1
0
mirror of https://github.com/ComfyFactory/ComfyFactorio.git synced 2025-01-10 00:43:27 +02:00
ComfyFactorio/utils/perlin_noise.lua
2024-03-27 08:01:39 +01:00

393 lines
5.4 KiB
Lua

local band = bit32.band
local floor = math.floor
local Perlin = {}
local p = {}
-- Hash lookup table as defined by Ken Perlin
-- This is a randomly arranged array of all numbers from 0-255 inclusive
local permutation = {
151,
160,
137,
91,
90,
15,
131,
13,
201,
95,
96,
53,
194,
233,
7,
225,
140,
36,
103,
30,
69,
142,
8,
99,
37,
240,
21,
10,
23,
190,
6,
148,
247,
120,
234,
75,
0,
26,
197,
62,
94,
252,
219,
203,
117,
35,
11,
32,
57,
177,
33,
88,
237,
149,
56,
87,
174,
20,
125,
136,
171,
168,
68,
175,
74,
165,
71,
134,
139,
48,
27,
166,
77,
146,
158,
231,
83,
111,
229,
122,
60,
211,
133,
230,
220,
105,
92,
41,
55,
46,
245,
40,
244,
102,
143,
54,
65,
25,
63,
161,
1,
216,
80,
73,
209,
76,
132,
187,
208,
89,
18,
169,
200,
196,
135,
130,
116,
188,
159,
86,
164,
100,
109,
198,
173,
186,
3,
64,
52,
217,
226,
250,
124,
123,
5,
202,
38,
147,
118,
126,
255,
82,
85,
212,
207,
206,
59,
227,
47,
16,
58,
17,
182,
189,
28,
42,
223,
183,
170,
213,
119,
248,
152,
2,
44,
154,
163,
70,
221,
153,
101,
155,
167,
43,
172,
9,
129,
22,
39,
253,
19,
98,
108,
110,
79,
113,
224,
232,
178,
185,
112,
104,
218,
246,
97,
228,
251,
34,
242,
193,
238,
210,
144,
12,
191,
179,
162,
241,
81,
51,
145,
235,
249,
14,
239,
107,
49,
192,
214,
31,
181,
199,
106,
157,
184,
84,
204,
176,
115,
121,
50,
45,
127,
4,
150,
254,
138,
236,
205,
93,
222,
114,
67,
29,
24,
72,
243,
141,
128,
195,
78,
66,
215,
61,
156,
180
}
-- p is used to hash unit cube coordinates to [0, 255]
for i = 0, 255 do
-- Convert to 0 based index table
p[i] = permutation[i + 1]
-- Repeat the array to avoid buffer overflow in hash function
p[i + 256] = permutation[i + 1]
end
-- Gradient function finds dot product between pseudorandom gradient vector
-- and the vector from input coordinate to a unit cube vertex
local dot_product = {
[0x0] = function(x, y)
return x + y
end,
[0x1] = function(x, y)
return -x + y
end,
[0x2] = function(x, y)
return x - y
end,
[0x3] = function(x, y)
return -x - y
end,
[0x4] = function(x, z)
return x + z
end,
[0x5] = function(x, z)
return -x + z
end,
[0x6] = function(x, z)
return x - z
end,
[0x7] = function(x, z)
return -x - z
end,
[0x8] = function(y, z)
return y + z
end,
[0x9] = function(y, z)
return -y + z
end,
[0xA] = function(y, z)
return y - z
end,
[0xB] = function(y, z)
return -y - z
end,
[0xC] = function(x, y)
return y + x
end,
[0xD] = function(y, z)
return -y + z
end,
[0xE] = function(x, y)
return y - x
end,
[0xF] = function(y, z)
return -y - z
end
}
local function grad(hash, x, y, bit)
bit = bit or 1
return dot_product[band(hash, bit)](x, y)
end
-- Fade function is used to smooth final output
local function fade(t)
return t * t * t * (t * (t * 6 - 15) + 10)
end
local function lerp(t, a, bs)
return a + t * (bs - a)
end
-- Return range: [-1, 1]
function Perlin.noise(x, y, z, bit)
y = y or 0
z = z or 0
-- This prevents integer inputs returning 0, which casues 'straight line' artifacts.
x = x - 0.55077056353912
y = y - 0.131357755512
z = z - 0.20474238274619
-- Calculate the "unit cube" that the point asked will be located in
local xi = band(floor(x), 255)
local yi = band(floor(y), 255)
local zi = band(floor(z), 255)
-- Next we calculate the location (from 0 to 1) in that cube
x = x - floor(x)
y = y - floor(y)
z = z - floor(z)
-- We also fade the location to smooth the result
local u = fade(x)
local v = fade(y)
local w = fade(z)
-- Hash all 8 unit cube coordinates surrounding input coordinate
local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB
A = p[xi] + yi
AA = p[A] + zi
AB = p[A + 1] + zi
AAA = p[AA]
ABA = p[AB]
AAB = p[AA + 1]
ABB = p[AB + 1]
B = p[xi + 1] + yi
BA = p[B] + zi
BB = p[B + 1] + zi
BAA = p[BA]
BBA = p[BB]
BAB = p[BA + 1]
BBB = p[BB + 1]
-- Take the weighted average between all 8 unit cube coordinates
return lerp(
w,
lerp(v, lerp(u, grad(AAA, x, y, bit), grad(BAA, x - 1, y, bit)), lerp(u, grad(ABA, x, y - 1, bit), grad(BBA, x - 1, y - 1, bit))),
lerp(v, lerp(u, grad(AAB, x, y, bit), grad(BAB, x - 1, y, bit)), lerp(u, grad(ABB, x, y - 1, bit), grad(BBB, x - 1, y - 1, bit)))
)
end
return Perlin