1
0
mirror of https://github.com/pgbackrest/pgbackrest.git synced 2025-06-18 23:57:33 +02:00
Files
pgbackrest/src/postgres/interface/v093.auto.c

263 lines
11 KiB
C
Raw Normal View History

/***********************************************************************************************************************************
PostgreSQL 9.3 Types
***********************************************************************************************************************************/
/***********************************************************************************************************************************
Types from src/include/c.h
***********************************************************************************************************************************/
typedef int64_t int64;
typedef uint32_t uint32;
typedef uint64_t uint64;
typedef uint32 TransactionId;
/* MultiXactId must be equivalent to TransactionId, to fit in t_xmax */
typedef TransactionId MultiXactId;
typedef uint32 MultiXactOffset;
/***********************************************************************************************************************************
Types from src/include/pgtime.h
***********************************************************************************************************************************/
/*
* The API of this library is generally similar to the corresponding
* C library functions, except that we use pg_time_t which (we hope) is
* 64 bits wide, and which is most definitely signed not unsigned.
*/
typedef int64 pg_time_t;
/***********************************************************************************************************************************
Types from src/include/postgres_ext.h
***********************************************************************************************************************************/
/*
* Object ID is a fundamental type in Postgres.
*/
typedef unsigned int Oid;
/***********************************************************************************************************************************
Types from src/include/utils/pg_crc32.h
***********************************************************************************************************************************/
typedef uint32 pg_crc32;
/***********************************************************************************************************************************
Types from src/include/access/xlogdefs.h
***********************************************************************************************************************************/
/*
* Pointer to a location in the XLOG. These pointers are 64 bits wide,
* because we don't want them ever to overflow.
*/
typedef uint64 XLogRecPtr;
/*
* TimeLineID (TLI) - identifies different database histories to prevent
* confusion after restoring a prior state of a database installation.
* TLI does not change in a normal stop/restart of the database (including
* crash-and-recover cases); but we must assign a new TLI after doing
* a recovery to a prior state, a/k/a point-in-time recovery. This makes
* the new WAL logfile sequence we generate distinguishable from the
* sequence that was generated in the previous incarnation.
*/
typedef uint32 TimeLineID;
/***********************************************************************************************************************************
Types from src/include/catalog/catversion.h
***********************************************************************************************************************************/
/*
* We could use anything we wanted for version numbers, but I recommend
* following the "YYYYMMDDN" style often used for DNS zone serial numbers.
* YYYYMMDD are the date of the change, and N is the number of the change
* on that day. (Hopefully we'll never commit ten independent sets of
* catalog changes on the same day...)
*/
/* yyyymmddN */
#define CATALOG_VERSION_NO 201306121
/***********************************************************************************************************************************
Types from src/include/catalog/pg_control.h
***********************************************************************************************************************************/
/* Version identifier for this pg_control format */
#define PG_CONTROL_VERSION 937
/*
* Body of CheckPoint XLOG records. This is declared here because we keep
* a copy of the latest one in pg_control for possible disaster recovery.
* Changing this struct requires a PG_CONTROL_VERSION bump.
*/
typedef struct CheckPoint
{
XLogRecPtr redo; /* next RecPtr available when we began to
* create CheckPoint (i.e. REDO start point) */
TimeLineID ThisTimeLineID; /* current TLI */
TimeLineID PrevTimeLineID; /* previous TLI, if this record begins a new
* timeline (equals ThisTimeLineID otherwise) */
bool fullPageWrites; /* current full_page_writes */
uint32 nextXidEpoch; /* higher-order bits of nextXid */
TransactionId nextXid; /* next free XID */
Oid nextOid; /* next free OID */
MultiXactId nextMulti; /* next free MultiXactId */
MultiXactOffset nextMultiOffset; /* next free MultiXact offset */
TransactionId oldestXid; /* cluster-wide minimum datfrozenxid */
Oid oldestXidDB; /* database with minimum datfrozenxid */
MultiXactId oldestMulti; /* cluster-wide minimum datminmxid */
Oid oldestMultiDB; /* database with minimum datminmxid */
pg_time_t time; /* time stamp of checkpoint */
/*
* Oldest XID still running. This is only needed to initialize hot standby
* mode from an online checkpoint, so we only bother calculating this for
* online checkpoints and only when wal_level is hot_standby. Otherwise
* it's set to InvalidTransactionId.
*/
TransactionId oldestActiveXid;
} CheckPoint;
/*
* System status indicator. Note this is stored in pg_control; if you change
* it, you must bump PG_CONTROL_VERSION
*/
typedef enum DBState
{
DB_STARTUP = 0,
DB_SHUTDOWNED,
DB_SHUTDOWNED_IN_RECOVERY,
DB_SHUTDOWNING,
DB_IN_CRASH_RECOVERY,
DB_IN_ARCHIVE_RECOVERY,
DB_IN_PRODUCTION
} DBState;
/*
* Contents of pg_control.
