1
0
mirror of https://github.com/veden/Rampant.git synced 2025-01-16 02:33:53 +02:00
Rampant/libs/MathUtils.lua
2020-04-12 15:41:45 -07:00

188 lines
4.4 KiB
Lua
Executable File

if mathUtilsG then
return mathUtilsG
end
local mathUtils = {}
-- imports
local constants = require("Constants")
-- constants
local TICKS_A_MINUTE = constants.TICKS_A_MINUTE
-- imported functions
local mSqrt = math.sqrt
local mLog10 = math.log10
local mRandom = math.random
local mFloor = math.floor
local mAbs = math.abs
-- module code
function mathUtils.roundToFloor(number, multiple)
return mFloor(number / multiple) * multiple
end
function mathUtils.roundToNearest(number, multiple)
local num = number + (multiple * 0.5)
return num - (num % multiple)
end
function mathUtils.randomTickEvent(tick, low, high)
local range = high - low
local minutesToTick = (range * mRandom()) + low
return tick + mathUtils.roundToNearest(TICKS_A_MINUTE * minutesToTick, 1)
end
function mathUtils.distort(xorRandom, num, stdDev, min, max)
local min = min or num * 0.70
local max = max or num * 1.30
local sd = stdDev or 0.17
if (num < 0) then
local t = min
min = max
max = t
end
return mathUtils.roundToNearest(mathUtils.gaussianRandomRangeRG(num, num * sd, min, max, xorRandom), 0.01)
end
function mathUtils.linearInterpolation(percent, min, max)
return ((max - min) * percent) + min
end
function mathUtils.xorRandom(state)
local xor = bit32.bxor
local lshift = bit32.lshift
local rshift = bit32.rshift
state = state + 21594771
return function()
state = xor(state, lshift(state, 13))
state = xor(state, rshift(state, 17))
state = xor(state, lshift(state, 5))
state = state % 2147483647
return state * 4.65661287525e-10
end
end
function mathUtils.linearInterpolation(percent, min, max)
return ((max - min) * percent) + min
end
--[[
Used for gaussian random numbers
--]]
function mathUtils.gaussianRandom(mean, std_dev)
-- marsagliaPolarMethod
local iid1
local iid2
local q
repeat
iid1 = 2 * mRandom() + -1
iid2 = 2 * mRandom() + -1
q = (iid1 * iid1) + (iid2 * iid2)
until (q ~= 0) and (q < 1)
local s = mSqrt((-2 * mLog10(q)) / q)
local v = iid1 * s
return mean + (v * std_dev)
end
function mathUtils.gaussianRandomRange(mean, std_dev, min, max)
if (min >= max) then
return min
end
local r
repeat
local iid1
local iid2
local q
repeat
iid1 = 2 * mRandom() + -1
iid2 = 2 * mRandom() + -1
q = (iid1 * iid1) + (iid2 * iid2)
until (q ~= 0) and (q < 1)
local s = mSqrt((-2 * mLog10(q)) / q)
local v = iid1 * s
r = mean + (v * std_dev)
until (r >= min) and (r <= max)
return r
end
function mathUtils.gaussianRandomRG(mean, std_dev, rg)
-- marsagliaPolarMethod
local iid1
local iid2
local q
repeat
iid1 = 2 * rg() + -1
iid2 = 2 * rg() + -1
q = (iid1 * iid1) + (iid2 * iid2)
until (q ~= 0) and (q < 1)
local s = mSqrt((-2 * mLog10(q)) / q)
local v = iid1 * s
return mean + (v * std_dev)
end
function mathUtils.gaussianRandomRangeRG(mean, std_dev, min, max, rg)
local r
if (min >= max) then
return min
end
repeat
local iid1
local iid2
local q
repeat
iid1 = 2 * rg() + -1
iid2 = 2 * rg() + -1
q = (iid1 * iid1) + (iid2 * iid2)
until (q ~= 0) and (q < 1)
local s = mSqrt((-2 * mLog10(q)) / q)
local v = iid1 * s
r = mean + (v * std_dev)
until (r >= min) and (r <= max)
return r
end
function mathUtils.euclideanDistanceNamed(p1, p2)
local xs = p1.x - p2.x
local ys = p1.y - p2.y
return ((xs * xs) + (ys * ys)) ^ 0.5
end
function mathUtils.euclideanDistancePoints(x1, y1, x2, y2)
local xs = x1 - x2
local ys = y1 - y2
return ((xs * xs) + (ys * ys)) ^ 0.5
end
function mathUtils.mahattenDistancePoints(x1, y1, x2, y2)
local xs = x1 - x2
local ys = y1 - y2
return mAbs(xs + ys)
end
function mathUtils.euclideanDistanceArray(p1, p2)
local xs = p1[1] - p2[1]
local ys = p1[2] - p2[2]
return ((xs * xs) + (ys * ys)) ^ 0.5
end
function mathUtils.distortPosition(position, size)
local xDistort = mathUtils.gaussianRandomRange(1, 0.5, 0, 2) - 1
local yDistort = mathUtils.gaussianRandomRange(1, 0.5, 0, 2) - 1
position.x = position.x + (xDistort * size)
position.y = position.y + (yDistort * size)
return position
end
mathUtilsG = mathUtils
return mathUtils