1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-12-26 22:57:00 +02:00

[programming challenge, SSN] REPL, various "fixes"

This commit is contained in:
Michał W. Urbańczyk 2012-05-31 20:42:10 +00:00
parent a900fe71c8
commit 82a6520feb

View File

@ -94,6 +94,8 @@ struct Example
} }
}; };
struct SSN_Runner;
class Framework class Framework
{ {
static CArtifactInstance *generateArtWithBonus(const Bonus &b); static CArtifactInstance *generateArtWithBonus(const Bonus &b);
@ -113,6 +115,8 @@ public:
static void buildLearningSet(); static void buildLearningSet();
static vector<Example> loadExamples(bool printInfo = true); static vector<Example> loadExamples(bool printInfo = true);
friend SSN_Runner;
}; };
vector<string> Framework::getFileNames(const string &dirname, const std::string &ext) vector<string> Framework::getFileNames(const string &dirname, const std::string &ext)
@ -149,9 +153,9 @@ vector<Example> Framework::loadExamples(bool printInfo)
examples.push_back(ex); examples.push_back(ex);
} }
tlog0 << "Found " << examples.size() << " examples.\n";
if(printInfo) if(printInfo)
{ {
tlog0 << "Found " << examples.size() << " examples.\n";
BOOST_FOREACH(auto &ex, examples) BOOST_FOREACH(auto &ex, examples)
{ {
tlog0 << format("Battle on army %d for bonus %d of value %d has resultdiff %lf\n") % ex.i % ex.j % ex.k % ex.value; tlog0 << format("Battle on army %d for bonus %d of value %d has resultdiff %lf\n") % ex.i % ex.j % ex.k % ex.value;
@ -471,11 +475,15 @@ public:
}; };
SSN(); SSN();
SSN(string filename);
~SSN(); ~SSN();
//returns mse after learning //returns mse after learning
double learn(const std::vector<Example> & input, const ParameterSet & params); double learn(const std::vector<Example> & input, const ParameterSet & params);
double learn(bool adjustParams = false);
SSN::ParameterSet getBestParams(vector<Example> &trainingSet);
SSN::ParameterSet getBestParams();
double test(const std::vector<Example> & input) double test(const std::vector<Example> & input)
{ {
auto td = getTrainingData(input); auto td = getTrainingData(input);
@ -485,11 +493,17 @@ public:
double run(const DuelParameters &dp, CArtifactInstance * inst); double run(const DuelParameters &dp, CArtifactInstance * inst);
void save(const std::string &filename); void save(const std::string &filename);
void load(const std::string &filename);
}; };
SSN::SSN() SSN::SSN()
{} {}
SSN::SSN(string filename)
{
load(filename);
}
void SSN::init(const ParameterSet & params) void SSN::init(const ParameterSet & params)
{ {
const float learning_rate = 0.7f; const float learning_rate = 0.7f;
@ -517,7 +531,7 @@ double SSN::run(const DuelParameters &dp, CArtifactInstance * inst)
double * input = genSSNinput(dp.sides[0], inst, dp.bfieldType, dp.terType); double * input = genSSNinput(dp.sides[0], inst, dp.bfieldType, dp.terType);
double * out = net.run(input); double * out = net.run(input);
double ret = *out; double ret = *out;
free(out); //free(out);
return ret; return ret;
} }
@ -539,7 +553,6 @@ double SSN::learn(const std::vector<Example> & input, const ParameterSet & param
net.set_callback(ANNCallback, NULL); net.set_callback(ANNCallback, NULL);
net.train_on_data(*td, 1000, 1000, 0.01); net.train_on_data(*td, 1000, 1000, 0.01);
// int exNum = 130; // int exNum = 130;
// //
// for(int exNum =0; exNum<input.size(); ++exNum) // for(int exNum =0; exNum<input.size(); ++exNum)
@ -553,6 +566,25 @@ double SSN::learn(const std::vector<Example> & input, const ParameterSet & param
return net.test_data(*td); return net.test_data(*td);
} }
double SSN::learn(bool adjustParams/* = false*/)
{
cout << "Loading examples...\n";
auto trainingSet = Framework::loadExamples(false);
cout << "Looking for best learning parameters...\n";
auto params = adjustParams ? getBestParams(trainingSet) : getBestParams();
