1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-12-20 20:23:03 +02:00
vcmi/AI/GeniusAI/neuralNetwork.cpp

419 lines
12 KiB
C++
Raw Normal View History

2009-08-19 08:01:25 +03:00
#include <stdlib.h>
#include <string.h>
#include "neuralNetwork.h"
//using namespace std;
#ifndef M_PI
#define M_PI 3.14159265358979323846
#endif
2009-08-19 08:01:25 +03:00
static float norm(void)//add desired mean, multiply to get desired SD
{
static float kept = 0;
static bool in = 0;
if(!in)
{
float x = (rand()+1)/float(RAND_MAX+1);
float f = sqrtf( - 2.0f * log(x) );
x = (rand()+1)/float(RAND_MAX+1);
kept = f * cosf( 2.0f * M_PI * x );
in = true;
return f * sinf( 2.0f * M_PI * x );
}
else
{
in = false;
return kept;
}
}
/*******************************************************************
* Constructors
********************************************************************/
neuralNetwork::neuralNetwork() : nInput(0), nHidden1(0), nHidden2(0), nOutput(0)
{
inputNeurons = new double[1] ;
hiddenNeurons1 = new double[1] ;
hiddenNeurons2 = new double[1] ;
outputNeurons = new double[1] ;
wInputHidden = new double*[1] ;
wInputHidden[0] = new double[1];
wHidden2Hidden = new double*[1] ;
wHidden2Hidden[0] = new (double[1]);
wHiddenOutput = new double*[1] ;
wHiddenOutput[0] = new double[1];
}
neuralNetwork::neuralNetwork(const neuralNetwork& other): nInput(0), nHidden1(0), nHidden2(0), nOutput(0)
{
inputNeurons = new double[1] ;
hiddenNeurons1 = new double[1] ;
hiddenNeurons2 = new double[1] ;
outputNeurons = new double[1] ;
wInputHidden = new double*[1] ;
wInputHidden[0] = new double[1];
wHidden2Hidden = new double*[1] ;
wHidden2Hidden[0] = new (double[1]);
wHiddenOutput = new double*[1] ;
wHiddenOutput[0] = new double[1];
*this = other;
}
neuralNetwork::neuralNetwork(int nI, int nH1, int nH2, int nO) : nInput(nI), nHidden1(nH1), nHidden2(nH2), nOutput(nO)
{
//create neuron lists
//--------------------------------------------------------------------------------------------------------
inputNeurons = new double[nInput + 1] ;
for ( int i=0; i < nInput; i++ ) inputNeurons[i] = 0;
//create input bias neuron
inputNeurons[nInput] = -1;
hiddenNeurons1 = new double[nHidden1 + 1] ;
for ( int i=0; i < nHidden1; i++ ) hiddenNeurons1[i] = 0;
//create hidden bias neuron
hiddenNeurons1[nHidden1] = -1;
hiddenNeurons2 = new double[nHidden2 + 1] ;
for ( int i=0; i < nHidden2; i++ ) hiddenNeurons2[i] = 0;
//create hidden bias neuron
hiddenNeurons2[nHidden2] = -1;
outputNeurons = new double[nOutput] ;
for ( int i=0; i < nOutput; i++ ) outputNeurons[i] = 0;
//create weight lists (include bias neuron weights)
//--------------------------------------------------------------------------------------------------------
wInputHidden = new double*[nInput + 1] ;
for ( int i=0; i <= nInput; i++ )
{
wInputHidden[i] = new double[nHidden1];
for ( int j=0; j < nHidden1; j++ ) wInputHidden[i][j] = 0;
}
wHidden2Hidden = new double*[nHidden1 + 1] ;
for ( int i=0; i <= nHidden1; i++ )
{
wHidden2Hidden[i] = new (double[nHidden2]);
for ( int j=0; j < nHidden2; j++ ) wHidden2Hidden[i][j] = 0;
}
wHiddenOutput = new double*[nHidden2 + 1] ;
for ( int i=0; i <= nHidden2; i++ )
{
wHiddenOutput[i] = new double[nOutput];
for ( int j=0; j < nOutput; j++ ) wHiddenOutput[i][j] = 0;
}
//initialize weights
//--------------------------------------------------------------------------------------------------------
initializeWeights();
}
void neuralNetwork::operator = (const neuralNetwork&cpy)//assumes same structure
{
if( nInput != cpy.nInput || nHidden1 != cpy.nHidden1 || nHidden2 != cpy.nHidden2 || nOutput != cpy.nOutput)
{
delete[] inputNeurons;
delete[] hiddenNeurons1;
delete[] hiddenNeurons2;
delete[] outputNeurons;
//delete weight storage
for (int i=0; i <= nInput; i++) delete[] wInputHidden[i];
