--[[ Implemented as described here: http://flafla2.github.io/2014/08/09/perlinnoise.html ]] -- local Perlin = {} local p = {} -- Hash lookup table as defined by Ken Perlin -- This is a randomly arranged array of all numbers from 0-255 inclusive local permutation = {151,160,137,91,90,15, 131,13,201,95,96,53,194,233,7,225,140,36,103,30,69,142,8,99,37,240,21,10,23, 190, 6,148,247,120,234,75,0,26,197,62,94,252,219,203,117,35,11,32,57,177,33, 88,237,149,56,87,174,20,125,136,171,168, 68,175,74,165,71,134,139,48,27,166, 77,146,158,231,83,111,229,122,60,211,133,230,220,105,92,41,55,46,245,40,244, 102,143,54, 65,25,63,161, 1,216,80,73,209,76,132,187,208, 89,18,169,200,196, 135,130,116,188,159,86,164,100,109,198,173,186, 3,64,52,217,226,250,124,123, 5,202,38,147,118,126,255,82,85,212,207,206,59,227,47,16,58,17,182,189,28,42, 223,183,170,213,119,248,152, 2,44,154,163, 70,221,153,101,155,167, 43,172,9, 129,22,39,253, 19,98,108,110,79,113,224,232,178,185, 112,104,218,246,97,228, 251,34,242,193,238,210,144,12,191,179,162,241, 81,51,145,235,249,14,239,107, 49,192,214, 31,181,199,106,157,184, 84,204,176,115,121,50,45,127, 4,150,254, 138,236,205,93,222,114,67,29,24,72,243,141,128,195,78,66,215,61,156,180 } -- p is used to hash unit cube coordinates to [0, 255] for i = 0, 255 do -- Convert to 0 based index table p[i] = permutation[i + 1] -- Repeat the array to avoid buffer overflow in hash function p[i + 256] = permutation[i + 1] end -- Gradient function finds dot product between pseudorandom gradient vector -- and the vector from input coordinate to a unit cube vertex local dot_product = { [0x0] = function(x, y) return x + y end, [0x1] = function(x, y) return -x + y end, [0x2] = function(x, y) return x - y end, [0x3] = function(x, y, _) return -x - y end, [0x4] = function(x, _, z) return x + z end, [0x5] = function(x, _, z) return -x + z end, [0x6] = function(x, _, z) return x - z end, [0x7] = function(x, _, z) return -x - z end, [0x8] = function(_, y, z) return y + z end, [0x9] = function(_, y, z) return -y + z end, [0xA] = function(_, y, z) return y - z end, [0xB] = function(_, y, z) return -y - z end, [0xC] = function(x, y, _) return y + x end, [0xD] = function(_, y, z) return -y + z end, [0xE] = function(x, y, _) return y - x end, [0xF] = function(_, y, z) return -y - z end } local function grad(hash, x, y, z) return dot_product[bit32.band(hash, 0xF)](x, y, z) end -- Fade function is used to smooth final output local function fade(t) return t * t * t * (t * (t * 6 - 15) + 10) end local function lerp(t, a, b) return a + t * (b - a) end -- Return range: [-1, 1] function Perlin.noise(x, y, z) y = y or 0 z = z or 0 -- This prevents integer inputs returning 0, which causes 'straight line' artifacts. x = x - 0.55077056353912 y = y - 0.131357755512 z = z - 0.20474238274619 -- Calculate the "unit cube" that the point asked will be located in local xi = bit32.band(math.floor(x), 255) local yi = bit32.band(math.floor(y), 255) local zi = bit32.band(math.floor(z), 255) -- Next we calculate the location (from 0 to 1) in that cube x = x - math.floor(x) y = y - math.floor(y) z = z - math.floor(z) -- We also fade the location to smooth the result local u = fade(x) local v = fade(y) local w = fade(z) -- Hash all 8 unit cube coordinates surrounding input coordinate local A, AA, AB, AAA, ABA, AAB, ABB, B, BA, BB, BAA, BBA, BAB, BBB A = p[xi] + yi AA = p[A] + zi AB = p[A + 1] + zi AAA = p[AA] ABA = p[AB] AAB = p[AA + 1] ABB = p[AB + 1] B = p[xi + 1] + yi BA = p[B] + zi BB = p[B + 1] + zi BAA = p[BA] BBA = p[BB] BAB = p[BA + 1] BBB = p[BB + 1] -- Take the weighted average between all 8 unit cube coordinates return lerp(w, lerp(v, lerp(u, grad(AAA, x, y, z), grad(BAA, x - 1, y, z)), lerp(u, grad(ABA, x, y - 1, z), grad(BBA, x - 1, y - 1, z))), lerp(v, lerp(u, grad(AAB, x, y, z - 1), grad(BAB, x - 1, y, z - 1)), lerp(u, grad(ABB, x, y - 1, z - 1), grad(BBB, x - 1, y - 1, z - 1)))) end return Perlin