resistance (and views on this “musts”… differ).

Because of the above-mentioned specifics (first of all, the
relative insignificance of influencers and the critical
attitude towards promotions), you will have to
communicate to developers via very specific media:

collective blogs (like the “r/programming” subreddit
or dev.to)
Q&A sites (StackOverflow, Experts Exchange)
educational services (CodeAcademy, Udemy)
technical conferences and webinars.

In all these channels, the direct advertising of your API is
either problematic or impossible. (Well, strictly speaking,
you may buy the banner on one of the sites advertising the
advantages of your API, but we hardly doubt it will improve
your relations with developers.) You need to generate some
valuable and/or interesting content for them, which will
improve the knowledge of your API. And this is the job for
your developers: writing articles, answering questions,
recording webinars, and giving pitches.

Developers do like sharing the experience, and will
probably be eager to do it — during their work hours. A
proper conference talk, let alone an educational course,
requires a lot of preparation time. Out of this book's
author's experience, two things are crucial for tech-PR:

incentives, even nominal ones — the job of
promoting a product should be rewarded;
methodicalness and quality standards — you might
actually do the content review just like you do the
code review.

Nothing could make the worse counter-advertising for your
product than a poorly prepared pitch (as we said, the
mistakes will be inevitably found and pointed to) or a badly
camouflaged commercial in a form of a pitch (the reason is
actually the same). Texts are to be worked upon: pay
attention to the structure, logic, and tempo of the
narration. Even a technical story must be finely
constructed; after it's ended, the listeners must have a clear
understanding of what idea you wanted to communicate

(and it'd rather be somehow coupled with your API's fitness
for their needs).

A word on “evangelists” (those are people who have some
credibility in the IT community and work on promoting a
technology or a tech company, being a company's
contractor or even a staff member, effectively carrying out
all those above-mentioned activities like blog-posting,
course-preparing, conference-speaking, etc.) Having an
evangelist makes the API development team exempt from
the necessity of performing the tech-PR. However, we
would rather advise having this expertise inside the team,
as direct interaction with developers helps with forming
the product vision. (That doesn't mean the evangelists are
not needed at all - you might well combine these two
strategies.)

Open Source

The important question which sooner or later will stand in
any API vendor's way is making the source code open. This
decision has both advantages and disadvantages:

you will improve the knowledge of the brand, and
some respect will be paid to you by the IT
community;

that's given your code is finely written and
commented;

you will get some additional feedback — ideally, pull
requests from third-party developers;

and you will also get a number of inquiries and
comments ranging from useless to obviously
provocative ones, to which you will have to
respond politely;

donating code to open source makes developers trust
the company more, and affects their readiness to rely
on the platform;

but it also increases risks, both from the
information security point of view and from
the product one, as a dissatisfied community
might fork your repo and create a competing
product.

Finally, just the preparations to make the code open might
be very expensive: you need to clean the code, switch to
open building and testing tools, and remove all references
to proprietary resources. This decision is to be made very
cautiously, after having all pros and cons elaborated over.
We might add that many companies try to reduce the risks
by splitting the API code into two parts, the open one and
the proprietary one, and also by selecting a license that
disallows harming the company's interests by using the
open-sourced code (for example, by prohibiting selling
hosted solutions or by requiring the derivative works to be
open-sourced as well).

The Auditory Fragmentation

There is one very important addition to the discourse: as
informational technologies are universally in great
demand, a significant percentage of your customers will not
be professional software engineers. A huge number of
people are somewhere on the track of mastering the
occupation: someone is trying to write code in addition to
the basic duties, another one is being retrained now, and
the third one is studying the basics of computer science on
their own. Many of those non-professional developers
make a direct impact on the process of selecting an API
vendor — for example, small business owners who
additionally seek to automate some routine tasks
programmatically.

It will be more correct if we say that you're actually working
for two main types of audiences:

beginners and amateurs, for whom each of those
integration tasks would be completely new and
unexplored territory;
professional developers who possess vast experience
in integrating different third-party systems.

This fact greatly affects everything we had discussed
previously (except for, maybe, open-sourcing, as amateur
developers pay little attention to it):

Your pitches, webinars, lectures, etc., must somehow
fit both professional and semi-professional
audiences.

A huge share of customers' inquiries to your
customer support service will be generated by the
first category of developers: it's much harder for
amateurs or beginners to find answers to their
questions by themselves, and they will address them
to you.
At the same time, the second category is much more
sensitive to the quality of both the product and
customer support, and fulfilling their requests might
be non-trivial.

Finally, it's almost impossible in a course of a single
product to create an API that will fit well both amateur and
professional developers: the former need the maximum
simplicity of implementing basic use cases, while the latter
seek the ability to adapt the API to match technological
stack and development paradigms, and the problems they
solve usually require deep customization. We will discuss
the matter in “The API Services Range” chapter.

Chapter 24. Communicating with Business Owners

The basics of interacting with business partners are to
some extent paradoxically contrary to the basics of
communicating with developers:

on one hand, partners are much more loyal and
sometimes even enthusiastic regarding opportunities
you offer (especially free ones);
on the other hand, communicating the meaning of
your offer to the business owners is much more
complicated than conveying it to developers, as it's
generally hard to explain what are the advantages of
integrating via APIs (as a concept).

After all, working with business auditory essentially means
lucidly explaining the characteristics and the advantages of
the product. In that sense, API “sells” just like any other
kind of software.

As a rule, the farther some industry sector from
information technologies is, the more enthusiastic its
representatives about your API features are, and the less is
the chance that this enthusiasm will be converted into a
real integration. The one thing that should help the case is
extensive work with the developer community (see the
previous chapter) that will result in establishing a circle of
freelancers and outsourcers eager to help non-IT
businesses with integrations. You might help in developing
this market by creating educational courses and issuing

certificates proving the bearer's skills in working with your
API (or some broader layer of technology).

Market research and getting feedback from business owners
work similarly. Those businesses that are far from IT
usually can't formulate their demands, so you should be
rather creative (and critical-minded) while analyzing the
gathered data.

Chapter 25. The API Services Range

The important rule of API product management any major
API provider will soon learn is: don't just ship one specific
API; there is always room for a range of products, and this
range is two-dimensional.

Horizontal Scaling of API Services

Usually, any functionality available through an API might
be split into independent units. For example, in our coffee
API, there are offer search endpoints and order processing
endpoints. Nothing could prevent us from either
pronouncing those functional clusters different APIs or,
vice versa, considering them as parts of one API.

