diff --git a/Odpalarka/main.cpp b/Odpalarka/main.cpp index ba364ad7a..808b4842f 100644 --- a/Odpalarka/main.cpp +++ b/Odpalarka/main.cpp @@ -626,7 +626,7 @@ FANN::training_data * SSN::getTrainingData( const std::vector &input ) const auto & ci = input[i]; inputs[i] = genSSNinput(ci.dp.sides[0], ci.art, ci.dp.bfieldType, ci.dp.terType); outputs[i] = new double; - *(outputs[i]) = ci.value; + *(outputs[i]) = ci.value/4; } ret->set_train_data(input.size(), num_input, inputs, 1, outputs); @@ -635,7 +635,7 @@ FANN::training_data * SSN::getTrainingData( const std::vector &input ) void SSNRun() { - //buildLearningSet(); + //Framework::buildLearningSet(); double percentToTrain = 0.8; auto trainingSet = Framework::loadExamples(false); @@ -661,12 +661,12 @@ void SSNRun() FANN::activation_function_enum possibleFuns[] = {FANN::SIGMOID_SYMMETRIC_STEPWISE, FANN::LINEAR, FANN::SIGMOID, FANN::SIGMOID_STEPWISE, FANN::SIGMOID_SYMMETRIC}; - -// bestParams.actSteepHidden = 1.18; -// bestParams.actSteepnessOutput = 1.26; -// bestParams.hiddenActFun = FANN::SIGMOID_STEPWISE; +// +// bestParams.actSteepHidden = 0.346; +// bestParams.actSteepnessOutput = 0.449; +// bestParams.hiddenActFun = FANN::SIGMOID_SYMMETRIC; // bestParams.outActFun = FANN::SIGMOID_SYMMETRIC; -// bestParams.neuronsInHidden = 47; +// bestParams.neuronsInHidden = 23; for(int i=0; i<5000; i += 1) {