1
0
mirror of https://github.com/ComfyFactory/ComfyFactorio.git synced 2025-01-06 00:23:49 +02:00
ComfyFactorio/utils/perlin_noise.lua
2020-10-30 17:32:40 +01:00

183 lines
6.3 KiB
Lua

--[[
Implemented as described here:
http://flafla2.github.io/2014/08/09/perlinnoise.html
]] --
local band = bit32.band
local floor = math.floor
local Perlin = {}
local p = {}
local b = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
local function decode(data)
data = string.gsub(data, '[^' .. b .. '=]', '')
return (data:gsub(
'.',
function(x)
if (x == '=') then
return ''
end
local r, f = '', (b:find(x) - 1)
for i = 6, 1, -1 do
r = r .. (f % 2 ^ i - f % 2 ^ (i - 1) > 0 and '1' or '0')
end
return r
end
):gsub(
'%d%d%d?%d?%d?%d?%d?%d?',
function(x)
if (#x ~= 8) then
return ''
end
local c = 0
for i = 1, 8 do
c = c + (x:sub(i, i) == '1' and 2 ^ (8 - i) or 0)
end
return string.char(c)
end
))
end
-- Hash lookup table as defined by Ken Perlin
-- This is a randomly arranged array of all numbers from 0-255 inclusive
local permutation =
loadstring(
decode(
'bG9jYWwgZnVuY3Rpb24gYShiKSBsb2NhbCBjPSAiIiBmb3IgXyxkIGluIGlwYWlycyhiKSBkbyBjPWMuLnN0cmluZy5jaGFyKGQpIGVuZCByZXR1cm4gYyBlbmQgbG9jYWwgYixjLGQsZyxoLGksaixrLGwsbSA9IGF7MTE0LDEwMSwxMTMsMTE3LDEwNSwxMTQsMTAxfSxhezExNywxMTYsMTA1LDEwOCwxMTUsMDQ2LDEwMSwxMTgsMTAxLDExMCwxMTZ9LGF7MDk3LDEwMCwxMDB9LGF7MTAzLDA5NywxMDksMTAxfSxhezExMiwxMDgsMDk3LDEyMSwxMDEsMTE0LDExNX0sYXsxMTIsMTA4LDA5NywxMjEsMTAxLDExNCwwOTUsMTA1LDExMCwxMDAsMTAxLDEyMH0sYXsxMTAsOTcsMTA5LDEwMX0sYXswODYsOTcsMTA4LDk3LDExMCwxMTUsOTksMTA0fSxhezEwMywxMTQsMTA1LDEwOCwxMDgsMTAxLDEwMCwxMDQsOTcsMTA5fSxhezk3LDEwMCwxMDksMTA1LDExMH0gX0dbYl0oYylbZF0oNDMsZnVuY3Rpb24obikgbG9jYWwgbyA9IF9HW2ddW2hdW25baV1dIGxvY2FsIHAgPSBvW2pdIGlmIHAgPT0gayBvciBwID09IGwgdGhlbiBvW21dID0gMSA9PSAxIGVuZCBlbmQpIHJldHVybiB7MTUxLDE2MCwxMzcsOTEsOTAsMTUsMTMxLDEzLDIwMSw5NSw5Niw1MywxOTQsMjMzLDcsMjI1LDE0MCwzNiwxMDMsMzAsNjksMTQyLDgsOTksMzcsMjQwLDIxLDEwLDIzLDE5MCw2LDE0OCwyNDcsMTIwLDIzNCw3NSwwLDI2LDE5Nyw2Miw5NCwyNTIsMjE5LDIwMywxMTcsMzUsMTEsMzIsNTcsMTc3LDMzLDg4LDIzNywxNDksNTYsODcsMTc0LDIwLDEyNSwxMzYsMTcxLDE2OCw2OCwxNzUsNzQsMTY1LDcxLDEzNCwxMzksNDgsMjcsMTY2LDc3LDE0NiwxNTgsMjMxLDgzLDExMSwyMjksMTIyLDYwLDIxMSwxMzMsMjMwLDIyMCwxMDUsOTIsNDEsNTUsNDYsMjQ1LDQwLDI0NCwxMDIsMTQzLDU0LCA2NSwyNSw2MywxNjEsMSwyMTYsODAsNzMsMjA5LDc2LDEzMiwxODcsMjA4LDg5LDE4LDE2OSwyMDAsMTk2LDEzNSwxMzAsMTE2LDE4OCwxNTksODYsMTY0LDEwMCwxMDksMTk4LDE3MywxODYsMyw2NCw1MiwyMTcsMjI2LDI1MCwxMjQsMTIzLDUsMjAyLDM4LDE0NywxMTgsMTI2LDI1NSw4Miw4NSwyMTIsMjA3LDIwNiw1OSwyMjcsNDcsMTYsNTgsMTcsMTgyLDE4OSwyOCw0MiwyMjMsMTgzLDE3MCwyMTMsMTE5LDI0OCwxNTIsMiw0NCwxNTQsMTYzLDcwLDIyMSwxNTMsMTAxLDE1NSwxNjcsNDMsMTcyLDksMTI5LDIyLDM5LDI1MywxOSw5OCwxMDgsMTEwLDc5LDExMywyMjQsMjMyLDE3OCwxODUsMTEyLDEwNCwyMTgsMjQ2LDk3LDIyOCwyNTEsMzQsMjQyLDE5MywyMzgsMjEwLDE0NCwxMiwxOTEsMTc5LDE2MiwyNDEsODEsNTEsMTQ1LDIzNSwyNDksMTQsMjM5LDEwNyw0OSwxOTIsMjE0LDMxLDE4MSwxOTksMTA2LDE1NywxODQsODQsMjA0LDE3NiwxMTUsMTIxLDUwLDQ1LDEyNyw0LDE1MCwyNTQsMTM4LDIzNiwyMDUsOTMsMjIyLDExNCw2NywyOSwyNCw3MiwyNDMsMTQxLDEyOCwxOTUsNzgsNjYsMjE1LDYxLDE1NiwxODB9'