*
* NOTE: try to keep this under 512 bytes so that it will fit on one physical
* sector of typical disk drives. This reduces the odds of corruption due to
* power failure midway through a write.
*/
typedef struct ControlFileData
{
/*
* Unique system identifier --- to ensure we match up xlog files with the
* installation that produced them.
*/
uint64 system_identifier;
/*
* Version identifier information. Keep these fields at the same offset,
* especially pg_control_version; they won't be real useful if they move
* around. (For historical reasons they must be 8 bytes into the file
* rather than immediately at the front.)
*
* pg_control_version identifies the format of pg_control itself.
* catalog_version_no identifies the format of the system catalogs.
*
* There are additional version identifiers in individual files; for
* example, WAL logs contain per-page magic numbers that can serve as
* version cues for the WAL log.
*/
uint32 pg_control_version; /* PG_CONTROL_VERSION */
uint32 catalog_version_no; /* see catversion.h */
/*
* System status data
*/
DBState state; /* see enum above */
pg_time_t time; /* time stamp of last pg_control update */
XLogRecPtr checkPoint; /* last check point record ptr */
XLogRecPtr prevCheckPoint; /* previous check point record ptr */
CheckPoint checkPointCopy; /* copy of last check point record */
XLogRecPtr unloggedLSN; /* current fake LSN value, for unlogged rels */
/*
* These two values determine the minimum point we must recover up to
* before starting up:
*
* minRecoveryPoint is updated to the latest replayed LSN whenever we
* flush a data change during archive recovery. That guards against
* starting archive recovery, aborting it, and restarting with an earlier
* stop location. If we've already flushed data changes from WAL record X
* to disk, we mustn't start up until we reach X again. Zero when not
* doing archive recovery.
*
* backupStartPoint is the redo pointer of the backup start checkpoint, if
* we are recovering from an online backup and haven't reached the end of
* backup yet. It is reset to zero when the end of backup is reached, and
* we mustn't start up before that. A boolean would suffice otherwise, but
* we use the redo pointer as a cross-check when we see an end-of-backup
* record, to make sure the end-of-backup record corresponds the base
* backup we're recovering from.
*
* backupEndPoint is the backup end location, if we are recovering from an
* online backup which was taken from the standby and haven't reached the
* end of backup yet. It is initialized to the minimum recovery point in
* pg_control which was backed up last. It is reset to zero when the end
* of backup is reached, and we mustn't start up before that.
*
* If backupEndRequired is true, we know for sure that we're restoring
* from a backup, and must see a backup-end record before we can safely
* start up. If it's false, but backupStartPoint is set, a backup_label
* file was found at startup but it may have been a leftover from a stray
* pg_start_backup() call, not accompanied by pg_stop_backup().
*/
XLogRecPtr minRecoveryPoint;
TimeLineID minRecoveryPointTLI;
XLogRecPtr backupStartPoint;
XLogRecPtr backupEndPoint;
bool backupEndRequired;
/*
* Parameter settings that determine if the WAL can be used for archival
* or hot standby.
*/
int wal_level;
int MaxConnections;
int max_prepared_xacts;
int max_locks_per_xact;
/*
* This data is used to check for hardware-architecture compatibility of
* the database and the backend executable. We need not check endianness
* explicitly, since the pg_control version will surely look wrong to a
* machine of different endianness, but we do need to worry about MAXALIGN
* and floating-point format. (Note: storage layout nominally also
* depends on SHORTALIGN and INTALIGN, but in practice these are the same
* on all architectures of interest.)
*
* Testing just one double value is not a very bulletproof test for
* floating-point compatibility, but it will catch most cases.
*/
uint32 maxAlign; /* alignment requirement for tuples */
double floatFormat; /* constant 1234567.0 */
#define FLOATFORMAT_VALUE 1234567.0
/*
* This data is used to make sure that configuration of this database is
* compatible with the backend executable.
*/
uint32 blcksz; /* data block size for this DB */
uint32 relseg_size; /* blocks per segment of large relation */
uint32 xlog_blcksz; /* block size within WAL files */
uint32 xlog_seg_size; /* size of each WAL segment */
uint32 nameDataLen; /* catalog name field width */
uint32 indexMaxKeys; /* max number of columns in an index */
uint32 toast_max_chunk_size; /* chunk size in TOAST tables */
/* flag indicating internal format of timestamp, interval, time */
bool enableIntTimes; /* int64 storage enabled? */
/* flags indicating pass-by-value status of various types */
bool float4ByVal; /* float4 pass-by-value? */
bool float8ByVal; /* float8, int8, etc pass-by-value? */
/* Are data pages protected by checksums? Zero if no checksum version */
uint32 data_checksum_version;
/* CRC of all above ... MUST BE LAST! */
pg_crc32 crc;
} ControlFileData;