Different companies employ different approaches to
determining the granularity of API services, i.e., what is
counted as a separate product and what is not. To some
extent, this is a matter of convenience and taste judgment.
Consider splitting an API into parts if:

it makes sense for partners to integrate only one API
part, i.e., some isolated subset of the API provides
enough means to solve users' problems;
API parts might be versioned separately and
independently, and it is meaningful from the
partners' point of view (this usually means that those
“isolated” APIs are either fully independent or
maintain strict backward compatibility and introduce
new major versions only when it's absolutely

necessary; otherwise, maintaining a matrix which
API #1 version is compatible with which API #2
version will soon become a catastrophe);
it makes sense to set tariffs and limits for each API
service independently;
the auditory of the API segments (either developers,
business owners, or end users) is not overlapping,
and “selling” granular API to customers is much
easier than aggregated.

NB: still, those split APIs might still be a part of a united
SDK, to make programmers' lives easier.

Vertical Scaling of API Services

However, frequently it makes sense to provide several API
services manipulating the same functionality. Let us
remind you that there are two kinds of developers:
professional ones that seek extensive customization
capabilities (as they usually work in big IT companies that
have a specific mindset towards integrations), and semi-
professionals who just need the gentlest possible learning
curve. The only way to cover the needs of both categories is
to develop a range of products with different entry
thresholds and requirements for developers' professional
level. We might name several API sub-types, ordered from
the most technically demanding to less complex ones.

1. The most advanced level is that of physical APIs and
the abstractions on top of them. [In our coffee
example, the collection of entities describing working
with APIs of physical coffee machines, see the
“Separating Abstraction Levels” and the “Weak
Coupling” chapters.]

2. The basic level of working with product entities via
formal interfaces. [In our study example, that will be
HTTP API for making orders.]

3. Working with product entities might be simplified if
SDKs are provided for some popular platforms that
tailor API concepts according to the paradigms of
those platforms (for those developers who are
proficient with specific platforms only that will save a
lot of effort on dealing with formal protocols and
interfaces).

4. The next simplification step is providing services for
code generation. In this service, developers choose
one of the pre-built integration templates, customize
some options, and got a ready-to-use piece of code
that might be simply copy-pasted into the
application code (and might be additionally
customized by adding some level 1-3 code). This
approach is sometimes called “point-and-click
programming.” [In the case of our coffee API, an
example of such a service might have a form or
screen editor for a developer to place UI elements
and get the working application code.]

5. Finally, this approach might be simplified even
further if the service generates not code but a ready-
to-use component / widget / frame and a one-liner to
integrate it. [For example, if we allow embedding an
iframe that handles the entire coffee ordering
process right on the partner's website, or describes
the rules of forming the image URL that will show the
most relevant offer to an end user if embedded in the
partner's app.]

Ultimately, we will end up with a concept of meta-API, i.e.,
those high-level components will have an API of their own
built on top of the basic API.

The important advantage of having a range of APIs is not
only about adapting it to the developer's capabilities but
also about increasing the level of control you have over the
code that partners embed into their apps:

1. The apps that use physical interfaces are out of your
control; for example, you can't force switching to
newer versions of the platform or, let's say, add
commercial inlets to them.

2. The apps that operate base APIs will let you
manipulate underlying abstraction levels — move to
newer technologies or alter the way search results are
presented to an end user.

3. SDKs, especially those proving UI components,
provide a higher degree of control over the look and
feel of partners' applications, which allows you to
evolve the UI, adding new interactive elements and

enriching the functionality of existing ones. [For
example, if our coffee SDK contains the map of coffee
shops, nothing could stop us from making map
objects clickable in the next API version or
highlighting paid offerings.]

4. Code generation makes it possible to manipulate the
desired form of integrations. For example, if our KPI
is a number of searches performed through the API,
we might alter the generated code so it will show the
search panel in the most convenient position in the
app; as partners using code-generation services
rarely make any changes in the resulting code, and
this will help us in reaching the goal.

5. Finally, ready-to-use components and widgets are
under your full control, and you might experiment
with functionality exposed through them in partners'
applications just as if it was your own service.
(However, it doesn't automatically mean that you
might draw some profits from having this control; for
example, if you're allowing inserting pictures by their
direct URL, your control over this integration is
rather negligible, so it's generally better to provide
those kinds of integration that allow having more
control over the functionality in partners' apps.)

NB. While developing a “vertical” range of APIs, following
the principles stated in the “On the Waterline of the
Iceberg” chapter is crucial. You might manipulate widget
content and behavior if, and only if, developers can't
“escape the sandbox,” i.e., have direct access to low-level
objects encapsulated within the widget.

In general, you should aim to have each partner using the
API services in a manner that maximizes your profit as an
API vendor. Where the partner doesn't try to make some
unique experience and needs just a typical solution, you
would benefit from making them use widgets, which are
under your full control and thus ease the API version
fragmentation problem and allow for experimenting in
order to reach your KPIs. Where the partner possesses
some unique expertise in the subject area and develops a
unique service on top of your API, you would benefit from
allowing full freedom in customizing the integration, so
they might cover specific market niches and enjoy the
advantage of offering more flexibility compared to services
using competing APIs.

Chapter 26. The API Key Performance Indicators

As we described in the previous chapters, there are many
API monetization models, both direct and indirect.
Importantly, most of them are fully or conditionally free for
partners, and the direct-to-indirect benefits ratio tends to
change during the API lifecycle. That naturally leads us to
the question of how exactly shall we measure the API
success and what goals are to be set for the product team.

Of course, the most explicit metric is money: if your API is
monetized directly or attracts visitors to a monetized
service, the rest of the chapter will be of little interest to
you, maybe just as a case study. If, however, the
contribution of the API to the company's income cannot be
simply measured, you have to stick to other, synthetic,
indicators.

The obvious key performance indicator (KPI) #1 is the
number of end users and the number of integrations (i.e.,
partners using the API). Normally, they are in some sense a
business health barometer: if there is a normal competitive
situation among the API suppliers, and all of them are
more or less in the same position, then the figure of how
many developers (and consequently, how many end users)
are using the API is the main metric of success of the API
product.

However, sheer numbers might be deceiving, especially if
we talk about free-to-use integrations. There are several
factors that make them less reliable:

the high-level API services that are meant for point-
and-click integration (see the previous chapter) are
significantly distorting the statistics, especially if the
competitors don't provide such services; typically, for
one full-scale integration there will be tens, maybe
hundreds, of those lightweight embedded widgets;

thereby, it's crucial to have partners counted
for each kind of the integration independently;

partners tend to use the API in suboptimal ways:

embed it at every website page / application
screen instead of only those where end users
can really interact with the API;
put widgets somewhere deep in the page /
screen footer, or hide it behind spoilers;
initialize a broad range of API modules, but use
only a limited subset of them;

the greater the API auditory is, the less the number
of unique visitors means as at some moment the
penetration will be close to 100%; for example, a
regular Internet user interacts with Google or
Facebook counters, well, every minute, so the daily
audience of those API fundamentally cannot be
increased further.

