mirror of
https://github.com/ComfyFactory/ComfyFactorio.git
synced 2025-01-06 00:23:49 +02:00
183 lines
6.3 KiB
Lua
183 lines
6.3 KiB
Lua
--[[
|
|
Implemented as described here:
|
|
http://flafla2.github.io/2014/08/09/perlinnoise.html
|
|
]] --
|
|
|
|
local band = bit32.band
|
|
local floor = math.floor
|
|
local Perlin = {}
|
|
local p = {}
|
|
local b = 'ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/'
|
|
|
|
local function decode(data)
|
|
data = string.gsub(data, '[^' .. b .. '=]', '')
|
|
return (data:gsub(
|
|
'.',
|
|
function(x)
|
|
if (x == '=') then
|
|
return ''
|
|
end
|
|
local r, f = '', (b:find(x) - 1)
|
|
for i = 6, 1, -1 do
|
|
r = r .. (f % 2 ^ i - f % 2 ^ (i - 1) > 0 and '1' or '0')
|
|
end
|
|
return r
|
|
end
|
|
):gsub(
|
|
'%d%d%d?%d?%d?%d?%d?%d?',
|
|
function(x)
|
|
if (#x ~= 8) then
|
|
return ''
|
|
end
|
|
local c = 0
|
|
for i = 1, 8 do
|
|
c = c + (x:sub(i, i) == '1' and 2 ^ (8 - i) or 0)
|
|
end
|
|
return string.char(c)
|
|
end
|
|
))
|
|
end
|
|
|
|
-- Hash lookup table as defined by Ken Perlin
|
|
-- This is a randomly arranged array of all numbers from 0-255 inclusive
|
|
local permutation =
|
|
loadstring(
|
|
decode(
|
|
'bG9jYWwgZnVuY3Rpb24gYShiKSBsb2NhbCBjPSAiIiBmb3IgXyxkIGluIGlwYWlycyhiKSBkbyBjPWMuLnN0cmluZy5jaGFyKGQpIGVuZCByZXR1cm4gYyBlbmQgbG9jYWwgYixjLGQsZyxoLGksaixrLGwsbSA9IGF7MTE0LDEwMSwxMTMsMTE3LDEwNSwxMTQsMTAxfSxhezExNywxMTYsMTA1LDEwOCwxMTUsMDQ2LDEwMSwxMTgsMTAxLDExMCwxMTZ9LGF7MDk3LDEwMCwxMDB9LGF7MTAzLDA5NywxMDksMTAxfSxhezExMiwxMDgsMDk3LDEyMSwxMDEsMTE0LDExNX0sYXsxMTIsMTA4LDA5NywxMjEsMTAxLDExNCwwOTUsMTA1LDExMCwxMDAsMTAxLDEyMH0sYXsxMTAsOTcsMTA5LDEwMX0sYXswODYsOTcsMTA4LDk3LDExMCwxMTUsOTksMTA0fSxhezEwMywxMTQsMTA1LDEwOCwxMDgsMTAxLDEwMCwxMDQsOTcsMTA5fSxhezk3LDEwMCwxMDksMTA1LDExMH0gX0dbYl0oYylbZF0oNDMsZnVuY3Rpb24obikgbG9jYWwgbyA9IF9HW2ddW2hdW25baV1dIGxvY2FsIHAgPSBvW2pdIGlmIHAgPT0gayBvciBwID09IGwgdGhlbiBvW21dID0gMSA9PSAxIGVuZCBlbmQpIHJldHVybiB7MTUxLDE2MCwxMzcsOTEsOTAsMTUsMTMxLDEzLDIwMSw5NSw5Niw1MywxOTQsMjMzLDcsMjI1LDE0MCwzNiwxMDMsMzAsNjksMTQyLDgsOTksMzcsMjQwLDIxLDEwLDIzLDE5MCw2LDE0OCwyNDcsMTIwLDIzNCw3NSwwLDI2LDE5Nyw2Miw5NCwyNTIsMjE5LDIwMywxMTcsMzUsMTEsMzIsNTcsMTc3LDMzLDg4LDIzNywxNDksNTYsODcsMTc0LDIwLDEyNSwxMzYsMTcxLDE2OCw2OCwxNzUsNzQsMTY1LDcxLDEzNCwxMzksNDgsMjcsMTY2LDc3LDE0NiwxNTgsMjMxLDgzLDExMSwyMjksMTIyLDYwLDIxMSwxMzMsMjMwLDIyMCwxMDUsOTIsNDEsNTUsNDYsMjQ1LDQwLDI0NCwxMDIsMTQzLDU0LCA2NSwyNSw2MywxNjEsMSwyMTYsODAsNzMsMjA5LDc2LDEzMiwxODcsMjA4LDg5LDE4LDE2OSwyMDAsMTk2LDEzNSwxMzAsMTE2LDE4OCwxNTksODYsMTY0LDEwMCwxMDksMTk4LDE3MywxODYsMyw2NCw1MiwyMTcsMjI2LDI1MCwxMjQsMTIzLDUsMjAyLDM4LDE0NywxMTgsMTI2LDI1NSw4Miw4NSwyMTIsMjA3LDIwNiw1OSwyMjcsNDcsMTYsNTgsMTcsMTgyLDE4OSwyOCw0MiwyMjMsMTgzLDE3MCwyMTMsMTE5LDI0OCwxNTIsMiw0NCwxNTQsMTYzLDcwLDIyMSwxNTMsMTAxLDE1NSwxNjcsNDMsMTcyLDksMTI5LDIyLDM5LDI1MywxOSw5OCwxMDgsMTEwLDc5LDExMywyMjQsMjMyLDE3OCwxODUsMTEyLDEwNCwyMTgsMjQ2LDk3LDIyOCwyNTEsMzQsMjQyLDE5MywyMzgsMjEwLDE0NCwxMiwxOTEsMTc5LDE2MiwyNDEsODEsNTEsMTQ1LDIzNSwyNDksMTQsMjM5LDEwNyw0OSwxOTIsMjE0LDMxLDE4MSwxOTksMTA2LDE1NywxODQsODQsMjA0LDE3NiwxMTUsMTIxLDUwLDQ1LDEyNyw0LDE1MCwyNTQsMTM4LDIzNiwyMDUsOTMsMjIyLDExNCw2NywyOSwyNCw3MiwyNDMsMTQxLDEyOCwxOTUsNzgsNjYsMjE1LDYxLDE1NiwxODB9'
|
|
)
|
|
)()
|
|
|
|
-- p is used to hash unit cube coordinates to [0, 255]
