if mathUtilsG then return mathUtilsG end local mathUtils = {} -- imports local constants = require("Constants") -- constants local TICKS_A_MINUTE = constants.TICKS_A_MINUTE -- imported functions local mSqrt = math.sqrt local mLog10 = math.log10 local mRandom = math.random local mFloor = math.floor local mAbs = math.abs -- module code function mathUtils.roundToFloor(number, multiple) return mFloor(number / multiple) * multiple end function mathUtils.roundToNearest(number, multiple) local num = number + (multiple * 0.5) return num - (num % multiple) end function mathUtils.randomTickEvent(rg, tick, low, high) local range = high - low local minutesToTick = (range * rg()) + low return tick + mathUtils.roundToNearest(TICKS_A_MINUTE * minutesToTick, 1) end function mathUtils.distort(xorRandom, num, stdDev, min, max) local amin = min or num * 0.70 local amax = max or num * 1.30 local sd = stdDev or 0.17 if (num < 0) then local t = amin amin = amax amax = t end return mathUtils.roundToNearest(mathUtils.gaussianRandomRangeRG(num, num * sd, amin, amax, xorRandom), 0.01) end function mathUtils.linearInterpolation(percent, min, max) return ((max - min) * percent) + min end function mathUtils.xorRandom(state) local xor = bit32.bxor local lshift = bit32.lshift local rshift = bit32.rshift state = state + 21594771 return function() state = xor(state, lshift(state, 13)) state = xor(state, rshift(state, 17)) state = xor(state, lshift(state, 5)) state = state % 2147483647 return state * 4.65661287525e-10 end end --[[ Used for gaussian random numbers --]] function mathUtils.gaussianRandomRG(mean, std_dev, rg) -- marsagliaPolarMethod local iid1 local iid2 local q repeat iid1 = 2 * rg() + -1 iid2 = 2 * rg() + -1 q = (iid1 * iid1) + (iid2 * iid2) until (q ~= 0) and (q < 1) local s = mSqrt((-2 * mLog10(q)) / q) local v = iid1 * s return mean + (v * std_dev) end function mathUtils.gaussianRandomRangeRG(mean, std_dev, min, max, rg) local r if (min >= max) then return min end repeat local iid1 local iid2 local q repeat iid1 = 2 * rg() + -1 iid2 = 2 * rg() + -1 q = (iid1 * iid1) + (iid2 * iid2) until (q ~= 0) and (q < 1) local s = mSqrt((-2 * mLog10(q)) / q) local v = iid1 * s r = mean + (v * std_dev) until (r >= min) and (r <= max) return r end function mathUtils.euclideanDistanceNamed(p1, p2) local xs = p1.x - p2.x local ys = p1.y - p2.y return ((xs * xs) + (ys * ys)) ^ 0.5 end function mathUtils.euclideanDistancePoints(x1, y1, x2, y2) local xs = x1 - x2 local ys = y1 - y2 return ((xs * xs) + (ys * ys)) ^ 0.5 end function mathUtils.mahattenDistancePoints(x1, y1, x2, y2) local xs = x1 - x2 local ys = y1 - y2 return mAbs(xs + ys) end function mathUtils.euclideanDistanceArray(p1, p2) local xs = p1[1] - p2[1] local ys = p1[2] - p2[2] return ((xs * xs) + (ys * ys)) ^ 0.5 end function mathUtils.distortPosition(rg, position, size) local xDistort = mathUtils.gaussianRandomRangeRG(1, 0.5, 0, 2, rg) - 1 local yDistort = mathUtils.gaussianRandomRangeRG(1, 0.5, 0, 2, rg) - 1 position.x = position.x + (xDistort * size) position.y = position.y + (yDistort * size) return position end mathUtilsG = mathUtils return mathUtils