1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-02-03 13:01:33 +02:00

First working version

This commit is contained in:
Tomasz Zieliński 2024-02-02 14:27:32 +01:00
parent 9f7c986621
commit 178f960533
3 changed files with 142 additions and 160 deletions

View File

@ -20,6 +20,7 @@
#include "RmgMap.h"
#include "Zone.h"
#include "Functions.h"
#include "PenroseTiling.h"
VCMI_LIB_NAMESPACE_BEGIN
@ -524,7 +525,7 @@ void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const
std::vector<float> prescaler = { 0, 0 };
for (int i = 0; i < 2; i++)
prescaler[i] = std::sqrt((width * height) / (totalSize[i] * 3.14f));
prescaler[i] = std::sqrt((width * height) / (totalSize[i] * PI_CONSTANT));
mapSize = static_cast<float>(sqrt(width * height));
for(const auto & zone : zones)
{
@ -802,6 +803,7 @@ void CZonePlacer::moveOneZone(TZoneMap& zones, TForceVector& totalForces, TDista
float CZonePlacer::metric (const int3 &A, const int3 &B) const
{
/*
float dx = abs(A.x - B.x) * scaleX;
float dy = abs(A.y - B.y) * scaleY;
@ -811,9 +813,14 @@ float CZonePlacer::metric (const int3 &A, const int3 &B) const
3. Nonlinear mess for fuzzy edges
*/
/*
return dx * dx + dy * dy +
5 * std::sin(dx * dy / 10) +
25 * std::sin (std::sqrt(A.x * B.x) * (A.y - B.y) / 100 * (scaleX * scaleY));
*/
return A.dist2dSQ(B);
}
void CZonePlacer::assignZones(CRandomGenerator * rand)
@ -845,7 +852,13 @@ void CZonePlacer::assignZones(CRandomGenerator * rand)
return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize();
};
auto moveZoneToCenterOfMass = [](const std::shared_ptr<Zone> & zone) -> void
auto simpleCompareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
//bigger zones have smaller distance
return lhs.second < rhs.second;
};
auto moveZoneToCenterOfMass = [width, height](const std::shared_ptr<Zone> & zone) -> void
{
int3 total(0, 0, 0);
auto tiles = zone->area().getTiles();
@ -855,17 +868,17 @@ void CZonePlacer::assignZones(CRandomGenerator * rand)
}
int size = static_cast<int>(tiles.size());
assert(size);
zone->setPos(int3(total.x / size, total.y / size, total.z / size));
auto newPos = int3(total.x / size, total.y / size, total.z / size);
zone->setPos(newPos);
zone->setCenter(float3(float(newPos.x) / width, float(newPos.y) / height, newPos.z));
};
int levels = map.levels();
/*
1. Create Voronoi diagram
2. find current center of mass for each zone. Move zone to that center to balance zones sizes
*/
// Find current center of mass for each zone. Move zone to that center to balance zones sizes
int3 pos;
for(pos.z = 0; pos.z < levels; pos.z++)
{
for(pos.x = 0; pos.x < width; pos.x++)
@ -890,14 +903,41 @@ void CZonePlacer::assignZones(CRandomGenerator * rand)
if(zone.second->area().empty())
throw rmgException("Empty zone is generated, probably RMG template is inappropriate for map size");
// FIXME: Is 2. correct and doesn't break balance?
moveZoneToCenterOfMass(zone.second);
}
//assign actual tiles to each zone using nonlinear norm for fine edges
for(const auto & zone : zones)
zone.second->clearTiles(); //now populate them again
// Assign zones to closest Penrose vertex
PenroseTiling penrose;
auto vertices = penrose.generatePenroseTiling(zones.size(), rand);
std::map<std::shared_ptr<Zone>, std::set<int3>> vertexMapping;
for (const auto & vertex : vertices)
{
distances.clear();
for(const auto & zone : zones)
{
distances.emplace_back(zone.second, zone.second->getCenter().dist2dSQ(float3(vertex.x(), vertex.y(), 0)));
}
auto closestZone = boost::min_element(distances, compareByDistance)->first;
vertexMapping[closestZone].insert(int3(vertex.x() * width, vertex.y() * height, closestZone->getPos().z)); //Closest vertex belongs to zone
}
for (const auto & p : vertexMapping)
{
for (const auto vertex : p.second)
{
logGlobal->info("Zone %2d is assigned to vertex %s", p.first->getId(), vertex.toString());
}
logGlobal->info("Zone %2d has total of %d vertices", p.first->getId(), p.second.size());
}
//Assign actual tiles to each zone using nonlinear norm for fine edges
for (pos.z = 0; pos.z < levels; pos.z++)
{
for (pos.x = 0; pos.x < width; pos.x++)
@ -905,22 +945,32 @@ void CZonePlacer::assignZones(CRandomGenerator * rand)
for (pos.y = 0; pos.y < height; pos.y++)
{
distances.clear();
for(const auto & zone : zones)
for(const auto & zoneVertex : vertexMapping)
{
if (zone.second->getPos().z == pos.z)
distances.emplace_back(zone.second, metric(pos, zone.second->getPos()));
else
distances.emplace_back(zone.second, std::numeric_limits<float>::max());
// FIXME: Find closest vertex, not closest zone
auto zone = zoneVertex.first;
for (const auto & vertex : zoneVertex.second)
{
if (zone->getCenter().z == pos.z)
distances.emplace_back(zone, metric(pos, vertex));
else
distances.emplace_back(zone, std::numeric_limits<float>::max());
}
}
auto zone = boost::min_element(distances, compareByDistance)->first; //closest tile belongs to zone
zone->area().add(pos);
map.setZoneID(pos, zone->getId());
auto closestZone = boost::min_element(distances, simpleCompareByDistance)->first; //closest tile belongs to zone
closestZone->area().add(pos);
map.setZoneID(pos, closestZone->getId());
}
}
}
//set position (town position) to center of mass of irregular zone
for(const auto & zone : zones)
{
if(zone.second->area().empty())
throw rmgException("Empty zone after Penrose tiling");
moveZoneToCenterOfMass(zone.second);
//TODO: similiar for islands