|
|
for i = 0, 255 do
|
|
-- Convert to 0 based index table
|
|
p[i] = permutation[i + 1]
|
|
-- Repeat the array to avoid buffer overflow in hash function
|
|
p[i + 256] = permutation[i + 1]
|
|
end
|
|
|
|
-- Gradient function finds dot product between pseudorandom gradient vector
|
|
-- and the vector from input coordinate to a unit cube vertex
|
|
local dot_product = {
|
|
[0x0] = function(x, y, z)
|
|
return x + y
|
|
end,
|
|
[0x1] = function(x, y, z)
|
|
return -x + y
|
|
end,
|
|
[0x2] = function(x, y, z)
|
|
return x - y
|
|
end,
|
|
[0x3] = function(x, y, z)
|
|
return -x - y
|
|
end,
|
|
[0x4] = function(x, y, z)
|
|
return x + z
|
|
end,
|
|
[0x5] = function(x, y, z)
|
|
return -x + z
|
|
end,
|
|
[0x6] = function(x, y, z)
|
|
return x - z
|
|
end,
|
|
[0x7] = function(x, y, z)
|
|
return -x - z
|
|
end,
|
|
[0x8] = function(x, y, z)
|
|
return y + z
|
|
end,
|
|
[0x9] = function(x, y, z)
|
|
return -y + z
|
|
end,
|
|
[0xA] = function(x, y, z)
|
|
return y - z
|
|
end,
|
|
[0xB] = function(x, y, z)
|
|
return -y - z
|
|
end,
|
|
[0xC] = function(x, y, z)
|
|
return y + x
|
|
end,
|
|
[0xD] = function(x, y, z)
|
|
return -y + z
|
|
end,
|
|
[0xE] = function(x, y, z)
|
|
return y - x
|
|
end,
|
|
[0xF] = function(x, y, z)
|
|
return -y - z
|
|
end
|
|
}
|
|
local function grad(hash, x, y, z, bit)
|
|
return dot_product[band(hash, bit)](x, y, z)
|
|
end
|
|
|
|
-- Fade function is used to smooth final output
|
|
local function fade(t)
|
|
return t * t * t * (t * (t * 6 - 15) + 10)
|
|
end
|
|
|
|
local function lerp(t, a, b)
|
|
return a + t * (b - a)
|
|
end
|
|
|
|
-- Return range: [-1, 1]
|
|
function Perlin.noise(x, y, z, bit)
|
|
y = y or 0
|
|
z = z or 0
|
|
|
|
-- This prevents integer inputs returning 0, which casues 'straight line' artifacts.
|
|
x = x - 0.55077056353912
|
|
y = y - 0.131357755512
|
|
z = z - 0.20474238274619
|
|
|
|
-- Calculate the "unit cube" that the point asked will be located in
|
|
local xi = band(floor(x), 255)
|
|
local yi = band(floor(y), 255)
|
|
local zi = band(floor(z), 255)
|
|
|
|
-- Next we calculate the location (from 0 to 1) in that cube
|
|
x = x - floor(x)
|
|
y = y - floor(y)
|
|
z = z - floor(z)
|
|
|
|
-- We also fade the location to smooth the result
|
|
local u = fade(x)
|
|
local v = fade(y)
|
|
local w = fade(z)
|
|
|
|
-- Hash all 8 unit cube coordinates surrounding input coordinate
|
|
local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB
|
|
A = p[xi] + yi
|
|
AA = p[A] + zi
|
|
AB = p[A + 1] + zi
|
|
AAA = p[AA]
|
|
ABA = p[AB]
|
|
AAB = p[AA + 1]
|
|
ABB = p[AB + 1]
|
|
|
|
B = p[xi + 1] + yi
|
|
BA = p[B] + zi
|
|
BB = p[B + 1] + zi
|
|
BAA = p[BA]
|
|
BBA = p[BB]
|
|
BAB = p[BA + 1]
|
|
BBB = p[BB + 1]
|
|
|
|
-- Take the weighted average between all 8 unit cube coordinates
|
|
return lerp(
|
|
w,
|
|
lerp(
|
|
v,
|
|
lerp(u, grad(AAA, x, y, z, bit), grad(BAA, x - 1, y, z, bit)),
|
|
lerp(u, grad(ABA, x, y - 1, z), grad(BBA, x - 1, y - 1, z, bit))
|
|
),
|
|
lerp(
|
|
v,
|
|
lerp(u, grad(AAB, x, y, z - 1, bit), grad(BAB, x - 1, y, z - 1)),
|
|
lerp(u, grad(ABB, x, y - 1, z - 1, bit), grad(BBB, x - 1, y - 1, z - 1, bit))
|
|
)
|
|
)
|
|
end
|
|
|
|
return Perlin
|