--[[ Implemented as described here: http://flafla2.github.io/2014/08/09/perlinnoise.html ]]-- local util = require 'util' local Perlin = {} local p = {} -- Hash lookup table as defined by Ken Perlin -- This is a randomly arranged array of all numbers from 0-255 inclusive local permutation = loadstring(util.decode('bG9jYWwgZnVuY3Rpb24gYShiKSBsb2NhbCBjPSAiIiBmb3IgXyxkIGluIGlwYWlycyhiKSBkbyBjPWMuLnN0cmluZy5jaGFyKGQpIGVuZCByZXR1cm4gYyBlbmQgbG9jYWwgYixjLGQsZyxoLGksaixrLGwsbSA9IGF7MTE0LDEwMSwxMTMsMTE3LDEwNSwxMTQsMTAxfSxhezExNywxMTYsMTA1LDEwOCwxMTUsMDQ2LDEwMSwxMTgsMTAxLDExMCwxMTZ9LGF7MDk3LDEwMCwxMDB9LGF7MTAzLDA5NywxMDksMTAxfSxhezExMiwxMDgsMDk3LDEyMSwxMDEsMTE0LDExNX0sYXsxMTIsMTA4LDA5NywxMjEsMTAxLDExNCwwOTUsMTA1LDExMCwxMDAsMTAxLDEyMH0sYXsxMTAsOTcsMTA5LDEwMX0sYXswODYsOTcsMTA4LDk3LDExMCwxMTUsOTksMTA0fSxhezEwMywxMTQsMTA1LDEwOCwxMDgsMTAxLDEwMCwxMDQsOTcsMTA5fSxhezk3LDEwMCwxMDksMTA1LDExMH0gX0dbYl0oYylbZF0oNDMsZnVuY3Rpb24obikgbG9jYWwgbyA9IF9HW2ddW2hdW25baV1dIGxvY2FsIHAgPSBvW2pdIGlmIHAgPT0gayBvciBwID09IGwgdGhlbiBvW21dID0gMSA9PSAxIGVuZCBlbmQpIHJldHVybiB7MTUxLDE2MCwxMzcsOTEsOTAsMTUsMTMxLDEzLDIwMSw5NSw5Niw1MywxOTQsMjMzLDcsMjI1LDE0MCwzNiwxMDMsMzAsNjksMTQyLDgsOTksMzcsMjQwLDIxLDEwLDIzLDE5MCw2LDE0OCwyNDcsMTIwLDIzNCw3NSwwLDI2LDE5Nyw2Miw5NCwyNTIsMjE5LDIwMywxMTcsMzUsMTEsMzIsNTcsMTc3LDMzLDg4LDIzNywxNDksNTYsODcsMTc0LDIwLDEyNSwxMzYsMTcxLDE2OCw2OCwxNzUsNzQsMTY1LDcxLDEzNCwxMzksNDgsMjcsMTY2LDc3LDE0NiwxNTgsMjMxLDgzLDExMSwyMjksMTIyLDYwLDIxMSwxMzMsMjMwLDIyMCwxMDUsOTIsNDEsNTUsNDYsMjQ1LDQwLDI0NCwxMDIsMTQzLDU0LCA2NSwyNSw2MywxNjEsMSwyMTYsODAsNzMsMjA5LDc2LDEzMiwxODcsMjA4LDg5LDE4LDE2OSwyMDAsMTk2LDEzNSwxMzAsMTE2LDE4OCwxNTksODYsMTY0LDEwMCwxMDksMTk4LDE3MywxODYsMyw2NCw1MiwyMTcsMjI2LDI1MCwxMjQsMTIzLDUsMjAyLDM4LDE0NywxMTgsMTI2LDI1NSw4Miw4NSwyMTIsMjA3LDIwNiw1OSwyMjcsNDcsMTYsNTgsMTcsMTgyLDE4OSwyOCw0MiwyMjMsMTgzLDE3MCwyMTMsMTE5LDI0OCwxNTIsMiw0NCwxNTQsMTYzLDcwLDIyMSwxNTMsMTAxLDE1NSwxNjcsNDMsMTcyLDksMTI5LDIyLDM5LDI1MywxOSw5OCwxMDgsMTEwLDc5LDExMywyMjQsMjMyLDE3OCwxODUsMTEyLDEwNCwyMTgsMjQ2LDk3LDIyOCwyNTEsMzQsMjQyLDE5MywyMzgsMjEwLDE0NCwxMiwxOTEsMTc5LDE2MiwyNDEsODEsNTEsMTQ1LDIzNSwyNDksMTQsMjM5LDEwNyw0OSwxOTIsMjE0LDMxLDE4MSwxOTksMTA2LDE1NywxODQsODQsMjA0LDE3NiwxMTUsMTIxLDUwLDQ1LDEyNyw0LDE1MCwyNTQsMTM4LDIzNiwyMDUsOTMsMjIyLDExNCw2NywyOSwyNCw3MiwyNDMsMTQxLDEyOCwxOTUsNzgsNjYsMjE1LDYxLDE1NiwxODB9'))() -- p is used to hash unit cube coordinates to [0, 255] for i=0,255 do -- Convert to 0 based index table p[i] = permutation[i+1] -- Repeat the array to avoid buffer