--from https://github.com/thenumbernine/lua-simplexnoise/blob/master/2d.lua --Mostly as a test, does not give same results as perlin but is designed to give patterns all the same local Simplex = {} local bit32_band = bit32.band local math_floor = math.floor -- 2D simplex noise local grad3 = { {1, 1, 0}, {-1, 1, 0}, {1, -1, 0}, {-1, -1, 0}, {1, 0, 1}, {-1, 0, 1}, {1, 0, -1}, {-1, 0, -1}, {0, 1, 1}, {0, -1, 1}, {0, 1, -1}, {0, -1, -1} } local p = { 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180 } local perm = {} for i = 0, 511 do perm[i + 1] = p[bit32_band(i, 255) + 1] end -- special case of dot with 3 inputs local function dot2(g, x, y) return x * g[1] + y * g[2] end local F2 = 0.5 * (math.sqrt(3.0) - 1.0) local G2 = (3.0 - math.sqrt(3.0)) / 6.0 function Simplex.d2(xin, yin, seed) xin = xin + seed yin = yin + seed local n0, n1, n2 -- Noise contributions from the three corners -- Skew the input space to determine which simplex cell we're in local s = (xin + yin) * F2 -- Hairy factor for 2D local i = math_floor(xin + s) local j = math_floor(yin + s) local t = (i + j) * G2 local X0 = i - t -- Unskew the cell origin back to (x,y) space local Y0 = j - t local x0 = xin - X0 -- The x,y distances from the cell origin local y0 = yin - Y0 -- For the 2D case, the simplex shape is an equilateral triangle. -- Determine which simplex we are in. local i1, j1 -- Offsets for second (middle) corner of simplex in (i,j) coords if x0 > y0 then i1 = 1 j1 = 0 -- lower triangle, XY order: (0,0)->(1,0)->(1,1) else i1 = 0 j1 = 1 end -- upper triangle, YX order: (0,0)->(0,1)->(1,1) -- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and -- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where -- c = (3-sqrt(3))/6 local x1 = x0 - i1 + G2 -- Offsets for middle corner in (x,y) unskewed coords local y1 = y0 - j1 + G2 local x2 = x0 - 1 + 2 * G2 -- Offsets for last corner in (x,y) unskewed coords local y2 = y0 - 1 + 2 * G2 -- Work out the hashed gradient indices of the three simplex corners local ii = bit32_band(i, 255) local jj = bit32_band(j, 255) local gi0 = perm[ii + perm[jj + 1] + 1] % 12 local gi1 = perm[ii + i1 + perm[jj + j1 + 1] + 1] % 12 local gi2 = perm[ii + 1 + perm[jj + 1 + 1] + 1] % 12 -- Calculate the contribution from the three corners local t0 = 0.5 - x0 * x0 - y0 * y0 if t0 < 0 then n0 = 0.0 else t0 = t0 * t0 n0 = t0 * t0 * dot2(grad3[gi0 + 1], x0, y0) -- (x,y) of grad3 used for 2D gradient end local t1 = 0.5 - x1 * x1 - y1 * y1 if t1 < 0 then n1 = 0.0 else t1 = t1 * t1 n1 = t1 * t1 * dot2(grad3[gi1 + 1], x1, y1) end local t2 = 0.5 - x2 * x2 - y2 * y2 if t2 < 0 then n2 = 0.0 else t2 = t2 * t2 n2 = t2 * t2 * dot2(grad3[gi2 + 1], x2, y2) end -- Add contributions from each corner to get the final noise value. -- The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2) end return Simplex