1
0
mirror of https://github.com/pgbackrest/pgbackrest.git synced 2025-07-13 01:00:23 +02:00

Add storage filter performance test.

This test allows the important storage filters to be benchmarked by MiB/s.
This commit is contained in:
David Steele
2020-03-29 21:25:48 -04:00
parent 1e0b0c9344
commit a29e25a845
2 changed files with 193 additions and 3 deletions

View File

@ -5,17 +5,24 @@ Test the performance of various storage functions, in particular when implemente
Generally speaking, the starting values should be high enough to "blow up" in terms of execution time if there are performance
problems without taking very long if everything is running smoothly. These starting values can then be scaled up for profiling and
stress testing as needed. In general we hope to scale to 1000 without running out of memory on the test systems or taking an undue
amount of time. It should be noted that in this context scaling to 1000 is nowhere near to turning it up to 11.
stress testing as needed.
***********************************************************************************************************************************/
#include "common/harnessConfig.h"
#include "common/harnessFork.h"
#include "common/crypto/hash.h"
#include "common/compress/gz/compress.h"
#include "common/compress/lz4/compress.h"
#include "common/io/filter/filter.intern.h"
#include "common/io/filter/sink.h"
#include "common/io/bufferWrite.h"
#include "common/io/handleRead.h"
#include "common/io/handleWrite.h"
#include "common/io/io.h"
#include "common/object.h"
#include "protocol/client.h"
#include "protocol/server.h"
#include "storage/posix/storage.h"
#include "storage/remote/protocol.h"
#include "storage/storage.intern.h"
@ -129,6 +136,64 @@ storageTestPerfInfoList(
return this->fileTotal != 0;
}
/***********************************************************************************************************************************
Test filter to simulate throughput via rate limiting
***********************************************************************************************************************************/
typedef struct TestIoRate
{
MemContext *memContext; // Mem context of filter
uint64_t timeBegin; // Time when filter started processing data in ms
uint64_t byteTotal; // Total bytes processed
uint64_t bytesPerSec; // Rate in bytes per second to enforce
} TestIoRate;
static void
testIoRateProcess(THIS_VOID, const Buffer *input)
{
THIS(TestIoRate);
// Determine the elapsed time since the filter began processing data. The begin time is not set in the constructor because an
// unknown amount of time can elapse between the filter being created and acually used.
uint64_t timeElapsed = 0;
if (this->timeBegin == 0)
this->timeBegin = timeMSec();
else
timeElapsed = timeMSec() - this->timeBegin;
// Add buffer used to the byte total
this->byteTotal += bufUsed(input);
// Determine how many ms these bytes should take to go through the filter and sleep if greater than elapsed time
uint64_t timeRate = this->byteTotal / this->bytesPerSec * MSEC_PER_SEC;
if (timeElapsed < timeRate)
sleepMSec(timeRate - timeElapsed);
}
static IoFilter *
testIoRateNew(uint64_t bytesPerSec)
{
IoFilter *this = NULL;
MEM_CONTEXT_NEW_BEGIN("TestIoRate")
{
TestIoRate *driver = memNew(sizeof(TestIoRate));
*driver = (TestIoRate)
{
.memContext = memContextCurrent(),
.bytesPerSec = bytesPerSec,
};
this = ioFilterNewP(STRDEF("TestIoRate"), driver, NULL, .in = testIoRateProcess);
}
MEM_CONTEXT_NEW_END();
return this;
}
/***********************************************************************************************************************************
Test Run
***********************************************************************************************************************************/
@ -206,5 +271,130 @@ testRun(void)
HARNESS_FORK_END();
}
// *****************************************************************************************************************************