All the abovementioned problems naturally lead us to a
very simple conclusion: not only the raw numbers of users
and partners are to be gauged, but their engagement as
well, i.e., the target actions (such as searching, observing

some data, interacting with widgets) shall be determined
and counted. Ideally, these target actions must correlate
with the API monetization model:

if the API is monetized through displaying ads, then
the user's activity towards those ads (e.g., clicks,
interactions) is to be measured;
if the API attracts customers to the core service, then
count the transitions;
if the API is needed for collecting feedback and
gathering UGC, then calculate the number of reviews
left and entities edited.

Additionally, the functional KPIs are often employed: how
frequently some API features are used. (Also, it helps with
prioritizing further API improvements.) In fact, that's still
measuring target actions, but those that are made by
developers, not end users. It's rather complicated to gather
the usage data for software libraries and frameworks,
though still doable (however, you must be extremely
cautious with that, as any auditory rather nervously reacts
to finding that some statistic is gathered automatically).

The most complicated case is that of API being a tool for
(tech)PR and (tech)marketing. In this case, there is a
cumulative effect: increasing the API audience doesn't
momentarily bring any profit to the company. First, you got
a loyal developer community, then this reputation helps
you to hire people. First, your company's logo flashes on
third-party webpages and applications, then the top-of-
mind brand knowledge increases. There is no direct method

of evaluating how some action (let's say, a new release or
an event for developers) affects the target metrics. In this
case, you have to operate indirect metrics, such as the
audience of the documentation site, the number of
mentions in the relevant communication channels, the
popularity of your blogs and seminars, etc.

Let us summarize the paragraph:

counting direct metrics such as the total number of
users and partners is a must and is totally necessary
for moving further, but that's not a proper KPI;
the proper KPI should be formulated based on the
number of target actions that are made through the
platform;
the definition of target action depends on the
monetization model and might be quite
straightforward (like the number of paying partners,
or the number of paid ad clicks) or, to the contrary,
pretty implicit (like the growth of the company's
developer blog auditory).

SLA

This chapter would be incomplete if we didn't mention the
“hygienic” KPI — the service level and the service
availability. We won't be describing the concept in detail, as
the API SLA isn't any different from any other digital
services SLAs. Let us just state that this metric must be
tracked, especially if we talk about pay-to-use APIs.
However, in many cases, API vendors prefer to offer rather

loose SLAs, treating the provided functionality as a data
access or content licensing service.

Still, let us re-iterate once more: any problems with your
API are automatically multiplied by the number of partners
you have, especially if the API is vital for them, i.e., the API
outage makes the main functionality of their services
unavailable. (And actually, because of the above-
mentioned reasons, the average quality of integrations
implies that partners' services will suffer even if the
availability of the API is not formally speaking critical for
them, but because developers use it excessively and do not
bother with proper error handling.)

It is important to mention that predicting the workload for
the API service is rather complicated. Sub-optimal API
usage, e.g., initializing the API in those application and
website parts where it's not actually needed, might lead to a
colossal increase in the number of requests after changing
a single line of partner's code. The safety margin for an API
service must be much higher than for a regular service for
end users — it must survive the situation of the largest
partner suddenly starting querying the API on every page
and every application screen. (If the partner is already
doing that, then the API must survive doubling the load if
the partner by accident starts initializing the API twice on
each page / screen.)

Another extremely important hygienic minimum is the
informational security of the API service. In the worst-case
scenario, namely, if an API service vulnerability allows for
exploiting partner applications, one security loophole will

in fact be exposed in every partner application. Needless to
say that the cost of such a mistake might be
overwhelmingly colossal, even if the API itself is rather
trivial and has no access to sensitive data (especially if we
talk about webpages where no “sandbox” for third-party
scripts exists, and any piece of code might let's say track
the data entered in forms). API services must provide the
maximum protection level (for example, choose
cryptographical protocols with a certain overhead) and
promptly react to any reports regarding possible
vulnerabilities.

Comparing to Competitors

While measuring KPIs of any service, it's important not
only to evaluate your own numbers but also to match them
against the state of the market:

what is your market share, and how is it evolving over
time?
is your service growing faster than the market itself
or is the rate the same, or is it even less?
what proportion of the growth is caused by the
growth of the market, and what is related to your
efforts?

Getting answers to those questions might be quite non-
trivial in the case of API services. Indeed, how could you
learn how many integrations has your competitor had
during the same period of time, and what number of target
actions had happened on their platform? Sometimes, the

providers of popular analytical tools might help you with
this, but usually, you have to monitor the potential
partners' apps and websites and gather the statistics
regarding APIs they're using. The same applies to market
research: unless your niche is significant enough for some
analytical company to conduct a study, you will have to
either commission such work or make your own
estimations — conversely, through interviewing potential
customers.

Chapter 27. Identifying Users and Preventing Fraud

In the context of working with an API, we talk about two
kinds of users of the system:

users-developers, i.e., your partners writing code
atop of the API;
end users interacting with applications implemented
by the users-developers.

In most cases, you need to have both of them identified (in
a technical sense: discern one unique customer from
another) to have answers to the following questions:

how many users are interacting with the system
(simultaneously, daily, monthly, and yearly)?
how many actions does each user make?

NB. Sometimes, when an API is very large and/or abstract,
the chain linking the API vendor to end users might
comprise more than one developer as large partners
provide services implemented atop of the API to the
smaller ones. You need to count both direct and
“derivative” partners.

Gathering this data is crucial because of two reasons:

to understand the system's limits and to be capable
of planning its growth;
to understand the number of resources (ultimately,
money) that are spent (and gained) on each user.

In the case of commercial APIs, the quality and timeliness
of gathering this data are twice that important, as the tariff
plans (and therefore the entire business model) depend on
it. Therefore, the question of how exactly we're identifying
users is crucial.

Identifying Applications and Their Owners

Let's start with the first user category, i.e., API business
partners-developers. The important remark: there are two
different entities we must learn to identify, namely
applications and their owners.

An application is roughly speaking a logically separate case
of API usage, usually — literally an application (mobile or
desktop one) or a website, i.e., some technical entity.
Meanwhile, an owner is a legal body that you have the API
usage agreement signed. If API Terms of Service (ToS)
imply different limits and/or tariffs depending on the type
of the service or the way it uses the API, this automatically
means the necessity to track one owner's applications
separately.

In the modern world, the factual standard for identifying
both entities is using API keys: a developer who wants to
start using an API must obtain an API key bound to their
contact info. Thus the key identifies the application while
the contact data identifies the owner.

Though this practice is universally widespread we can't but
notice that in most cases it's useless, and sometimes just
destructive.