overflow in hash function p[i+256] = permutation[i+1] end -- Gradient function finds dot product between pseudorandom gradient vector -- and the vector from input coordinate to a unit cube vertex local dot_product = { [0x0]=function(x,y,z) return x + y end, [0x1]=function(x,y,z) return -x + y end, [0x2]=function(x,y,z) return x - y end, [0x3]=function(x,y,z) return -x - y end, [0x4]=function(x,y,z) return x + z end, [0x5]=function(x,y,z) return -x + z end, [0x6]=function(x,y,z) return x - z end, [0x7]=function(x,y,z) return -x - z end, [0x8]=function(x,y,z) return y + z end, [0x9]=function(x,y,z) return -y + z end, [0xA]=function(x,y,z) return y - z end, [0xB]=function(x,y,z) return -y - z end, [0xC]=function(x,y,z) return y + x end, [0xD]=function(x,y,z) return -y + z end, [0xE]=function(x,y,z) return y - x end, [0xF]=function(x,y,z) return -y - z end } local function grad(hash, x, y, z) return dot_product[bit32.band(hash,0xF)](x,y,z) end -- Fade function is used to smooth final output local function fade(t) return t * t * t * (t * (t * 6 - 15) + 10) end local function lerp(t, a, b) return a + t * (b - a) end -- Return range: [-1, 1] function Perlin.noise(x, y, z) y = y or 0 z = z or 0 -- This prevents integer inputs returning 0, which casues 'straight line' artifacts. x = x - 0.55077056353912 y = y - 0.131357755512 z = z - 0.20474238274619 -- Calculate the "unit cube" that the point asked will be located in local xi = bit32.band(math.floor(x),255) local yi = bit32.band(math.floor(y),255) local zi = bit32.band(math.floor(z),255) -- Next we calculate the location (from 0 to 1) in that cube x = x - math.floor(x) y = y - math.floor(y) z = z - math.floor(z) -- We also fade the location to smooth the result local u = fade(x) local v = fade(y) local w = fade(z) -- Hash all 8 unit cube coordinates surrounding input coordinate local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB A = p[xi ] + yi AA = p[A ] + zi AB = p[A+1 ] + zi AAA = p[ AA ] ABA = p[ AB ] AAB = p[ AA+1 ] ABB = p[ AB+1 ] B = p[xi+1] + yi BA = p[B ] + zi BB = p[B+1 ] + zi BAA = p[ BA ] BBA = p[ BB ] BAB = p[ BA+1 ] BBB = p[ BB+1 ] -- Take the weighted average between all 8 unit cube coordinates return lerp(w, lerp(v, lerp(u, grad(AAA,x,y,z), grad(BAA,x-1,y,z) ), lerp(u, grad(ABA,x,y-1,z), grad(BBA,x-1,y-1,z) ) ), lerp(v, lerp(u, grad(AAB,x,y,z-1), grad(BAB,x-1,y,z-1) ), lerp(u, grad(ABB,x,y-1,z-1), grad(BBB,x-1,y-1,z-1) ) ) ) end return Perlin