View File

@ -1,28 +1,20 @@
/*
* © 2020 Michael Percival <m@michaelpercival.xyz>
* See LICENSE file for copyright and license details.
* PenroseTiling.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
// Adapted from https://github.com/mpizzzle/penrose
//https://www.boost.org/doc/libs/1_72_0/libs/geometry/doc/html/geometry/reference/adapted/boost_polygon/point_data.html
//#include <GL/glew.h>
//#include <GLFW/glfw3.h>
//#include <glm/glm.hpp>
//#include <glm/gtx/rotate_vector.hpp>
// Adapted from https://github.com/mpizzzle/penrose by Michael Percival
#include "StdInc.h"
#include "PenroseTiling.h"
//#include "shader.hpp"
//#include "png_writer.hpp"
VCMI_LIB_NAMESPACE_BEGIN
//static const std::string file_name = "penrose.png";
Point2D Point2D::operator * (float scale) const
{
@ -34,11 +26,35 @@ Point2D Point2D::operator + (const Point2D& other) const
return Point2D(x() + other.x(), y() + other.y());
}
bool Point2D::operator < (const Point2D& other) const
{
if (x() < other.x())
{
return true;
}
else
{
return y() < other.y();
}
}
Triangle::Triangle(bool t_123, const TIndices & inds):
tiling(t_123),
indices(inds)
{}
Triangle::~Triangle()
{
for (auto * triangle : subTriangles)
{
if (triangle)
{
delete triangle;
triangle = nullptr;
}
}
}
Point2D Point2D::rotated(float radians) const
{
float cosAngle = cos(radians);
@ -51,21 +67,6 @@ Point2D Point2D::rotated(float radians) const
return Point2D(newX, newY);
}
/*
Point2D rotatePoint(const Point2D& point, double radians, const Point2D& origin = Point2D(0, 0))
{
// Define a rotate_transformer: the first template argument `2` stands for 2D,
// `float` is the coordinate type, and 2 is input and output dimension
strategy::transform::rotate_transformer<boost::geometry::radian, float, 2, 2> rot(radians);
Point2D rotatedPoint;
rot.apply(point, rotatedPoint);
//transform(point, rotatedPoint, rot);
return rotatedPoint;
}
*/
void PenroseTiling::split(Triangle& p, std::vector<Point2D>& points,
std::array<std::vector<uint32_t>, 5>& indices, uint32_t depth)
{
@ -81,21 +82,20 @@ void PenroseTiling::split(Triangle& p, std::vector<Point2D>& points,
points.push_back(Point2D((points[i[0]] * (1.0f - PHI) ) + (points[i[2]]) * PHI));
points.push_back(Point2D((points[i[p2]] * (1.0f - PHI)) + (points[i[!p2]] * PHI)));
Triangle t1(p2, TIndices({ i[(!p2) + 1], p2 ? i[2] : s, p2 ? s : i[1] }));
Triangle t2(true, TIndices({ p2 ? i[1] : s, s + 1, p2 ? s : i[1] }));
Triangle t3(false, TIndices({ s, s + 1, i[0] }));
auto * t1 = new Triangle(p2, TIndices({ i[(!p2) + 1], p2 ? i[2] : s, p2 ? s : i[1] }));
auto * t2 = new Triangle(true, TIndices({ p2 ? i[1] : s, s + 1, p2 ? s : i[1] }));
auto * t3 = new Triangle(false, TIndices({ s, s + 1, i[0] }));
// FIXME: Make sure these are not destroyed when we leave the scope
p.subTriangles = { &t1, &t2, &t3 };
p.subTriangles = { t1, t2, t3 };
}
else
{
points.push_back(Point2D((points[i[p2 * 2]] * (1.0f - PHI)) + (points[i[!p2]]) * PHI));
Triangle t1(true, TIndices({ i[2], s, i[1] }));
Triangle t2(false, TIndices({ i[(!p2) + 1], s, i[0] }));
auto * t1 = new Triangle(true, TIndices({ i[2], s, i[1] }));
auto * t2 = new Triangle(false, TIndices({ i[(!p2) + 1], s, i[0] }));
p.subTriangles = { &t1, &t2 };
p.subTriangles = { t1, t2 };
}
for (auto& t : p.subTriangles)
@ -122,23 +122,14 @@ void PenroseTiling::split(Triangle& p, std::vector<Point2D>& points,
return;
}
// TODO: Return something
void PenroseTiling::generatePenroseTiling(size_t numZones, CRandomGenerator * rand)
std::set<Point2D> PenroseTiling::generatePenroseTiling(size_t numZones, CRandomGenerator * rand)
{
float scale = 100.f / (numZones + 20); //TODO: Use it to initialize the large tile
float scale = 100.f / (numZones + 20);
float polyAngle = (2 * PI_CONSTANT) / POLY;
//static std::default_random_engine e(std::random_device{}());
static std::uniform_real_distribution<> d(0, 1);
float randomAngle = rand->nextDouble(0, 2 * PI_CONSTANT);
/*
std::vector<glm::vec3> colours = { glm::vec3(d(e), d(e), d(e)), glm::vec3(d(e), d(e), d(e)),
