
Sergey Konstantinov
The API

This work is licensed under a Creative Commons
Attribution-NonCommercial 4.0 International
License.

http://creativecommons.org/licenses/by-nc/4.0/

Introduction

Chapter 1. On the Structure of This Book

The book you're holding in your hands comprises this
Introduction and three large sections.

In Section I we'll discuss designing the API as a concept:
how to build the architecture properly, from a high-level
planning down to �nal interfaces.

Section II is dedicated to API's lifecycle: how interfaces
evolve over time, and how to elaborate the product to
match users' needs.

Finally, Section III is more about un-engineering sides of
the API, like API marketing, organizing support, and
working with a community.

First two sections are the most interesting to engineers,
while third section is being more relevant to both
engineers and product managers. But we insist that this
section is the most important for the API software
developer. Since API is the product for engineers, you
cannot simply pronounce non-engineering team

responsible for its product planning and support. Nobody
but you understands more what product features your API
is capable of.

Let's start.

Chapter 2. The API De�nition

Before we start talking about the API design, we need to
explicitly de�ne what the API is. Encyclopedia tells us that
API is an acronym for ‘Application Program Interface’. This
de�nition is �ne, but useless. Much like ‘Man’ de�nition by
Plato: Man stood upright on two legs without feathers.
This de�nition is �ne again, but it gives us no
understanding what's so important about a Man. (Actually,
not ‘�ne’ either. Diogenes of Sinope once brought a
plucked chicken, saying ‘That's Plato's Man’. And Plato had
to add ‘with broad nails’ to his de�nition.)

What API means apart from the formal de�nition?

You're possibly reading this book using a Web browser. To
make the browser display this page correctly, a bunch of
stuff must work correctly: parsing the URL according to the
speci�cation; DNS service; TLS handshake protocol;
transmitting the data over HTTP protocol; HTML
document parsing; CSS document parsing; correct
HTML+CSS rendering.

But those are just a tip of an iceberg. To make HTTP
protocol work you need the entire network stack
(comprising 4-5 or even more different level protocols)

work correctly. HTML document parsing is being
performed according to hundreds of different
speci�cations. Document rendering calls the underlying
operating system API, or even directly graphical processor
API. And so on: down to contemporary CISC processor
commands implemented on top of microcommands API.

In other words, hundreds or even thousands of different
APIs must work correctly to make possible basic actions
like viewing a webpage. Contemporary internet
technologies simply couldn't exist without these tons of
API working �ne.

An API is an obligation. A formal obligation to connect
different programmable contexts.

When I'm asked of an example of a well-designed API, I
usually show the picture of a Roman viaduct:

it interconnects two areas;
backwards compatibility being broken not a single time
in two thousand years.

What differs between a Roman viaduct and a good API is
that APIs presume a contract being programmable. To
connect two areas some coding is needed. The goal of this

book is to help you in designing APIs which serve their
purposes as solidly as a Roman viaduct does.

A viaduct also illustrates another problem of the API
design: your customers are engineers themselves. You are
not supplying water to end-users: suppliers are plugging
their pipes to you engineering structure, building their own
structures upon it. From one side, you may provide water
access to much more people through them, not spending
your time on plugging each individual house to your
network. But from other side, you can't control the quality
of suppliers' solutions, and you are to be blamed every time
there is a water problem caused by their incompetence.

That's why designing the API implies a larger area of
responsibilities. API is a multiplier to both your
opportunities and mistakes.

Chapter 3. API Quality Criteria

Before we start laying out the recommendations, we ought
to specify what API we consider ‘�ne’, and what's the pro�t
of having a ‘�ne’ API.

Let's discuss second question �rst. Obviously, API ‘�nesse’
is �rst of all de�ned through its capability to solve
developers' problems. (One may reasonably say that
solving developers' problem might not be the main purpose
of offering the API of ours to developers. However,
manipulating public opinion is out of this book's author
interest. Here we assume that APIs exist primarily to help
developers in solving their problems, not for some other
covertly declared purposes.)