Its general advantage is the necessity to supply actual
contact info to get a key, which theoretically allows for
contacting the application owner if needed. (In the real
world, it doesn't work: key owners often don't read
mailboxes they provided upon registration; and if the
owner is a company, it easily might be a no-one's mailbox
or a personal email of some employee that left the company
a couple of years ago.)

The main disadvantage of using API keys is that they don't
allow for reliably identifying both applications and their
owners.

If there are free limits to API usage, there is a temptation to
obtain many API keys bound to different owners to fit those
free limits. You may raise the bar of having such multi-
accounts by requiring, let's say, providing a phone number
or bank card data, but there are popular services for
automatically issuing both. Paying for a virtual SIM or
credit card (to say nothing about buying the stolen ones)
will always be cheaper than paying the proper API tariff —
unless it's the API for creating those cards. Therefore, API
key-based user identification (if you're not requiring the
physical contract to be signed) does not mean you don't
need to double-check whether users comply with the terms
of service and do not issue several keys for one app.

Another problem is that an API key might be simply stolen
from a lawful partner; in the case of mobile or web
applications, that's quite trivial.

It might look like the problem is not that important in the
case of server-to-server integrations, but it actually is.
Imagine that a partner provides a public service of their
own that uses your API under the hood. That usually means
there is an endpoint in the partner's backend that performs
a request to the API and returns the result, and this
endpoint perfectly suits as a free replacement of direct
access to the API for a cybercriminal. Of course, you might
say this fraud is a problem of partners', but, first, it would
be naïve to expect each partner develops their own anti-
fraud system, and, second, it's just sub-optimal: obviously,
a centralized anti-fraud system would be way more
effective than a bunch of amateur implementations. Also,
server keys might also be stolen: it's much harder than
stealing client keys but doable. With any popular API,
sooner or later you will face the situation of stolen keys
made available to the public (or a key owner just shared it
with acquaintances out of the kindness of their heart).

One way or another, a problem of independent validation
arises: how can we control whether the API endpoint is
requested by a user in compliance with the terms of
service?

Mobile applications might be conveniently tracked through
their identifiers in the corresponding store (Google Play,
App Store, etc.), so it makes sense to require this identifier
to be passed by partners as an API initialization parameter.
Websites with some degree of confidence might be
identified by the Referer and Origin HTTP headers.

This data is not itself reliable, but it allows for making
cross-checks:

if a key was issued for one specific domain but
requests are coming with a different Referer, it
makes sense to investigate the situation and maybe
ban the possibility to access the API with this Referer
or this key;
if an application initializes API by providing a key
registered to another application, it makes sense to
contact the store administration and ask for
removing one of the apps.

NB: don't forget to set infinite limits for using the API with
the localhost, 127.0.0.1 / [::1] Referers, and also for your
own sandbox if it exists. Yes, abusers will sooner or later
learn this fact and will start exploiting it, but otherwise,
you will ban local development and your own website much
sooner than that.

The general conclusion is:

it is highly desirable to have partners formally
identified (either through obtaining API keys or by
providing contact data such as website domain or
application identifier in a store while initializing the
API);
this information shall not be trusted unconditionally;
there must be double-checking mechanisms that
identify suspicious requests.

Identifying End Users

Usually, you can put forward some requirements for self-
identifying of partners, but asking end users to reveal
contact information is impossible in most cases. All the
methods of measuring the audience described below are
imprecise and often heuristic. (Even if partner application
functionality is only available after registration and you do
have access to that profile data, it's still a game of
assumptions, as an individual account is not the same as an
individual user: several different persons might use a single
account, or, vice versa, one person might register many
accounts.) Also, note that gathering this sort of data might
be legally regulated (though we will be mostly speaking
about anonymized data, there might still be some
applicable law).

1. The most simple and obvious indicator is an IP
address. It's very hard to counterfeit them (i.e., the
API server always knows the remote address), and
the IP address statistics are reasonably
demonstrative.

If the API is provided as a server-to-server one, there
will be no access to the end user's IP address.
However, it makes sense to require partners to
propagate the IP address (for example, in a form of
the X-Forwarded-For header) — among other things,
to help partners fight fraud and unintended usage of
the API.

Until recently, IP addresses were also a convenient
statistics indicator because it was quite expensive to
get a large pool of unique addresses. However, with
ipv6 advancement this restriction is no longer actual;
ipv6 rather put the light on the fact that you can't
just count unique addresses — the aggregates are to
be tracked:

the cumulative number of requests by
networks, i.e., the hierarchical calculations
(the number of /8, /16, /24, etc. networks)
the cumulative statistics by autonomous
networks (AS);
the API requests through known public proxies
and TOR network.

An abnormal number of requests in one network
might be evidence of the API being actively used
inside some corporative environment (or NATs being
widespread in the region).

2. Additional means of tracking are users' unique
identifiers, most notably cookies. However, most
recently this method of gathering data got attacked
from several directions: browser makers restrict
third-party cookies, users are employing anti-tracker
software, and lawmakers started to roll out legal
requirements against data collection. In the current
situation, it's much easier to drop cookie usage than
to be compliant with all the regulations.

All this leads to a situation when public APIs
(especially those installed on free-to-use sites and
applications) are very limited in the means of
collecting statistics and analyzing user behavior. And
that impacts not only fighting all kinds of fraud but
analyzing use cases as well. That's the way.

NB. In some jurisdictions, IP addresses are considered
personal data, and collecting them is prohibited as well. We
don't dare to advise on how an API vendor might at the
same time be able to fight prohibited content on the
platform and don't have access to users' IP addresses. We
presume that complying with such legislation implies
storing statistics by IP address hashes. (And just in case we
won't mention that building a rainbow table for SHA-256
hashes covering the entire 4-billion range of IPv4 addresses
would take several hours on a regular office-grade
computer.)

Chapter 28. The Technical Means of Preventing ToS
Violations

Implementing the paradigm of a centralized system of
preventing partner endpoints-bound fraud, which we
described in the previous chapter, in practice faces non-
trivial difficulties.

The task of filtering out illicit API requests comprises three
steps:

identifying suspicious users;
optionally, asking for an additional authentication
factor;
making decisions and applying access restrictions.

1. Identifying Suspicious Users

Generally speaking, there are two approaches we might
take, the static one and the dynamic (behavioral) one.

Statically we monitor suspicions activity surges, as
described in the previous chapter, marking an unusually
high density of requests coming from specific networks or
Referers (actually, any piece of information suits if it splits
users into more or less independent groups: for example,
OS version or system language would suffice if you can
gather those).

Behavioral analysis means we're examining the history of
requests made by a specific user, searching for non-typical
patterns, such as “unhuman” order of traversing endpoints
or too small pauses between requests.