cout << "Learning...\n";
//saving of best network
double finalLmse = learn(trainingSet, params);
cout << "Learning done, LMSE=" << finalLmse << endl;
save("last_network.net");
return finalLmse;
}
double * SSN::genSSNinput(const DuelParameters::SideSettings & dp, CArtifactInstance * art, si32 bfieldType, si32 terType) double * SSN::genSSNinput(const DuelParameters::SideSettings & dp, CArtifactInstance * art, si32 bfieldType, si32 terType)
{ {
double * ret = new double[num_input]; double * ret = new double[num_input];
@ -633,16 +665,17 @@ FANN::training_data * SSN::getTrainingData( const std::vector<Example> &input )
return ret; return ret;
} }
void SSNRun() void SSN::load(const std::string &filename)
{
net.create_from_file(filename);
cout << "Loaded a network from file " << filename << endl;
}
SSN::ParameterSet SSN::getBestParams(vector<Example> &trainingSet)
{ {
//Framework::buildLearningSet();
double percentToTrain = 0.8; double percentToTrain = 0.8;
auto trainingSet = Framework::loadExamples(false);
std::vector<Example> testSet; std::vector<Example> testSet;
for(int i=0, maxi = trainingSet.size()*(1-percentToTrain); i<maxi; ++i) for(int i=0, maxi = trainingSet.size()*(1-percentToTrain); i<maxi; ++i)
{ {
int ind = rand()%trainingSet.size(); int ind = rand()%trainingSet.size();
@ -650,9 +683,6 @@ void SSNRun()
trainingSet.erase(trainingSet.begin() + ind); trainingSet.erase(trainingSet.begin() + ind);
} }
SSN network;
SSN::ParameterSet bestParams; SSN::ParameterSet bestParams;
double besttMSE = 1e10; double besttMSE = 1e10;
@ -661,12 +691,6 @@ void SSNRun()
FANN::activation_function_enum possibleFuns[] = {FANN::SIGMOID_SYMMETRIC_STEPWISE, FANN::LINEAR, FANN::activation_function_enum possibleFuns[] = {FANN::SIGMOID_SYMMETRIC_STEPWISE, FANN::LINEAR,
FANN::SIGMOID, FANN::SIGMOID_STEPWISE, FANN::SIGMOID_SYMMETRIC}; FANN::SIGMOID, FANN::SIGMOID_STEPWISE, FANN::SIGMOID_SYMMETRIC};
//
// bestParams.actSteepHidden = 0.346;
// bestParams.actSteepnessOutput = 0.449;
// bestParams.hiddenActFun = FANN::SIGMOID_SYMMETRIC;
// bestParams.outActFun = FANN::SIGMOID_SYMMETRIC;
// bestParams.neuronsInHidden = 23;
for(int i=0; i<5000; i += 1) for(int i=0; i<5000; i += 1)
{ {
@ -677,9 +701,9 @@ void SSNRun()
ps.hiddenActFun = possibleFuns[rand()%ARRAY_COUNT(possibleFuns)]; ps.hiddenActFun = possibleFuns[rand()%ARRAY_COUNT(possibleFuns)];
ps.outActFun = possibleFuns[rand()%ARRAY_COUNT(possibleFuns)]; ps.outActFun = possibleFuns[rand()%ARRAY_COUNT(possibleFuns)];
double lmse = network.learn(trainingSet, ps); double lmse = learn(trainingSet, ps);
double tmse = network.test(testSet); double tmse = test(testSet);
if(tmse < besttMSE) if(tmse < besttMSE)
{ {
besttMSE = tmse; besttMSE = tmse;
@ -688,12 +712,199 @@ void SSNRun()
cout << "hid:\t" << i << " lmse:\t" << lmse << " tmse:\t" << tmse << std::endl; cout << "hid:\t" << i << " lmse:\t" << lmse << " tmse:\t" << tmse << std::endl;
} }
//saving of best network
double debugMSE = network.learn(trainingSet, bestParams);
network.save("network_config_file.net"); return bestParams;
} }
SSN::ParameterSet SSN::getBestParams()
{
// bestParams.actSteepHidden = 0.346;
// bestParams.actSteepnessOutput = 0.449;
// bestParams.hiddenActFun = FANN::SIGMOID_SYMMETRIC;
// bestParams.outActFun = FANN::SIGMOID_SYMMETRIC;
// bestParams.neuronsInHidden = 23;
SSN::ParameterSet params;
params.actSteepHidden = 1.18;
params.actSteepnessOutput = 1.26;
params.hiddenActFun = FANN::SIGMOID_STEPWISE;
params.outActFun = FANN::SIGMOID_SYMMETRIC;
params.neuronsInHidden = 47;
return params;
}
struct SSN_Runner
{
unique_ptr<SSN> ssn;
ArmyDescriptor ad;
void printHelp()
{