So, how API design might help the developers? Quite
simple: well-designed API must solve their problems in the
most ef�cient and comprehensible manner. Distance from
formulating the task to writing working code must be as
short as possible. Among other things, it means that:

it must be totally obvious out of your API's structure
how to solve a task; ideally, developers at �rst glance
should be able to understand, what entities are meant
to solve their problem;

the API must be readable; ideally, developers write
correct code after just looking at method nomenclature,
never bothering about details (especially API
implementation details!); it also also very important to
mention, that not only problem solution should be
obvious, but also possible errors and exceptions;
the API must be consistent; while developing new
functionality (i.e. while using unknown new API
entities) developers may write new code similar to the
code they already wrote using known API concepts, and
this new code will work.

However static convenience and clarity of APIs is a simple
part. After all, nobody seeks for making an API deliberately
irrational and unreadable. When we are developing an API,
we always start with clear basic concepts. While possessing
some experience in designing APIs it's quite hard to make
an API core which fails to meet obviousness, readability,
and consistency criteria.

Problems begin we we start to expand our API. Adding new
functionality sooner or later result in transforming once
plain and simple API into a mess of con�icting concepts,
and our efforts to maintain backwards compatibility lead to
illogical, unobvious and simply bad design solutions. It is
partly related to an inability to predict future completely:
your understanding of ‘�ne’ APIs will change over time,

both in objective terms (what problems the API is to solve
and what are the best practices) and in subjective ones too
(what obviousness, readability and consistency really
means regarding your API).

Principles we are explaining below are speci�cally oriented
to make APIs evolve smoothly over time, not being turned
into a pile of mixed inconsistent interfaces. It is crucial to
understand that this approach isn't free: a necessity to bear
in mind all possible extension variants and keep essential
growth points mean interface redundancy and possibly
excessing abstractions being embedded in the API design.
Besides both make developers' work harder. Providing
excess design complexities being reserved for future use
makes sense only when this future actually exists for your
API. Otherwise it's simply an overengineering.

Chapter 4. Backwards Compatibility

Backwards compatibility is a temporal characteristics of
your API. An obligation to maintain backwards
compatibility is the crucial point where API developments
differs form software development in general.

Of course, backwards compatibility isn't an absolute. In
some subject areas shipping new backwards incompatible
API versions is a routine. Nevertheless, every time you
deploy new backwards incompatible API version, the
developers need to make some non-zero effort to adapt
their code to the new API version. In this sense, releasing
new API versions puts a sort of a ‘tax’ on customers. They
must spend quite real money just to make sure they
product continue working.

Large companies, which occupy �rm market positions,
could afford implying such a taxation. Furthermore, they
may introduce penalties for those who refuse to adapt their
code to new API versions, up to disabling their
applications.

From our point of view such practice cannot be justi�ed.
Don't imply hidden taxes on your customers. If you're able

to avoid breaking backwards compatibility — never break
it.

Of course, maintaining old API versions is sort of a tax
either. Technology changes, and you cannot foresee
everything, regardless of how nice your API is initially
designed. At some point keeping old API versions results in
an inability to provide new functionality and support new
platforms, and you will be forced to release new version.
But at least you will be able to explain to your customers
why they need to make an effort.

We will discuss API lifecycle and version policies in Section
II.

Chapter 5. On versioning

Here and throughout we �rmly stick to semver principles of
versioning:

1. API versions are denoted with three numbers, i.e.
1.2.3.

2. First number (major version) when backwards
incompatible changes in the API are shipped.

3. Second Number (minor version) increases when new
functionality is added to the API, keeping backwards
compatibility intact.

4. Third number (patch) increases when new API version
contains bug �xes only.

Terms ‘major API version’ and ‘new API version,
containing backwards incompatible changes to
functionality’ are therefore to be considered as equivalent.