Importantly, when we talk about “users,” we will have to
make duplicate systems to observe them both using tokens
(cookies, logins, phone numbers) and IP addresses, as
malefactors aren't obliged to preserve the tokens between
requests, or might keep a pool of them to impede their
exposure.

2. Requesting an Additional Authentication Factor

As both static and behavioral analyses are heuristic, it's
highly desirable to not make decisions based solely on their
outcome but rather ask the suspicious users to additionally
prove they're making legitimate requests. If such a
mechanism is in place, the quality of an anti-fraud system
will be dramatically improved, as it allows for increasing
system sensitivity and enabling pro-active defense, e.g.,
asking users to pass the tests in advance.

In the case of services for end users, the main method of
acquiring the second factor is redirecting to a captcha page.
In the case of APIs it might be problematic, especially if
you initially neglected the “Stipulate Restrictions” rule
we've given in the “Describing Final Interfaces” chapter. In
many cases, you will have to impose this responsibility on
partners (i.e., it will be partners who show captchas and
identify users based on the signals received from the API

endpoints). This will, of course, significantly impair the
convenience of working with the API.

NB. Instead of captcha, there might be other actions
introducing additional authentication factors. It might be
the phone number confirmation or the second step of the
3D-Secure protocol. The important part is that requesting
an additional authentication step must be stipulated in the
program interface, as it can't be added later in a backwards-
compatible manner.

Other popular mechanics of identifying robots include
offering a bait (“honeypot”) or employing the execution
environment checks (starting from rather trivial ones like
executing JavaScript on the webpage and ending with
sophisticated techniques of checking application integrity
checksums).

3. Restricting Access

The illusion of having a broad choice of technical means of
identifying fraud users should not deceive you as you will
soon discover the lack of effective methods of restricting
those users. Banning them by cookie / Referer / User-Agent
makes little to no impact as this data is supplied by clients,
and might be easily forged. In the end, you have four
mechanisms for suppressing illegal activities:

banning users by IP (networks, autonomous systems)

requiring mandatory user identification (maybe
tiered: login / login with confirmed phone number /
login with confirmed identity / login with confirmed
identity and biometrics / etc.)
returning fake responses
filing administrative abuse reports.

The problem with the first option is the collateral damage
you will inflict, especially if you have to ban subnets.

The second option, though quite rational, is usually
inapplicable to real APIs, as not every partner will agree
with the approach, and definitely not every end user. This
will also require being compliant with the existing personal
data laws.

The third option is the most effective one in technical
terms as it allows to put the ball in the malefactor's court:
it is now them who need to invent how to learn if the robot
was detected. But from the moral point of view (and from
the legal perspective as well) this method is rather
questionable, especially if we take into account the
probability of false-positive signals, meaning that some
real users will get the fake data.

Thereby, you have only one method that really works: filing
complaints to hosting providers, ISPs, or law enforcement
authorities. Needless to say, this brings certain
reputational risks, and the reaction time is rather not
lightning fast.

In most cases, you're not fighting fraud — you're actually
increasing the cost of the attack, simultaneously buying
yourself enough time to make administrative moves against
the perpetrator. Preventing API misusage completely is
impossible as malefactors might ultimately employ the
expensive but bulletproof solution — to hire real people to
make the requests to the API on real devices through
legitimate applications.

An opinion exists, which the author of this book shares,
that engaging in this sword-against-shield confrontation
must be carefully thought out, and advanced technical
solutions are to be enabled only if you are one hundred
percent sure it is worth it (e.g., if they steal real money or
data). By introducing elaborate algorithms, you rather
conduct an evolutional selection of the smartest and most
cunning cybercriminals, counteracting to whom will be way
harder than to those who just naïvely call API endpoints
with curl. What is even more important, in the final phase
— i.e., when filing the complaint to authorities — you will
have to prove the alleged ToS violation, and doing so
against an advanced fraudster will be problematic. So it's
rather better to have all the malefactors monitored (and
regularly complained against), and escalate the situation
(i.e., enable the technical protection and start legal actions)
only if the threat passes a certain threshold. That also
implies that you must have all the tools ready, and just
keep them below fraudsters' radars.

Out of the author of this book's experience, the mind games
with malefactors, when you respond to any improvement of
their script with the smallest possible effort that is enough
to break it, might continue indefinitely. This strategy, i.e.,
making fraudsters guess which traits were used to ban
them this time (instead of unleashing the whole heavy
artillery potential), annoys amateur “hackers” greatly as
they lack hard engineering skills and just give up
eventually.

Dealing with Stolen Keys

Let's now move to the second type of unlawful API usage,
namely using in the malefactor's applications keys stolen
from conscientious partners. As the requests are generated
by real users, captcha won't help, though other techniques
will.

1. Maintaining metrics collection by IP addresses and
subnets might be of use in this case as well. If the
malefactor's app isn't a public one but rather targeted
to some closed audience, this fact will be visible in
the dashboards (and if you're lucky enough, you
might also find suspicious Referers, public access to
which is restricted).

2. Allowing partners to restrict the functionality
available under specific API keys:

setting the allowed IP address range for server-
to-server APIs, allowed Referers and
application ids for client APIs;

white-listing only allowed API functions for a
specific key;

other restrictions that make sense in your case
(in our coffee API example, it's convenient to
allow partners to prohibit API calls outside of
countries and cities they work in).

3. Introducing additional request signing:

for example, if on the partner's website, there
is a form displaying the best lungo offers, for
which the partners call the API endpoint like
/v1/search?recipe=lungo&api_key={apiKey},
then the API key might be replaced with a
signature like sign = HMAC("recipe=lungo",
apiKey); the signature might be stolen as well,
but it will be useless for malefactors as they
will be able to find only lungo with it;

instead of API keys, time-based one-time
passwords (TOTP) might be used; these tokens
are valid for a short period of time only
(typically, one minute), which makes using
stolen keys much more complicated.

4. Filing complaints to the administration (hosting
providers, app store owners) in case the malefactor
distributes their application through stores or uses a
diligent hosting service that investigates abuse
filings. Legal actions are also an option, and even
much so compared to countering user fraud, as illegal
access to the system using stolen credentials is
unambiguously outlawed in most jurisdictions.

5. Banning compromised API keys; the partners'
reaction will be, of course, negative, but ultimately
every business will prefer temporary disabling of
some functionality over getting a multi-million bill.

Chapter 29. Supporting customers

From banning users, let's change the topic to supporting
them. First of all, an important remark: when we talk about
supporting API customers, we mean helping developers
and to some extent business partners. End users seldom
interact with APIs directly, with an exception of several
non-standard cases:

1. If you can't reach partners that are using the API
incorrectly, you might have to display errors that end
users can see. This might happen if the API was
provided for free and with minimum partner
identification requirements while in the growth
phase, and then the conditions changed (a popular
API version is no longer supported or became paid).