glm::vec3(d(e), d(e), d(e)), glm::vec3(d(e), d(e), d(e)),
glm::vec3(d(e), d(e), d(e)), glm::vec3(d(e), d(e), d(e)) };
*/
float polyAngle = 360.0f / POLY;
std::vector<Point2D> points = { Point2D(0.0f, 0.0f), Point2D(0.0f, 1.0f) };
std::vector<Point2D> points = { Point2D(0.0f, 0.0f), Point2D(0.0f, 1.0f).rotated(randomAngle) };
std::array<std::vector<uint32_t>, 5> indices;
for (uint32_t i = 1; i < POLY; ++i)
@ -147,12 +138,21 @@ void PenroseTiling::generatePenroseTiling(size_t numZones, CRandomGenerator * ra
points.push_back(next);
}
// TODO: Scale to unit square
for (auto& p : points)
{
p.x(p.x() * scale * BASE_SIZE);
}
// Scale square to window size
/*
for (auto& p : points)
{
p.x = (p.x / window_w) * window_h;
}
*/
std::set<Point2D> finalPoints;
for (uint32_t i = 0; i < POLY; i++)
{
std::array<uint32_t, 2> p = { (i % (POLY + 1)) + 1, ((i + 1) % POLY) + 1 };
@ -162,93 +162,22 @@ void PenroseTiling::generatePenroseTiling(size_t numZones, CRandomGenerator * ra
split(t, points, indices, DEPTH);
}
// TODO: Return collection of triangles
// TODO: Get center point of the triangle
// Do not draw anything
/*
if(!glfwInit())
//No difference for the number of points
for (auto& p : points)
{
return -1;
p = p + Point2D(0.5f, 0.5f); // Center in a square (0,1)
}
glfwWindowHint(GLFW_SAMPLES, 4);
glfwWindowHint(GLFW_CONTEXT_VERSION_MAJOR, 3);
glfwWindowHint(GLFW_CONTEXT_VERSION_MINOR, 3);
glfwWindowHint(GLFW_OPENGL_PROFILE, GLFW_OPENGL_CORE_PROFILE);
GLFWwindow* window = glfwCreateWindow(window_w, window_h, "penrose", NULL, NULL);
if(window == NULL) {
glfwTerminate();
return -1;
}
glfwMakeContextCurrent(window);
glewExperimental=true;
if (glewInit() != GLEW_OK) {
return -1;
}
glfwSetInputMode(window, GLFW_STICKY_KEYS, GL_TRUE);
uint32_t VAOs[5], VBO, EBOs[5];
glGenVertexArrays(5, VAOs);
glGenBuffers(1, &VBO);
glGenBuffers(5, EBOs);
glLineWidth(line_w);
for (uint32_t i = 0; i < indices.size(); ++i) {
glBindVertexArray(VAOs[i]);
glBindBuffer(GL_ARRAY_BUFFER, VBO);
glBufferData(GL_ARRAY_BUFFER, points.size() * 4 * 2, &points[0], GL_STATIC_DRAW);
glBindBuffer(GL_ELEMENT_ARRAY_BUFFER, EBOs[i]);
glBufferData(GL_ELEMENT_ARRAY_BUFFER, indices[i].size() * 4, &indices[i][0], GL_STATIC_DRAW);
glVertexAttribPointer(0, 2, GL_FLOAT, GL_FALSE, 2 * sizeof(float), (void*)0);
glEnableVertexAttribArray(0);
}
uint32_t programID = Shader::loadShaders("vertex.vert", "fragment.frag");
GLint paint = glGetUniformLocation(programID, "paint");
while (glfwGetKey(window, GLFW_KEY_ESCAPE) != GLFW_PRESS && glfwWindowShouldClose(window) == 0 && paint != -1) {
glViewport(-1.0 * (window_w / scale) * ((0.5 * scale) - 0.5), -1.0 * (window_h / scale) * ((0.5 * scale) - 0.5), window_w, window_h);
glClearColor(colours.back().x, colours.back().y, colours.back().z, 1.0f);
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);
glUseProgram(programID);
glPolygonMode(GL_FRONT_AND_BACK, GL_FILL);
for (uint32_t i = 0; i < indices.size(); ++i) {
glPolygonMode(GL_FRONT_AND_BACK, i < indices.size() - 1 ? GL_FILL : GL_LINE);
glUniform3fv(paint, 1, &colours[i][0]);
glBindVertexArray(VAOs[i]);
glDrawElements(i < indices.size() - 1 ? GL_TRIANGLES : GL_LINES, indices[i].size(), GL_UNSIGNED_INT, 0);
}
glfwSwapBuffers(window);
glfwPollEvents();
}
int frame_w, frame_h;
glfwGetFramebufferSize(window, &frame_w, &frame_h);
png_bytep* row_pointers = (png_bytep*) malloc(sizeof(png_bytep) * frame_h);
for (int y = 0; y < frame_h; ++y) {
row_pointers[y] = (png_byte*) malloc((4 * sizeof(png_byte)) * frame_w);
glReadPixels(0, y, frame_w, 1, GL_RGBA, GL_UNSIGNED_BYTE, row_pointers[y]);
}
PngWriter::write_png_file(file_name, frame_w, frame_h, row_pointers);
return 0;
*/
vstd::copy_if(points, vstd::set_inserter(finalPoints), [](const Point2D point)
{
return vstd::isbetween(point.x(), 0.f, 1.0f) && vstd::isbetween(point.y(), 0.f, 1.0f);
});
logGlobal->info("Number of points within unit square: %d", finalPoints.size());
return finalPoints;
}
VCMI_LIB_NAMESPACE_END

