1
0
mirror of https://github.com/ComfyFactory/ComfyFactorio.git synced 2025-01-22 03:38:48 +02:00
ComfyFactorio/utils/simplex_noise.lua
2020-05-13 08:18:14 +02:00

376 lines
5.4 KiB
Lua

--from https://github.com/thenumbernine/lua-simplexnoise/blob/master/2d.lua
--Mostly as a test, does not give same results as perlin but is designed to give patterns all the same
local Simplex = {}
local bit32_band = bit32.band
local math_floor = math.floor
-- 2D simplex noise
local grad3 = {
{1, 1, 0},
{-1, 1, 0},
{1, -1, 0},
{-1, -1, 0},
{1, 0, 1},
{-1, 0, 1},
{1, 0, -1},
{-1, 0, -1},
{0, 1, 1},
{0, -1, 1},
{0, 1, -1},
{0, -1, -1}
}
local p = {
151,
160,
137,
91,
90,
15,
131,
13,
201,
95,
96,
53,
194,
233,
7,
225,
140,
36,
103,
30,
69,
142,
8,
99,
37,
240,
21,
10,
23,
190,
6,
148,
247,
120,
234,
75,
0,
26,
197,
62,
94,
252,
219,
203,
117,
35,
11,
32,
57,
177,
33,
88,
237,
149,
56,
87,
174,
20,
125,
136,
171,
168,
68,
175,
74,
165,
71,
134,
139,
48,
27,
166,
77,
146,
158,
231,
83,
111,
229,
122,
60,
211,
133,
230,
220,
105,
92,
41,
55,
46,
245,
40,
244,
102,
143,
54,
65,
25,
63,
161,
1,
216,
80,
73,
209,
76,
132,
187,
208,
89,
18,
169,
200,
196,
135,
130,
116,
188,
159,
86,
164,
100,
109,
198,
173,
186,
3,
64,
52,
217,
226,
250,
124,
123,
5,
202,
38,
147,
118,
126,
255,
82,
85,
212,
207,
206,
59,
227,
47,
16,
58,
17,
182,
189,
28,
42,
223,
183,
170,
213,
119,
248,
152,
2,
44,
154,
163,
70,
221,
153,
101,
155,
167,
43,
172,
9,
129,
22,
39,
253,
19,
98,
108,
110,
79,
113,
224,
232,
178,
185,
112,
104,
218,
246,
97,
228,
251,
34,
242,
193,
238,
210,
144,
12,
191,
179,
162,
241,
81,
51,
145,
235,
249,
14,
239,
107,
49,
192,
214,
31,
181,
199,
106,
157,
184,
84,
204,
176,
115,
121,
50,
45,
127,
4,
150,
254,
138,
236,
205,
93,
222,
114,
67,
29,
24,
72,
243,
141,
128,
195,
78,
66,
215,
61,
156,
180
}
local perm = {}
for i = 0, 511 do
perm[i + 1] = p[bit32_band(i, 255) + 1]
end
-- special case of dot with 3 inputs
local function dot2(g, x, y)
return x * g[1] + y * g[2]
end
local function dot(g, ...)
local v = {...}
local sum = 0
for i = 1, #v do
sum = sum + v[i] * g[i]
end
return sum
end
local F2 = 0.5 * (math.sqrt(3.0) - 1.0)
local G2 = (3.0 - math.sqrt(3.0)) / 6.0
function Simplex.d2(xin, yin, seed)
xin = xin + seed
yin = yin + seed
local n0, n1, n2 -- Noise contributions from the three corners
-- Skew the input space to determine which simplex cell we're in
local s = (xin + yin) * F2 -- Hairy factor for 2D
local i = math_floor(xin + s)
local j = math_floor(yin + s)
local t = (i + j) * G2
local X0 = i - t -- Unskew the cell origin back to (x,y) space
local Y0 = j - t
local x0 = xin - X0 -- The x,y distances from the cell origin
local y0 = yin - Y0
-- For the 2D case, the simplex shape is an equilateral triangle.
-- Determine which simplex we are in.
local i1, j1 -- Offsets for second (middle) corner of simplex in (i,j) coords
if x0 > y0 then
i1 = 1
j1 = 0 -- lower triangle, XY order: (0,0)->(1,0)->(1,1)
else
i1 = 0
j1 = 1
end
-- upper triangle, YX order: (0,0)->(0,1)->(1,1)
-- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
-- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
-- c = (3-sqrt(3))/6
local x1 = x0 - i1 + G2 -- Offsets for middle corner in (x,y) unskewed coords
local y1 = y0 - j1 + G2
local x2 = x0 - 1 + 2 * G2 -- Offsets for last corner in (x,y) unskewed coords
local y2 = y0 - 1 + 2 * G2
-- Work out the hashed gradient indices of the three simplex corners
local ii = bit32_band(i, 255)
local jj = bit32_band(j, 255)
local gi0 = perm[ii + perm[jj + 1] + 1] % 12
local gi1 = perm[ii + i1 + perm[jj + j1 + 1] + 1] % 12
local gi2 = perm[ii + 1 + perm[jj + 1 + 1] + 1] % 12
-- Calculate the contribution from the three corners
local t0 = 0.5 - x0 * x0 - y0 * y0
if t0 < 0 then
n0 = 0.0
else
t0 = t0 * t0
n0 = t0 * t0 * dot2(grad3[gi0 + 1], x0, y0) -- (x,y) of grad3 used for 2D gradient
end
local t1 = 0.5 - x1 * x1 - y1 * y1
if t1 < 0 then
n1 = 0.0
else
t1 = t1 * t1
n1 = t1 * t1 * dot2(grad3[gi1 + 1], x1, y1)
end
local t2 = 0.5 - x2 * x2 - y2 * y2
if t2 < 0 then
n2 = 0.0
else
t2 = t2 * t2
n2 = t2 * t2 * dot2(grad3[gi2 + 1], x2, y2)
end
-- Add contributions from each corner to get the final noise value.
-- The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2)
end
return Simplex