2. If the API vendor cannot reproduce some problem
and has to reach out end users to get additional
diagnostics.

3. If the API is used to gather UGC content.

The first two cases are actually consequences of product-
wise or technical flaws in the API development, and they
should be avoided. The third case differs little from
supporting end users of the UGC service itself.

If we talk about supporting partners, it's revolving around
two major topics:

legal and administrative support with regard to the
terms of service and the SLA (and that's usually about
responding to business owners' inquiries);
helping developers with technical issues.

The former is of course extremely important for any
healthy service (including APIs) but again bears little API-
related specifics. In the context of this book, we are much
more interested in the latter.

As an API is a program product, developers will be in fact
asking how this specific piece of code that they have
written works. This fact raises the level of required
customer support staff members' expertise quite high as
you need a software engineer to read the code and
understand the problem. But this is but half of the
problem; another half is, as we have mentioned in the
previous chapters, that most of these questions will be
asked by inexperienced or amateur developers. In a case of
a popular API, it means that 9 out of 10 inquiries will not be
about the API. Less skilled developers lack language
knowledge, their experience with the platform is
fragmented, and they can't properly formulate their
problem (and therefore search for an answer on the
Internet before contacting support; though, let us be
honest, they usually don't even try).

There are several options for tackling these issues:

1. The most user-friendly scenario is hiring people with
basic technical skills as the first line of support.
These employees must possess enough expertise in
understanding how the API works to be able to
identify those unrelated questions and respond to
them according to some FAQ, point out to a relevant
external resource (let's say, the support service of the
OS or the community forum of the programming
language) if the problem is not related to the API
itself, and redirect relevant issues to the API
developers.

2. The inverse scenario: partners must pay for technical
support, and it's the API developers who answer the
questions. It doesn't actually make a significant
difference in terms of the quality of the issues (it's
still mostly inexperienced developers who can't solve
the problem on their own; you will just cut off those
who can't afford paid support) but at least you won't
have a hiring problem as you might allow yourself the
luxury of having engineers for the first line of
support.

3. Partly (or, sometimes, fully) the developer
community might help with solving the amateur
problems (see the “Communicating with Developers”
chapter). Usually, community members are pretty
capable of answering those questions, especially if
moderators help them.

Importantly, whatever options you choose, it's still the API
developers in the second line of support simply because
only they can fully understand the problem and the
partners' code. That implies two important consequences:

1. You must take into account working with inquiries
while planning the API development team time.
Reading unfamiliar code and remote debugging are
very hard and exhausting tasks. The more
functionality you expose and the more platforms you
support, the more load is put on the team in terms of
dealing with support tickets.

2. As a rule, developers are totally not happy about the
perspective of coping with incoming requests and
answering them. The first line of support will still let
through a lot of dilettante or badly formulated
questions, and that will annoy on-duty API
developers. There are several approaches to mitigate
the problem:

try to find people with a customer-oriented
mindset, who like this activity, and encourage
them (including financial stimulus) to perform
support functions; it might be someone on the
team (and not necessarily a developer) or some
active community member;

the remaining load must be distributed among
the developers equally and fairly, up to
introducing the duty calendar.

And of course, analyzing the questions is a useful exercise
to populate FAQs and improve the documentation and the
first-line support scripts.

External Platforms

Sooner or later, you will find that customers ask their
questions not only through the official channels, but also
on numerous Internet-based forums, starting from those
specifically created for this, like StackOverflow, and ending
with social networks and personal blogs. It's up to you
whether to spend time searching for such inquiries. We
would rather recommend providing support through those
platforms that have convenient tools for that (like
subscribing to specific tags).

Chapter 30. The Documentation

Regretfully, many API providers pay miserable attention to
the quality of documentation. Meanwhile, the
documentation is the face of the product and the entry
point to it. The problem becomes even worse if we
acknowledge that it's almost impossible to write the help
docs the developers will consider at least satisfactory.

Before we start describing documentation types and
formats, we should stress one important statement:
developers interact with your help articles totally unlike
you expect them to. Remember yourself working on the
project: you make quite specific actions.

1. First, you need to determine whether this service
covers your needs in general (as quickly as possible);

2. If it does, you look for specific functionality to
resolve your specific case.

In fact, newcomers (i.e., those developers who are not
familiar with the API) usually want just one thing: to
assemble the code that solves their problem out of existing
code samples and never return to this issue again. Sounds
not exactly reassuringly, given the amount of work invested
into the API and its documentation development, but that's
what the reality looks like. Also, that's the root cause of
developers' dissatisfaction with the docs: it's literally
impossible to have articles covering exactly that problem
the developer comes with being detailed exactly to the
extent the developer knows the API concepts. In addition,

non-newcomers (i.e., those developers who have already
learned the basics concepts and are now trying to solve
some advanced problems) do not need these “mixed
examples” articles as they look for some deeper
understanding.

Introductory Notes

Documentation frequently suffers from being excessively
clerical; it's being written using formal terminology (which
often requires reading the glossary before the actual docs)
and is frequently unreasonably inflated. So instead of a
two-word answer to a user's question, a couple of
paragraphs is conceived — a practice we strongly
disapprove of. The perfect documentation must be simple
and laconic, and all the terms must be either explained in
the text or given a reference to such an explanation.
However, “simple” doesn't mean “illiterate”: remember, the
documentation is the face of your product, so grammar
errors and improper usage of terms are unacceptable.

Also, keep in mind that documentation will be used for
searching as well, so every page should contain all the
keywords required to be properly ranked by search engines.
Unfortunately, this requirement contradicts the simple-
and-laconic principle; that's the way.

Documentation Content Types

1. Specification / Reference

Any documentation starts with a formal functional
description. This content type is the most inconvenient to
use, but you must provide it. A reference is the hygienic
minimum of the API documentation. If you don't have a
doc that describes all methods, parameters, options,
variable types, and their allowed values, then it's not an API
but amateur dramatics.

Today, a reference must be also a machine-readable
specification, i.e., comply with some standard, for example,
OpenAPI.

The specification must comprise not only formal
descriptions but implicit agreements as well, such as the
event generation order or unobvious side-effects of the API
methods. Its important applied value is advisory
consulting: developers will refer to it to clarify unobvious
situations.

Importantly, formal specification is not documentation per
se. The documentation is the words you write in the
descriptions of each field and method. Without them, the
specification might be used just for checking whether your
namings are fine enough for developers to guess their
meaning.

Today, the method nomenclature descriptions are
frequently additionally exposed as ready-to-use request
collections or code fragments for Postman or analogous
tools.