delete[] wInputHidden;
for (int j=0; j <= nHidden2; j++) delete[] wHiddenOutput[j];
delete[] wHiddenOutput;
for (int j=0; j <= nHidden1; j++) delete[] wHidden2Hidden[j];
delete[] wHidden2Hidden;
nInput = cpy.nInput;
nHidden1 = cpy.nHidden1;
nHidden2 = cpy.nHidden2;
nOutput = cpy.nOutput;
inputNeurons = new double[nInput + 1] ;
inputNeurons[nInput] = -1;
hiddenNeurons1 = new double[nHidden1 + 1] ;
hiddenNeurons1[nHidden1] = -1;
hiddenNeurons2 = new double[nHidden2 + 1] ;
hiddenNeurons2[nHidden2] = -1;
outputNeurons = new double[nOutput] ;
//create weight lists (include bias neuron weights)
//--------------------------------------------------------------------------------------------------------
wInputHidden = new double*[nInput + 1] ;
for ( int i=0; i <= nInput; i++ )
wInputHidden[i] = new double[nHidden1];
wHidden2Hidden = new double*[nHidden1 + 1] ;
for ( int i=0; i <= nHidden1; i++ )
wHidden2Hidden[i] = new (double[nHidden2]);
wHiddenOutput = new double*[nHidden2 + 1] ;
for ( int i=0; i <= nHidden2; i++ )
wHiddenOutput[i] = new double[nOutput];
}
for ( int i=0; i < nInput; i++ ) inputNeurons[i] = cpy.inputNeurons[i];
for ( int i=0; i < nHidden1; i++ ) hiddenNeurons1[i] = cpy.hiddenNeurons1[i];
for ( int i=0; i < nHidden2; i++ ) hiddenNeurons2[i] = cpy.hiddenNeurons2[i];
for ( int i=0; i < nOutput; i++ ) outputNeurons[i] = cpy.outputNeurons[i];
for ( int i=0; i <= nInput; i++ )
for ( int j=0; j < nHidden1; j++ )
wInputHidden[i][j] = cpy.wInputHidden[i][j];
for ( int i=0; i <= nHidden1; i++ )
for ( int j=0; j < nHidden2; j++ )
wHidden2Hidden[i][j] = cpy.wHidden2Hidden[i][j];
for ( int i=0; i <= nHidden2; i++ )
for ( int j=0; j < nOutput; j++ )
wHiddenOutput[i][j] = cpy.wHiddenOutput[i][j];
}
/*******************************************************************
* Destructor
********************************************************************/
neuralNetwork::~neuralNetwork()
{
//delete neurons
delete[] inputNeurons;
delete[] hiddenNeurons1;
delete[] hiddenNeurons2;
delete[] outputNeurons;
//delete weight storage
for (int i=0; i <= nInput; i++) delete[] wInputHidden[i];
delete[] wInputHidden;
for (int j=0; j <= nHidden2; j++) delete[] wHiddenOutput[j];
delete[] wHiddenOutput;
for (int j=0; j <= nHidden1; j++) delete[] wHidden2Hidden[j];
delete[] wHidden2Hidden;
}
double* neuralNetwork::feedForwardPattern(double *pattern)
{
feedForward(pattern);
return outputNeurons;
}
void neuralNetwork::mate(const neuralNetwork&n1,const neuralNetwork&n2)
{
for(int i = 0; i <= nInput; i++)
{
for(int j = 0; j < nHidden1; j++)
{
if(rand()%2==0)
wInputHidden[i][j] = n1.wInputHidden[i][j];
else
wInputHidden[i][j] = n2.wInputHidden[i][j];
}
}
for(int i = 0; i <= nHidden1; i++)
{
for(int j = 0; j < nHidden2; j++)
{
if(rand()%2==0)
wHidden2Hidden[i][j] =n1.wHidden2Hidden[i][j];
else
wHidden2Hidden[i][j] =n2.wHidden2Hidden[i][j];
}
}
for(int i = 0; i <= nHidden2; i++)
{
for(int j = 0; j < nOutput; j++)
{
if(rand()%2==0)
wHiddenOutput[i][j] =n1.wHiddenOutput[i][j];
else
wHiddenOutput[i][j] =n2.wHiddenOutput[i][j];
}
}
}
void neuralNetwork::tweakWeights(double howMuch)
{
//set range
double rH = 1/sqrt( (double) nInput);
double rO = 1/sqrt( (double) nHidden1);
for(int i = 0; i <= nInput; i++)
{
for(int j = 0; j < nHidden1; j++)
{
wInputHidden[i][j] += howMuch*norm();
}
}
for(int i = 0; i <= nHidden1; i++)
{
for(int j = 0; j < nHidden2; j++)
{
wHidden2Hidden[i][j] += howMuch*norm();
}
}
for(int i = 0; i <= nHidden2; i++)
{
for(int j = 0; j < nOutput; j++)
{
wHiddenOutput[i][j] += howMuch* norm();
}
}
//initializeWeights();
}
void neuralNetwork::initializeWeights()
{
//set range
double rH = 2.0/sqrt( (double) nInput);
double rO = 2.0/sqrt( (double) nHidden1);
//set weights between input and hidden