In Section II we will discuss versioning policies in more
details. In Section I we will just use semver versions
designation, speci�cally v1, v2, etc.

https://semver.org/

Chapter 6. Terms and Notation Keys

Software development is being characterized, among other
things, by an existence of many different engineering
paradigms, whose adepts sometimes are quite aggressive
towards other paradigms' adepts. While writing this book
we are deliberately avoiding using terms like ‘method’,
‘object’, ‘function’, and so on, using a neutral term ‘entity’
instead. ‘Entity’ means some atomic functionality unit, like
class, method, object, monad, prototype (underline what
you think right).

For entity's components we regretfully failed to �nd a
proper term, so we will use words ‘�elds’ and ‘methods’.

Most of the examples of APIs in general will be provide in a
form of JSON-over-HTTP endpoints. This is some sort of
notation which, as we see it, helps to describe concepts in
the most comprehensible manner. GET /v1/orders
endpoint call could easily be replaced with orders.get()
method call, local or remote. JSON could easily be replaced
with any other data format. Meaning of assertions
shouldn't change.

Let's take a look at the following example:

// Method description
POST /v1/bucket/{id}/some-resource
X-Idempotency-Token: <idempotency token>
{
 …
 // This is a single-line comment
 "some_parameter": "example value",
 …
}
→ 404 Not Found
Cache-Control: no-cache
{
 /* And this is
 a multiline comment */
 "error_message"
}

It should be read like:

perform a POST-request to a
/v1/bucket/{id}/some-resource resource, where {id}
is to be replaced with some bucket's identi�er
{something} should refer to the nearest term from the
left, unless explicitly speci�ed otherwise);
a speci�c X-Idempotency-Token header is added to the
request alongside with standard headers (which we
omit);
terms in angle brackets (<idempotency token>) describe
the semantic of an entity value (�eld, header,

parameter);
a speci�c JSON, containing a some_parameter �eld with
example value value and some other unspeci�ed �elds
(indicated by ellipsis) is being sent as a request body
payload;
in response (marked with arrow symbol →) server
returns a 404 Not Founds status code; status might be
omitted (treat it like 200 OK if no status is provided);
response could possibly contain additional notable
headers;
response body is a JSON comprising single
error_message �eld; �eld value absence means that
�eld contains exactly what you expect it should contain
— some error message in this case.

Some request and response parts might be omitted if they
are irrelevant to a topic being discussed.

Simpli�ed notation might be used to avoid redundancies,
like POST /v1/bucket/{id}/some-resource
{…,"some_parameter",…} → { "operation_id" }; request
and response bodies might also be omitted.

We will be using expressions like
‘POST /v1/bucket/{id}/some-resource method’ (or simply
‘bucket/some-resource method’, ‘some-resource’ method if
no other some-resources are speci�ed throughout the

chapter, so there is no ambiguity) to refer to such endpoint
de�nition.

Apart from HTTP API notation we will employ C-style
pseudocode, or, to be more precise, JavaScript-like or
Python-like since types are omitted. We assume such
imperative structures being readable enough to skip
detailed grammar explanations.

The API Design

Chapter 7. API Contexts Pyramid

The approach we use to design API comprises four steps:

de�ning an application �eld;
separating abstraction levels;
isolating responsibility areas;
describing �nal interfaces.

This for-step algorithm actually builds an API from top to
bottom, from common requirements and use case
scenarios down to re�ned entity nomenclature. In fact,
moving this way you will eventually get a ready-to-use API
— that's why we value this approach.

It might seem that the most useful pieces of advice are
given in a last chapter, but that's not true. The cost of a
mistake made at certain levels differs. Fixing naming is
simple; revising wrong understanding what the API stands
for is practically impossible.

NB. Here and throughout we will illustrate API design
concepts using a hypothetical example of an API allowing

for ordering a cup of coffee in city cafes. Just in case: this
example is totally synthetic. If we were to design such an
API in a real world, it would probably have very few in
common with our �ctional example.

Chapter 8. De�ning an Application Field

Key question you should ask yourself looks like that: what
problem we solve? It should be asked four times, each time
putting emphasis on another word.