2. Code Samples

From the above-mentioned, it's obvious that code samples
are a crucial tool to acquire and retain new API users. It's
extremely important to choose examples that help
newcomers to start working with the API. Improper
example selection will greatly reduce the quality of your
documentation. While assembling the set of code samples,
it is important to follow the rules:

examples must cover actual API use cases: the better
you guess the most frequent developers' needs, the
more friendly and straightforward your API will look
to them;
examples must be laconic and atomic: mixing a
bunch of tricks in one code sample dramatically
reduces its readability and applicability;
examples must be close to real-world app code; the
author of this book once faced a situation when a
synthetic code sample, totally meaningless in the
real world, was mindlessly replicated by developers in
abundance.

Ideally, examples should be linked to all other kinds of
documentation, e.g., the reference might contain code
samples relevant to the entity being described.

3. Sandboxes

Code samples will be much more useful to developers if
they are “live,” i.e., provided as editable pieces of code that
might be modified and executed. In the case of library APIs,
the online sandbox featuring a selection of code samples
will suffice, and existing online services like JSFiddle might
be used. With other types of APIs, developing sandboxes
might be much more complicated:

if the API provides access to some data, then the
sandbox must allow working with a real dataset,
either a developer's own one (e.g., bound to their
user profile) or some test data;
if the API provides an interface, visual or
programmatic, to some non-online environment, like
UI libs for mobile devices do, then the sandbox itself
must be an emulator or a simulator of that
environment, in a form of an online service or a
standalone app.

4. Tutorial

A tutorial is a specifically written human-readable text
describing some concepts of working with the API. A
tutorial is something in-between a reference and examples.
It implies some learning, more thorough than copy-pasting
code samples, but requires less time investment than
reading the whole reference.

A tutorial is a sort of “book” that you write to explain to the
reader how to work with your API. So, a proper tutorial
must follow book-writing patterns, i.e., explain the
concepts coherently and consecutively chapter after
chapter. Also, a tutorial must provide:

general knowledge of the subject area; for example, a
tutorial for cartographical APIs must explain trivia
regarding geographical coordinates and working with
them;
proper API usage scenarios, i.e., the “happy paths”;
proper reactions to program errors that could
happen;
detailed studies on advanced API functionality (with
detailed examples).

Usually, a tutorial comprises a common section (basic
terms and concepts, notation keys) and a set of sections
regarding each functional domain exposed via the API.
Frequently, tutorials contain a “Quick Start” (“Hello,
world!”) section: the smallest possible code sample that
would allow developers to build a small app atop the API.
“Quick Starts” aim to cover two needs:

to provide a default entry-point, the easiest to
understand and the most useful text for those who
heard about your API for the first time;
to engage developers, to make them touch the
service by a mean of a real-world example.

Also, “Quick starts” are a good indicator of how exactly
well did you do your homework of identifying the most
important use cases and providing helper methods. If your
Quick Start comprises more than ten lines of code, you
have definitely done something wrong.

5. Frequently Asked Questions and Knowledge Bases

After you publish the API and start supporting users (see
the previous chapter) you will also accumulate some
knowledge of what questions are asked most frequently. If
you can't easily integrate answers into the documentation,
it's useful to compile a specific “Frequently Asked
Questions” (aka FAQ) article. A FAQ article must meet the
following criteria:

address the real questions (you might frequently find
FAQs that were reflecting not users' needs, but the
API owner's desire to repeat some important
information once more; it's useless, or worse —
annoying; perfect examples of this anti-pattern
realization might be found on any bank or air
company website);
both questions and answers must be formulated
clearly and succinctly; it's acceptable (and even
desirable) to provide links to corresponding reference
and tutorial articles, but the answer itself can't be
longer than a couple of paragraphs.

Also, FAQs are a convenient place to explicitly highlight the
advantages of the API. In a question-answer form, you
might demonstrably show how your API solves complex
problems easily and handsomely. (Or at least, solves them,
unlike the competitors' products.)

If technical support conversations are public, it makes
sense to store all the questions and answers as a separate
service to form a knowledge base, i.e., a set of “real-life”
questions and answers.

6. Offline Documentation

Though we live in the online world, an offline version of
the documentation (in a form of a generated doc file) still
might be useful — first of all, as a snapshot of the API
specification valid for a specific date.

Content Duplication Problems

A significant problem that harms documentation clarity is
API versioning: articles describing the same entity across
different API versions are usually quite similar. Organizing
convenient searching capability over such datasets is a
problem for internal and external search engines as well. To
tackle this problem ensure that:

the API version is highlighted on the documentation
pages;

if a version of the current page exists for newer API
versions, there is an explicit link to the actual
version;
docs for deprecated API versions are pessimized or
even excluded from indexing.

If you're strictly maintaining backward compatibility, it is
possible to create a single documentation for all API
versions. To do so, each entity is to be marked with the API
version it is supported from. However, there is an apparent
problem with this approach: it's not that simple to get docs
for a specific (outdated) API version (and, generally
speaking, to understand which capabilities this API version
provides). (Though the offline documentation we
mentioned earlier will help.)

The problem becomes worse if you're supporting not only
different API versions but also different environments /
platforms / programming languages; for example, if your UI
lib supports both iOS and Android. Then both
documentation versions are equal, and it's impossible to
pessimize one of them.

In this case, you need to choose one of the following
strategies:

if the documentation topic content is totally
identical for every platform, i.e., only the code syntax
differs, you will need to develop generalized
documentation: each article provides code samples

(and maybe some additional notes) for every
supported platform on a single page;
on the contrary, if the content differs significantly, as
is in the iOS/Android case, we might suggest splitting
the documentation sites (up to having separate
domains for each platform): the good news is that
developers almost always need one specific version,
and they don't care about other platforms.

The Documentation Quality

The best documentation happens when you start viewing it
as a product in the API product range, i.e., begin analyzing
customer experience (with specialized tools), collect and
process feedback, set KPIs and work on improving them.

Was This Article Helpful to You?

Yes / No

https://forms.gle/WPdQ9KsJt3fxqpyw6

Chapter 31. The Testing Environment

If the operations executed via the API imply consequences
for end users or partners (cost money, in particular) you
must provide a test version of the API. In this testing API,
real-world actions either don't happen at all (for instance,
orders are created but nobody serves them) or are
simulated by cheaper means (let's say, instead of sending
an SMS to a user, an email is sent to the developer's
mailbox).

However, in many cases having a test version is not enough
— like in our coffee-machine API example. If an order is
created but not served, partners are not able to test the
functionality of delivering the order or requesting a refund.
To run the full cycle of testing, developers need the
capability of pushing the order through stages, as this
would happen in reality.

