local band = bit32.band local floor = math.floor local Perlin = {} local p = {} -- Hash lookup table as defined by Ken Perlin -- This is a randomly arranged array of all numbers from 0-255 inclusive local permutation = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 } -- p is used to hash unit cube coordinates to [0, 255] for i = 0, 255 do -- Convert to 0 based index table p[i] = permutation[i + 1] -- Repeat the array to avoid buffer overflow in hash function p[i + 256] = permutation[i + 1] end -- Gradient function finds dot product between pseudorandom gradient vector -- and the vector from input coordinate to a unit cube vertex local dot_product = { [0x0] = function(x, y) return x + y end, [0x1] = function(x, y) return -x + y end, [0x2] = function(x, y) return x - y end, [0x3] = function(x, y) return -x - y end, [0x4] = function(x, z) return x + z end, [0x5] = function(x, z) return -x + z end, [0x6] = function(x, z) return x - z end, [0x7] = function(x, z) return -x - z end, [0x8] = function(y, z) return y + z end, [0x9] = function(y, z) return -y + z end, [0xA] = function(y, z) return y - z end, [0xB] = function(y, z) return -y - z end, [0xC] = function(x, y) return y + x end, [0xD] = function(y, z) return -y + z end, [0xE] = function(x, y) return y - x end, [0xF] = function(y, z) return -y - z end } local function grad(hash, x, y, bit) bit = bit or 1 return dot_product[band(hash, bit)](x, y) end -- Fade function is used to smooth final output local function fade(t) return t * t * t * (t * (t * 6 - 15) + 10) end local function lerp(t, a, bs) return a + t * (bs - a) end -- Return range: [-1, 1] function Perlin.noise(x, y, z, bit) y = y or 0 z = z or 0 -- This prevents integer inputs returning 0, which casues 'straight line' artifacts. x = x - 0.55077056353912 y = y - 0.131357755512 z = z - 0.20474238274619 -- Calculate the "unit cube" that the point asked will be located in local xi = band(floor(x), 255) local yi = band(floor(y), 255) local zi = band(floor(z), 255) -- Next we calculate the location (from 0 to 1) in that cube x = x - floor(x) y = y - floor(y) z = z - floor(z) -- We also fade the location to smooth the result local u = fade(x) local v = fade(y) local w = fade(z) -- Hash all 8 unit cube coordinates surrounding input coordinate local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB A = p[xi] + yi AA = p[A] + zi AB = p[A + 1] + zi AAA = p[AA] ABA = p[AB] AAB = p[AA + 1] ABB = p[AB + 1] B = p[xi + 1] + yi BA = p[B] + zi BB = p[B + 1] + zi BAA = p[BA] BBA = p[BB] BAB = p[BA + 1] BBB = p[BB + 1] -- Take the weighted average between all 8 unit cube coordinates return lerp( w, lerp(v, lerp(u, grad(AAA, x, y, bit), grad(BAA, x - 1, y, bit)), lerp(u, grad(ABA, x, y - 1, bit), grad(BBA, x - 1, y - 1, bit))), lerp(v, lerp(u, grad(AAB, x, y, bit), grad(BAB, x - 1, y, bit)), lerp(u, grad(ABB, x, y - 1, bit), grad(BBB, x - 1, y - 1, bit))) ) end return Perlin