--from https://github.com/thenumbernine/lua-simplexnoise/blob/master/2d.lua --Mostly as a test, does not give same results as perlin but is designed to give patterns all the same local bit = bit32 or require 'bit' -- 2D simplex noise local grad3 = { {1,1,0},{-1,1,0},{1,-1,0},{-1,-1,0}, {1,0,1},{-1,0,1},{1,0,-1},{-1,0,-1}, {0,1,1},{0,-1,1},{0,1,-1},{0,-1,-1} } local p = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180} local perm = {} for i=0,511 do perm[i+1] = p[bit.band(i, 255) + 1] end local function dot(g, ...) local v = {...} local sum = 0 for i=1,#v do sum = sum + v[i] * g[i] end return sum end function simplex_2d(xin, yin,seed) xin = xin + seed yin = yin + seed local n0, n1, n2 -- Noise contributions from the three corners -- Skew the input space to determine which simplex cell we're in local F2 = 0.5*(math.sqrt(3.0)-1.0) local s = (xin+yin)*F2; -- Hairy factor for 2D local i = math.floor(xin+s) local j = math.floor(yin+s) local G2 = (3.0-math.sqrt(3.0))/6.0 local t = (i+j)*G2 local X0 = i-t -- Unskew the cell origin back to (x,y) space local Y0 = j-t local x0 = xin-X0 -- The x,y distances from the cell origin local y0 = yin-Y0 -- For the 2D case, the simplex shape is an equilateral triangle. -- Determine which simplex we are in. local i1, j1 -- Offsets for second (middle) corner of simplex in (i,j) coords if x0 > y0 then i1 = 1 j1 = 0 -- lower triangle, XY order: (0,0)->(1,0)->(1,1) else i1 = 0 j1 = 1 end-- upper triangle, YX order: (0,0)->(0,1)->(1,1) -- A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and -- a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where -- c = (3-sqrt(3))/6 local x1 = x0 - i1 + G2 -- Offsets for middle corner in (x,y) unskewed coords local y1 = y0 - j1 + G2 local x2 = x0 - 1 + 2 * G2 -- Offsets for last corner in (x,y) unskewed coords local y2 = y0 - 1 + 2 * G2 -- Work out the hashed gradient indices of the three simplex corners local ii = bit.band(i, 255) local jj = bit.band(j, 255) local gi0 = perm[ii + perm[jj+1]+1] % 12 local gi1 = perm[ii + i1 + perm[jj + j1+1]+1] % 12 local gi2 = perm[ii + 1 + perm[jj + 1+1]+1] % 12 -- Calculate the contribution from the three corners local t0 = 0.5 - x0 * x0 - y0 * y0 if t0 < 0 then n0 = 0.0 else t0 = t0 * t0 n0 = t0 * t0 * dot(grad3[gi0+1], x0, y0) -- (x,y) of grad3 used for 2D gradient end local t1 = 0.5 - x1 * x1 - y1 * y1 if t1 < 0 then n1 = 0.0 else t1 = t1 * t1 n1 = t1 * t1 * dot(grad3[gi1+1], x1, y1) end local t2 = 0.5 - x2 * x2 - y2 * y2 if t2 < 0 then n2 = 0.0 else t2 = t2 * t2 n2 = t2 * t2 * dot(grad3[gi2+1], x2, y2) end -- Add contributions from each corner to get the final noise value. -- The result is scaled to return values in the interval [-1,1]. return 70.0 * (n0 + n1 + n2) end