//--------------------------------------------------------------------------------------------------------
for(int i = 0; i <= nInput; i++)
{
for(int j = 0; j < nHidden1; j++)
{
//set weights to random values
wInputHidden[i][j] = norm()* rH;
}
}
for(int i = 0; i <= nHidden1; i++)
{
for(int j = 0; j < nHidden2; j++)
{
//set weights to random values
wHidden2Hidden[i][j] = norm()* rO;
}
}
//set weights between hidden and output
//--------------------------------------------------------------------------------------------------------
for(int i = 0; i <= nHidden2; i++)
{
for(int j = 0; j < nOutput; j++)
{
//set weights to random values
wHiddenOutput[i][j] = norm()* rO;
}
}
}
/*******************************************************************
* Activation Function
********************************************************************/
inline double neuralNetwork::activationFunction( double x )
{
//sigmoid function
return 1/(1+exp(-x));
}
/*******************************************************************
* Feed Forward Operation
********************************************************************/
void neuralNetwork::feedForward(double* pattern)
{
//set input neurons to input values
for(int i = 0; i < nInput; i++) inputNeurons[i] = pattern[i];
//Calculate Hidden Layer values - include bias neuron
//--------------------------------------------------------------------------------------------------------
for(int j=0; j < nHidden1; j++)
{
//clear value
hiddenNeurons1[j] = 0;
//get weighted sum of pattern and bias neuron
for( int i=0; i <= nInput; i++ ) hiddenNeurons1[j] += inputNeurons[i] * wInputHidden[i][j];
//set to result of sigmoid
hiddenNeurons1[j] = activationFunction( hiddenNeurons1[j] );
}
for(int j=0; j < nHidden2; j++)
{
//clear value
hiddenNeurons2[j] = 0;
//get weighted sum of pattern and bias neuron
for( int i=0; i <= nHidden1; i++ ) hiddenNeurons2[j] += hiddenNeurons1[i] * wHidden2Hidden[i][j];
//set to result of sigmoid
hiddenNeurons2[j] = activationFunction( hiddenNeurons2[j] );
}
//Calculating Output Layer values - include bias neuron
//--------------------------------------------------------------------------------------------------------
for(int k=0; k < nOutput; k++)
{
//clear value
outputNeurons[k] = 0;
//get weighted sum of pattern and bias neuron
for( int j=0; j <= nHidden2; j++ ) outputNeurons[k] += hiddenNeurons2[j] * wHiddenOutput[j][k];
//set to result of sigmoid
//outputNeurons[k] = activationFunction( outputNeurons[k] );
}
}
void neuralNetwork::backpropigate(double* pattern, double OLR, double H2LR, double H1LR )
{
//inputError = new double[nInput + 1] ;
double * hiddenError1 = new double[nHidden1 + 1] ;
double * hiddenError2 = new double[nHidden2 + 1] ;
double * outputError = new double[nOutput] ;
memset(hiddenError1,0,sizeof(double)*nHidden1);
memset(hiddenError2,0,sizeof(double)*nHidden2);
for(int i = 0; i < nOutput; i++)
{
outputError[i] = (pattern[i]-outputNeurons[i]);//*(outputNeurons[i]*(1-outputNeurons[i]));
for(int ii = 0; ii <= nHidden2;ii++)
hiddenError2[ii]+=outputError[i]*wHiddenOutput[ii][i];
for(int ii = 0; ii <= nHidden2;ii++)
wHiddenOutput[ii][i]+=OLR*hiddenNeurons2[ii]*outputError[i];
}
for(int i = 0; i < nHidden2; i++)
{
hiddenError2[i] *= (hiddenNeurons2[i]*(1-hiddenNeurons2[i]));
for(int ii = 0; ii <= nHidden1;ii++)
hiddenError1[ii]+=hiddenError2[i]*wHidden2Hidden[ii][i];
for(int ii = 0; ii <= nHidden1;ii++)
wHidden2Hidden[ii][i]+=H2LR*hiddenNeurons1[ii]*hiddenError2[i];
}
for(int i = 0; i < nHidden1; i++)
{
hiddenError1[i] *= (hiddenNeurons1[i]*(1-hiddenNeurons1[i]));
for(int ii = 0; ii <= nInput;ii++)
wInputHidden[ii][i]+=H1LR*inputNeurons[ii]*hiddenError1[i];
}
delete [] hiddenError1;
delete [] hiddenError2;
delete [] outputError;
2009-08-19 08:01:25 +03:00
}