1. What problem we solve? Could we clearly outline the
situation in which our hypothetical API is needed by
developers?

2. What problem we solve? Are we sure that
abovementioned situation poses a problem? Does
someone really want to pay (literally or �guratively) to
automate a solution for this problem?

3. What problem we solve? Do we actually possess an
expertise to solve the problem?

4. What problem we solve? Is it true that the solution we
propose solves the problem indeed? Aren't we creating
another problem instead?

So, let's imagine that we are going to develop an API for
automated coffee ordering in city cafes, and let' apply the
key question to it.

1. Why would someone need an API to make a coffee?
Why ordering a coffee via ‘human-to-human’ or
‘human-to-machine’ interface is inconvenient, why
have ‘machine-to-machine’ interface?

Possibly, we're solving knowledge and selection
problems? To provide humans with a full knowledge
what options they have right now and right here.
Possibly, we're optimizing waiting times? To save
the time people waste while waiting their beverages.
Possibly, we're reducing the number of errors? To
help people get exactly what they wanted to order,
stop losing information in imprecise conversational
communication or in dealing with unfamiliar coffee
machine interfaces?

‘Why’ question is the most important of all questions
you must ask yourself. And not only about global
project goals, but also locally about every single piece
of functionality. If you can't brie�y and clearly answer
the question ‘what for this entity is needed’, then it's
not needed.

Here and throughout we assume, to make our example
more complex and bizarre, that we are optimizing all
three factors.

2. Do the problems we outlined really exist? Do we really
observe unequal coffee-machines utilization in
mornings? Do people really suffer from inability to �nd
nearby toffee nut latte they long for? Do they really care
about minutes they spend in lines?

3. Do we actually have a resource to solve a problem? Do
we have an access to suf�cient number of coffee
machines and users to ensure system's ef�ciency?

4. Finally, will we really solve a problem? How we're going
to quantify an impact our API makes?

In general, there is no simple answers to those questions.
Ideally, you should give answers having all relevant metrics
measured: how much time is wasted exactly, and what
numbers we're going to achieve having this coffee
machines density? Let us also stress that in real life
obtaining these numbers is only possibly when you're
entering a stable market. If you try to create something
new, your only option is to rely on your intuition.

Why an API?

Since our book is dedicated not to software development
per se, but developing APIs, we should look at all those

questions from different angle: why solving those
problems speci�cally requires an API, not simply
specialized software? In terms of our �ctional example we
should ask ourselves: why provide a service to developers
to allow brewing coffee to end users instead of just making
an app for end users?

In other words, there must be a solid reason to split two
software development domains: there are the operators
which provide APIs; and there are the operators which
develop services for end users. Their interests are somehow
different to such an extent that coupling this two roles in
one entity is undesirable. We will talk about the motivation
to speci�cally provide APIs in more details in Section III.

We should also note, that you should try making an API
when and only when you wrote ‘because that's our area of
expertise’ in question 2. Developing APIs is sort of meta-
engineering: your writing some software to allow other
companies to develop software to solve users' problems.
You must possess an expertise in both domains (API and
user products) to design your API well.

As for our speculative example, let us imagine that in near
future some tectonic shift happened on coffee brewing
market. Two distinct player groups took shape: some
companies provide a ‘hardware’, i.e. coffee machines; other

companies have an access to customer auditory. Something
like �ights market looks like: there are air companies,
which actually transport passengers; and there are trip
planning services where users are choosing between trip
variants the system generates for them. We're aggregating
a hardware access to allow app vendors for ordering fresh
brewed coffee.

What and How

After �nishing all these theoretical exercises, we should
proceed right to designing and developing the API, having
a decent understanding regarding two things:

what we're doing, exactly;
how we're doing it, exactly.

In our coffee case, we are:

providing an API to services with larger audience, so
their users may order a cup of coffee in the most
ef�cient and convenient manner;
abstracting an access to coffee machines ‘hardware’ and
delivering methods to select a beverage kind and some
location to brew — and to make an order.