if (testBegin("benchmark filters"))
{
// 4MB buffers are the current default
ioBufferSizeSet(1024 * 1024);
// 1MB is a fairly normal table size
CHECK(testScale() <= 1024 * 1024 * 1024);
uint64_t blockTotal = (uint64_t)1 * testScale();
// Set iteration
unsigned int iteration = 1;
// Set rate
uint64_t rateIn = 100000;
uint64_t rateOut = 100000;
// Get the sample pages from disk
Buffer *block = storageGetP(
storageNewReadP(
storagePosixNew(STR(testRepoPath()), STORAGE_MODE_FILE_DEFAULT, STORAGE_MODE_PATH_DEFAULT, false, NULL),
STRDEF("test/data/filecopy.table.bin")));
ASSERT(bufUsed(block) == 1024 * 1024);
// -------------------------------------------------------------------------------------------------------------------------
TEST_TITLE_FMT(
"%u iteration(s) of %" PRIu64 "MiB with %" PRIu64 "MB/s input, %" PRIu64 "MB/s output", iteration, blockTotal, rateIn,
rateOut);
#define BENCHMARK_BEGIN() \
IoWrite *write = ioBufferWriteNew(bufNew(0)); \
ioFilterGroupAdd(ioWriteFilterGroup(write), testIoRateNew(rateIn * 1000 * 1000));
#define BENCHMARK_FILTER_ADD(filter) \
ioFilterGroupAdd(ioWriteFilterGroup(write), filter);
#define BENCHMARK_END(addTo) \
ioFilterGroupAdd(ioWriteFilterGroup(write), testIoRateNew(rateOut * 1000 * 1000)); \
ioFilterGroupAdd(ioWriteFilterGroup(write), ioSinkNew()); \
ioWriteOpen(write); \
\
uint64_t benchMarkBegin = timeMSec(); \
\
for (uint64_t blockIdx = 0; blockIdx < blockTotal; blockIdx++) \
ioWrite(write, block); \
\
ioWriteClose(write); \
\
addTo += timeMSec() - benchMarkBegin;
// Start totals to 1ms just in case something takes 0ms to run
uint64_t copyTotal = 1;
uint64_t sha1Total = 1;
uint64_t sha256Total = 1;
uint64_t gzip6Total = 1;
uint64_t lz41Total = 1;
for (unsigned int idx = 0; idx < iteration; idx++)
{
// -------------------------------------------------------------------------------------------------------------------------
TEST_LOG_FMT("copy iteration %u", idx + 1);
MEM_CONTEXT_TEMP_BEGIN()
{
BENCHMARK_BEGIN();
BENCHMARK_END(copyTotal);
}
MEM_CONTEXT_TEMP_END();
// -------------------------------------------------------------------------------------------------------------------------
TEST_LOG_FMT("sha1 iteration %u", idx + 1);
MEM_CONTEXT_TEMP_BEGIN()
{
BENCHMARK_BEGIN();
BENCHMARK_FILTER_ADD(cryptoHashNew(HASH_TYPE_SHA1_STR));
BENCHMARK_END(sha1Total);
}
MEM_CONTEXT_TEMP_END();
// -------------------------------------------------------------------------------------------------------------------------
TEST_LOG_FMT("sha256 iteration %u", idx + 1);
MEM_CONTEXT_TEMP_BEGIN()
{
BENCHMARK_BEGIN();
BENCHMARK_FILTER_ADD(cryptoHashNew(HASH_TYPE_SHA256_STR));
BENCHMARK_END(sha256Total);
}
MEM_CONTEXT_TEMP_END();
// -------------------------------------------------------------------------------------------------------------------------
TEST_LOG_FMT("gzip -6 iteration %u", idx + 1);
MEM_CONTEXT_TEMP_BEGIN()
{
BENCHMARK_BEGIN();
BENCHMARK_FILTER_ADD(gzCompressNew(6));
BENCHMARK_END(gzip6Total);
}
MEM_CONTEXT_TEMP_END();
// -------------------------------------------------------------------------------------------------------------------------
TEST_LOG_FMT("lz4 -1 iteration %u", idx + 1);
MEM_CONTEXT_TEMP_BEGIN()
{
BENCHMARK_BEGIN();
BENCHMARK_FILTER_ADD(lz4CompressNew(1));
BENCHMARK_END(lz41Total);
}
MEM_CONTEXT_TEMP_END();
}
// -------------------------------------------------------------------------------------------------------------------------
TEST_TITLE("results");
TEST_LOG_FMT("copy average: %" PRIu64 "MiB/s", blockTotal * 1000 / copyTotal / iteration);
TEST_LOG_FMT("sha1 average: %" PRIu64 "MiB/s", blockTotal * 1000 / sha1Total / iteration);
TEST_LOG_FMT("sha256 average: %" PRIu64 "MiB/s", blockTotal * 1000 / sha256Total / iteration);
TEST_LOG_FMT("gzip -6 average: %" PRIu64 "MiB/s", blockTotal * 1000 / gzip6Total / iteration);
TEST_LOG_FMT("lz4 -1 average: %" PRIu64 "MiB/s", blockTotal * 1000 / lz41Total / iteration);
}
FUNCTION_HARNESS_RESULT_VOID();
}