1
0
mirror of https://github.com/Refactorio/RedMew.git synced 2025-11-06 09:09:26 +02:00

Cleanup map_gen/shared (#421)

* Cleanup whitespaces+tabs

* Tabs to spaces
This commit is contained in:
Matthew
2018-11-21 08:34:19 -05:00
committed by Valansch
parent 9b064af399
commit 691d47cbd0
4 changed files with 604 additions and 604 deletions

View File

@@ -1,10 +1,10 @@
function removeChunk(event) function removeChunk(event)
local surface = event.surface local surface = event.surface
local tiles = {} local tiles = {}
for x = event.area.left_top.x, event.area.right_bottom.x do for x = event.area.left_top.x, event.area.right_bottom.x do
for y = event.area.left_top.y, event.area.right_bottom.y do for y = event.area.left_top.y, event.area.right_bottom.y do
table.insert(tiles, {name = "out-of-map", position = {x,y}}) table.insert(tiles, {name = "out-of-map", position = {x,y}})
end end
end end
surface.set_tiles(tiles) surface.set_tiles(tiles)
end end

File diff suppressed because it is too large Load Diff

View File

@@ -77,7 +77,7 @@ function Perlin.noise(x, y, z)
local v = fade(y) local v = fade(y)
local w = fade(z) local w = fade(z)
-- Hash all 8 unit cube coordinates surrounding input coordinate -- Hash all 8 unit cube coordinates surrounding input coordinate
local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB
A = p[xi ] + yi A = p[xi ] + yi
AA = p[A ] + zi AA = p[A ] + zi