View File

@ -21,6 +21,8 @@ VCMI_LIB_NAMESPACE_BEGIN
using namespace boost::geometry;
typedef std::array<uint32_t, 3> TIndices;
const float PI_CONSTANT = 3.141592f;
class Point2D : public model::d2::point_xy<float>
{
public:
@ -29,6 +31,8 @@ public:
Point2D operator * (float scale) const;
Point2D operator + (const Point2D& other) const;
Point2D rotated(float radians) const;
bool operator < (const Point2D& other) const;
};
Point2D rotatePoint(const Point2D& point, double radians, const Point2D& origin);
@ -36,6 +40,8 @@ Point2D rotatePoint(const Point2D& point, double radians, const Point2D& origin)
class Triangle
{
public:
~Triangle();
const bool tiling;
TIndices indices;
@ -52,15 +58,12 @@ public:
// TODO: Is that the number of symmetries?
const uint32_t POLY = 10;
const float BASE_SIZE = 4.0f;
//const uint32_t window_w = 1920 * scale;
//const uint32_t window_h = 1080 * scale;
const uint32_t DEPTH = 10; //recursion depth
const float BASE_SIZE = 1.f;
const uint32_t DEPTH = 7; //Recursion depth
const bool P2 = false; // Tiling type
//const float line_w = 2.0f; //line width
void generatePenroseTiling(size_t numZones, CRandomGenerator * rand);
std::set<Point2D> generatePenroseTiling(size_t numZones, CRandomGenerator * rand);
private:
void split(Triangle& p, std::vector<Point2D>& points, std::array<std::vector<uint32_t>, 5>& indices, uint32_t depth);