A direct solution to this problem is providing test versions
for a full set of APIs and administrative interfaces. It means
that developers will be able to run a second application in
parallel — the one you're giving to coffee shops so they
might get and serve orders (and if there is a delivery
functionality, the third app as well: the courier's one) —
and make all these actions that coffee shop staff normally
does. Obviously, that's not an ideal solution, because of
several reasons:

developers of end user applications will need to
additionally learn how coffee shop and courier apps
work, which has nothing to do with the task they're
solving;
you will need to invent and implement some
matching algorithm: an order made through a test
application must be assigned to a specific virtual
courier; this actually means creating an isolated
virtual “sandbox” (meaning — a full set of services)
for each specific partner;
executing a full “happy path” of an order will take
minutes, maybe tens of minutes, and will require
making a multitude of actions in several different
interfaces.

There are two main approaches to tackling these problems.

1. The Testing Environment API

The first option is providing a meta-API to the testing
environment itself. Instead of running the coffee-shop app
in a separate simulator, developers are provided with
helper methods (like simulateOrderPreparation) or some
visual interface that allows controlling the order execution
pipeline with minimum effort.

Ideally, you should provide helper methods for any actions
that are conducted by people in the production
environment. It makes sense to ship this meta-API
complete with ready-to-use scripts or request collections
that show the correct API call orders for standard scenarios.

The disadvantage of this approach is that client developers
still need to know how the “flip side” of the system works,
though in simplified terms.

2. The Simulator of Pre-Defined Scenarios

The alternative to providing the testing environment API is
simulating the working scenarios. In this case, the testing
environment takes control over “underwater” parts of the
system and “plays out” all external agents' actions. In our
coffee example, that means that, after the order is
submitted, the system will simulate all the preparation
steps and then the delivery of the beverage to the customer.

The advantage of this approach is that it demonstrates
vividly how the system works according to the API vendor
design plans, e.g., in which sequence the events are
generated, and which stages the order passes through. It
also reduces the chance of making mistakes in testing
scripts, as the API vendor guarantees the actions will be
executed in the correct order with the right parameters.

The main disadvantage is the necessity to create a separate
scenario for each unhappy path (effectively, for every
possible error), and give developers the capability of
denoting which scenario they want to run. (For example,
like that: if there is a pre-agreed comment to the order, the
system will simulate a specific error, and developers will be
able to write and debug the code that deals with the error.)

The Automation of Testing

Your final goal in implementing testing APIs, regardless of
which option you choose, is allowing partners to automate
the QA process for their products. The testing environment
should be developed with this purpose in mind; for
example, if an end user might be brought to a 3-D Secure
page to pay for the order, the testing environment API
must provide some way of simulating the successful (or
not) passing of this step. Also, in both variants, it's possible
(and desirable) to allow running the scenarios in a fast-
forward manner that will allow making auto-testing much
faster than manual testing.

Of course, not every partner will be able to employ this
possibility (which also means that a “manual” way of
testing usage scenarios must always be supported
alongside the programmatical one) simply because not
every business might afford to hire a QA automation
engineer. Nevertheless, the ability to write such auto-tests
is your API's huge competitive advantage from a technically
advanced partner's point of view.

Chapter 32. Managing Expectations

Finally, the last aspect we would like to shed the light on is
managing partners' expectations regarding the further
development of the API. If we talk about consumer
qualities, APIs differ little from other B2B software
products: in both cases, you need to form some
understanding of SLA conditions, available features,
interface responsiveness and other characteristics that are
important for clients. Still, APIs have their specificities

Versioning and Application Lifecycle

Ideally, the API once published should live eternally; but as
we all are reasonable people, we do understand it's
impossible in the real life. Even if we continue supporting
older versions, they will still become outdated eventually,
and partners will need to rewrite the code to use newer
functionality.

The author of this book formulates the rule of issuing new
major API versions like this: the period of time after which
partners will need to rewrite the code should coincide with
the application lifespan in the subject area (see “The
Backward Compatibility Problem Statement” chapter).
Apart from updating major versions, sooner or later you
will face issues with accessing some outdated minor
versions as well. As we mentioned in the “On the Waterline
of the Iceberg” chapter, even fixing bugs might eventually
lead to breaking some integrations, and that naturally leads

us to the necessity of keeping older minor versions of the
API until the partner resolves the problem.

In this aspect, integrating with large companies that have a
dedicated software engineering department differs
dramatically from providing a solution to individual
amateur programmers: on one hand, the former are much
more likely to find undocumented features and unfixed
bugs in your code; on the other hand, because of the
internal bureaucracy, fixing the related issues might easily
take months, save not years. The common recommendation
there is to maintain old minor API versions for a period of
time long enough for the most dilatory partner to switch no
the newest version.

Supporting Platforms

Another aspect crucial to interacting with large integrators
is supporting a zoo of platforms (browsers, programming
languages, protocols, operating systems) and their
versions. As usual, big companies have their own policies
on which platforms they support, and these policies might
sometimes contradict common sense. (Let's say, it's rather a
time to abandon TLS 1.2, but many integrators continue
working through this protocol, or even the earlier ones.)

Formally speaking, ceasing support of a platform is a
backwards-incompatible change, and might lead to
breaking some integration for some end users. So it's highly
important to have clearly formulated policies regarding
which platforms are supported based on which criteria. In

the case of mass public APIs, that's usually simple (like, API
vendor promises to support platforms that have more than
N% penetration, or, even easier, just last M versions of a
platform); in the case of commercial APIs, it's always a
bargain based on the estimations, how much will non-
supporting a specific platform would cost to a company.
And of course, the outcome of the bargain must be stated
in the contracts — what exactly you're promising to support
during which period of time.

Moving Forward

Finally, apart from those specific issues, your customers
must be caring about more general questions: could they
trust you? Could they rely on your API evolving, absorbing
modern trends, or will they eventually find the integration
with your API on the scrapyard of history? Let's be honest:
given all the uncertainties of the API product vision, we are
very much interested in the answers as well. Even the
Roman viaduct, though remaining backwards-compatible
for two thousand years, has been a very archaic and non-
reliable way of solving customers' problems for quite a long
time.

You might work with these customer expectations by
publishing roadmaps. It's quite common that many
companies avoid publicly announcing their concrete plans
(for a reason, of course). Nevertheless, in the case of APIs,
we strongly recommend providing the roadmaps, even if
they are tentative and lack precise dates — especially if we
talk about deprecating some functionality. Announcing

these promises (given the company keeps them, of course)
is a very important competitive advantage to every kind of
consumer.

With this, we would like to conclude this book. We hope
that the principles and the concepts we have outlined will
help you in creating APIs that fit all the developers,
businesses, and end users' needs, and in expanding them
(while maintaining the backward compatibility) for the
next two thousand years or so.