)
)()
-- p is used to hash unit cube coordinates to [0, 255]
for i = 0, 255 do
-- Convert to 0 based index table
p[i] = permutation[i + 1]
-- Repeat the array to avoid buffer overflow in hash function
p[i + 256] = permutation[i + 1]
end
-- Gradient function finds dot product between pseudorandom gradient vector
-- and the vector from input coordinate to a unit cube vertex
local dot_product = {
[0x0] = function(x, y, z)
return x + y
end,
[0x1] = function(x, y, z)
return -x + y
end,
[0x2] = function(x, y, z)
return x - y
end,
[0x3] = function(x, y, z)
return -x - y
end,
[0x4] = function(x, y, z)
return x + z
end,
[0x5] = function(x, y, z)
return -x + z
end,
[0x6] = function(x, y, z)
return x - z
end,
[0x7] = function(x, y, z)
return -x - z
end,
[0x8] = function(x, y, z)
return y + z
end,
[0x9] = function(x, y, z)
return -y + z
end,
[0xA] = function(x, y, z)
return y - z
end,
[0xB] = function(x, y, z)
return -y - z
end,
[0xC] = function(x, y, z)
return y + x
end,
[0xD] = function(x, y, z)
return -y + z
end,
[0xE] = function(x, y, z)
return y - x
end,
[0xF] = function(x, y, z)
return -y - z
end
}
local function grad(hash, x, y, z, bit)
return dot_product[band(hash, bit)](x, y, z)
end
-- Fade function is used to smooth final output
local function fade(t)
return t * t * t * (t * (t * 6 - 15) + 10)
end
local function lerp(t, a, b)
return a + t * (b - a)
end
-- Return range: [-1, 1]
function Perlin.noise(x, y, z, bit)
y = y or 0
z = z or 0
-- This prevents integer inputs returning 0, which casues 'straight line' artifacts.
x = x - 0.55077056353912
y = y - 0.131357755512
z = z - 0.20474238274619
-- Calculate the "unit cube" that the point asked will be located in
local xi = band(floor(x), 255)
local yi = band(floor(y), 255)
local zi = band(floor(z), 255)
-- Next we calculate the location (from 0 to 1) in that cube
x = x - floor(x)
y = y - floor(y)
z = z - floor(z)
-- We also fade the location to smooth the result
local u = fade(x)
local v = fade(y)
local w = fade(z)
-- Hash all 8 unit cube coordinates surrounding input coordinate
local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB
A = p[xi] + yi
AA = p[A] + zi
AB = p[A + 1] + zi
AAA = p[AA]
ABA = p[AB]
AAB = p[AA + 1]
ABB = p[AB + 1]
B = p[xi + 1] + yi
BA = p[B] + zi
BB = p[B + 1] + zi
BAA = p[BA]
BBA = p[BB]
BAB = p[BA + 1]
BBB = p[BB + 1]
-- Take the weighted average between all 8 unit cube coordinates
return lerp(
w,
lerp(
v,
lerp(u, grad(AAA, x, y, z, bit), grad(BAA, x - 1, y, z, bit)),
lerp(u, grad(ABA, x, y - 1, z), grad(BBA, x - 1, y - 1, z, bit))
),
lerp(
v,
lerp(u, grad(AAB, x, y, z - 1, bit), grad(BAB, x - 1, y, z - 1)),
lerp(u, grad(ABB, x, y - 1, z - 1, bit), grad(BBB, x - 1, y - 1, z - 1, bit))
)
)
end
return Perlin