const char *cmds[] = {"help - prints this info", "create - creates a new ANN, needs to be learned then", "load <file> - loads ANN from file", "save <file> - saves current ANN to file", "learn - runs learning process using examples set", "ask <id> - evaluates given art", "exit - closes application",
"army clear - removes current army information", "army add <id> <count> - adds creature to army", "army remove <pos> - removes stack from position",
"army print - prints current army state", "army random - generates random army"};
cout << "Available commands:\n";
BOOST_FOREACH(auto cmd, cmds)
cout << "\t" << cmd << endl;
}
int run()
{
cout << "Welcome to the ANN interactive mode!\n";
printHelp();
while(1)
{
try
{
cout << "Please enter your command and press return.\n> ";
stringstream ss;
string input;
getline(cin, input);
ss.str(input);
string command, secondWord;
ss >> command >> secondWord;
if(command == "exit")
{
cout << "Ending...\n";
exit(0);
}
else if(command == "load")
{
if(secondWord.empty())
secondWord = "last_network.net";
ssn = unique_ptr<SSN>(new SSN(secondWord));
}
else if(command == "create")
{
ssn = unique_ptr<SSN>(new SSN());
cout << "Network successfully created. It still needs to be learnt.\n";
}
else if(command == "help")
{
printHelp();
}
else if(command == "army" && secondWord.size())
{
if(secondWord == "clear")
{
ad.clear();
cout << "Army is now empty.\n";
}
if(secondWord == "print")
{
cout << "Army contains " << ad.size() << " creatures.\n";
BOOST_FOREACH(auto &itr, ad)
{
cout << itr.first << " => " << itr.second.count << " of " << itr.second.type->namePl << endl;
}
}
if(secondWord == "erase")
{
int slot;
ss >> slot;
if(ad.find(slot) != ad.end())
{
ad.erase(slot);
cout << "Slot " << slot << " successfully erased.\n";
}
}
if(secondWord == "add")
{
int id, count;
ss >> id >> count;
int i = 0;
if(id < 0 || id >= 118)
{
throw std::runtime_error("Id has to be in <0,118>");
}
if(count <= 0)
{
throw std::runtime_error("Count has to be > 0");
}
while(ad.find(i++) != ad.end());
if(i >= ARMY_SIZE)
{
tlog1 << "Cannot add stack, army is full!\n";
}
else
{
ad[i] = CStackBasicDescriptor(id, count);
tlog0 << "Creature successfully added to slot " << i << endl;;
}
}
if(secondWord == "random")
{
srand(time(0));
ad.clear();
int stacks = rand() % 7 + 1;
for(int i = 0; i < stacks; i++)
{
CCreature *c = VLC->creh->creatures[rand() % 118];
ad[i] = CStackBasicDescriptor(c, c->growth);
}
cout << "Generated random army of " << stacks << " creatures.\n";
}
}
else if(!ssn)
{
cout << "Error: you need to create or load ANN from file first!\n";
continue;
}
else if(command == "learn")
{
ssn->learn();
}
else if(command == "save")
{
ssn->save(secondWord);
}
else if(command == "ask")
{
int artid = boost::lexical_cast<int>(secondWord);
CArtifact *art = VLC->arth->artifacts.at(artid);
DuelParameters dp = Framework::generateDuel(ad);
CArtifactInstance * artInst = new CArtifactInstance(art);
auto bonuses = art->getBonuses([](const Bonus*){return true;});
if(!bonuses->size())
{
tlog1 << "This artifact deosn't provide any bonuses. Please pick another one.";
}
else
{
BOOST_FOREACH(auto b, *bonuses)
artInst->addNewBonus(new Bonus(*b));
auto val = ssn->run(dp, artInst);
cout << "ANN rates " << art->Name() << " to value = " << val << endl;
}
}
else
tlog1 << "Unknown command \""<<command <<"\"!\n";
}
catch(std::exception &e)
{
tlog1 << "Encountered error: " << e.what() << endl;
}
catch(...)
{
tlog1 << "Encountered unknown error!" << endl;
}
}
}
};
int main(int argc, char **argv) int main(int argc, char **argv)
{ {
std::cout << "VCMI Odpalarka\nMy path: " << argv[0] << std::endl; std::cout << "VCMI Odpalarka\nMy path: " << argv[0] << std::endl;
@ -764,7 +975,8 @@ int main(int argc, char **argv)
VLC = new LibClasses(); VLC = new LibClasses();
VLC->init(); VLC->init();
SSNRun(); SSN_Runner runner;
runner.run();
return EXIT_SUCCESS; return EXIT_SUCCESS;
} }