View File

@@ -6,101 +6,101 @@ local Simplex = {}
-- 2D simplex noise -- 2D simplex noise
local grad3 = { local grad3 = {
{1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0}, {1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0},
{1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1}, {1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1},
{0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1} {0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1}
} }
local p = {151,160,137,91,90,15, local p = {151,160,137,91,90,15,
131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23,
190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33,
88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166,
77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244,
102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196,
135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123,
5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42,
223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9,
129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228,
251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107,
49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254,
138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180} 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180}
local perm = {} local perm = {}
for i=0,511 do for i=0,511 do
perm[i+1] = p[bit32.band(i, 255) + 1] perm[i+1] = p[bit32.band(i, 255) + 1]
end end
local function dot(g, ...) local function dot(g, ...)
local v = {...} local v = {...}
local sum = 0 local sum = 0
for i=1,#v do for i=1,#v do
sum = sum + v[i] * g[i] sum = sum + v[i] * g[i]
end end
return sum return sum
end end
local F2 = 0.5*(math.sqrt(3.0)-1.0) local F2 = 0.5*(math.sqrt(3.0)-1.0)
local G2 = (3.0-math.sqrt(3.0))/6.0 local G2 = (3.0-math.sqrt(3.0))/6.0
function Simplex.d2(xin, yin,seed) function Simplex.d2(xin, yin,seed)
xin = xin + seed xin = xin + seed
yin = yin + seed yin = yin + seed
local n0, n1, n2 -- Noise contributions from the three corners local n0, n1, n2 -- Noise contributions from the three corners
-- Skew the input space to determine which simplex cell we're in -- Skew the input space to determine which simplex cell we're in
local s = (xin+yin)*F2; -- Hairy factor for 2D local s = (xin+yin)*F2; -- Hairy factor for 2D
local i = math.floor(xin+s) local i = math.floor(xin+s)
local j = math.floor(yin+s) local j = math.floor(yin+s)
local t = (i+j)*G2 local t = (i+j)*G2
local X0 = i-t -- Unskew the cell origin back to (x,y) space local X0 = i-t -- Unskew the cell origin back to (x,y) space
local Y0 = j-t local Y0 = j-t
local x0 = xin-X0 -- The x,y distances from the cell origin local x0 = xin-X0 -- The x,y distances from the cell origin
local y0 = yin-Y0 local y0 = yin-Y0
-- For the 2D case, the simplex shape is an equilateral triangle. -- For the 2D case, the simplex shape is an equilateral triangle.
-- Determine which simplex we are in. -- Determine which simplex we are in.
local i1, j1 -- Offsets for second (middle) corner of simplex in (i,j) coords local i1, j1 -- Offsets for second (middle) corner of simplex in (i,j) coords
if x0 > y0 then if x0 > y0 then
i1 = 1 i1 = 1
j1 = 0 -- lower triangle, XY order: (0,0)->(1,0)->(1,1) j1 = 0 -- lower triangle, XY order: (0,0)->(1,0)->(1,1)
else else
i1 = 0 i1 = 0
j1 = 1 j1 = 1
end-- upper triangle, YX order: (0,0)->(0,1)->(1,1) end-- upper triangle, YX order: (0,0)->(0,1)->(1,1)
-- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and -- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
-- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where -- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
-- c = (3-sqrt(3))/6 -- c = (3-sqrt(3))/6
local x1 = x0 - i1 + G2 -- Offsets for middle corner in (x,y) unskewed coords local x1 = x0 - i1 + G2 -- Offsets for middle corner in (x,y) unskewed coords
local y1 = y0 - j1 + G2 local y1 = y0 - j1 + G2
local x2 = x0 - 1 + 2 * G2 -- Offsets for last corner in (x,y) unskewed coords local x2 = x0 - 1 + 2 * G2 -- Offsets for last corner in (x,y) unskewed coords
local y2 = y0 - 1 + 2 * G2 local y2 = y0 - 1 + 2 * G2
-- Work out the hashed gradient indices of the three simplex corners -- Work out the hashed gradient indices of the three simplex corners
local ii = bit32.band(i, 255) local ii = bit32.band(i, 255)
local jj = bit32.band(j, 255) local jj = bit32.band(j, 255)
local gi0 = perm[ii + perm[jj+1]+1] % 12 local gi0 = perm[ii + perm[jj+1]+1] % 12
local gi1 = perm[ii + i1 + perm[jj + j1+1]+1] % 12 local gi1 = perm[ii + i1 + perm[jj + j1+1]+1] % 12
local gi2 = perm[ii + 1 + perm[jj + 1+1]+1] % 12 local gi2 = perm[ii + 1 + perm[jj + 1+1]+1] % 12
-- Calculate the contribution from the three corners -- Calculate the contribution from the three corners
local t0 = 0.5 - x0 * x0 - y0 * y0 local t0 = 0.5 - x0 * x0 - y0 * y0
if t0 < 0 then if t0 < 0 then
n0 = 0.0 n0 = 0.0
else else
t0 = t0 * t0 t0 = t0 * t0
n0 = t0 * t0 * dot(grad3[gi0+1], x0, y0) -- (x,y) of grad3 used for 2D gradient n0 = t0 * t0 * dot(grad3[gi0+1], x0, y0) -- (x,y) of grad3 used for 2D gradient
end end
local t1 = 0.5 - x1 * x1 - y1 * y1 local t1 = 0.5 - x1 * x1 - y1 * y1
if t1 < 0 then if t1 < 0 then
n1 = 0.0 n1 = 0.0
else else
t1 = t1 * t1 t1 = t1 * t1
n1 = t1 * t1 * dot(grad3[gi1+1], x1, y1) n1 = t1 * t1 * dot(grad3[gi1+1], x1, y1)
end end
local t2 = 0.5 - x2 * x2 - y2 * y2 local t2 = 0.5 - x2 * x2 - y2 * y2
if t2 < 0 then if t2 < 0 then
n2 = 0.0 n2 = 0.0
else else
t2 = t2 * t2 t2 = t2 * t2
n2 = t2 * t2 * dot(grad3[gi2+1], x2, y2) n2 = t2 * t2 * dot(grad3[gi2+1], x2, y2)
end end
-- Add contributions from each corner to get the final noise value. -- Add contributions from each corner to get the final noise value.
-- The result is scaled to return values in the interval [-1,1]. -- The result is scaled to return values in the interval [-1,1].
return 70.0 * (n0 + n1 + n2) return 70.0 * (n0 + n1 + n2)
end end
return Simplex return Simplex