mirror of
https://github.com/vcmi/vcmi.git
synced 2025-03-17 20:58:07 +02:00
[programming challenge, SSN] neural network's code seems to be more or less complete; not tested though
This commit is contained in:
parent
2f7ba07050
commit
cc9823bd73
@ -91,7 +91,7 @@ double cmpArtSets(DuelParameters dp, TArtSet setL, TArtSet setR)
|
||||
return battleOutcome;
|
||||
}
|
||||
|
||||
std::vector<CArtifactInstance*> genArts()
|
||||
std::vector<CArtifactInstance*> genArts(const std::vector<Bonus> & bonusesToGive)
|
||||
{
|
||||
std::vector<CArtifactInstance*> ret;
|
||||
|
||||
@ -101,31 +101,41 @@ std::vector<CArtifactInstance*> genArts()
|
||||
nowy->constituentOf = nowy->constituents = NULL;
|
||||
nowy->possibleSlots.push_back(Arts::LEFT_HAND);
|
||||
|
||||
CArtifactInstance *artinst = new CArtifactInstance(nowy);
|
||||
auto &arts = VLC->arth->artifacts;
|
||||
CArtifactInstance *inny = new CArtifactInstance(VLC->arth->artifacts[15]);
|
||||
|
||||
artinst->addNewBonus(new Bonus(Bonus::PERMANENT, Bonus::PRIMARY_SKILL, Bonus::ARTIFACT_INSTANCE, +25, nowy->id, PrimarySkill::ATTACK));
|
||||
artinst->addNewBonus(new Bonus(Bonus::PERMANENT, Bonus::PRIMARY_SKILL, Bonus::ARTIFACT_INSTANCE, +25, nowy->id, PrimarySkill::DEFENSE));
|
||||
|
||||
auto bonuses = artinst->getBonuses([](const Bonus *){ return true; });
|
||||
BOOST_FOREACH(Bonus *b, *bonuses)
|
||||
BOOST_FOREACH(auto b, bonusesToGive)
|
||||
{
|
||||
std::cout << format("%s (%d) value:%d, description: %s\n") % bonusTypeToString(b->type) % b->subtype % b->val % b->Description();
|
||||
CArtifactInstance *artinst = new CArtifactInstance(nowy);
|
||||
auto &arts = VLC->arth->artifacts;
|
||||
artinst->addNewBonus(new Bonus(b));
|
||||
ret.push_back(artinst);
|
||||
}
|
||||
|
||||
// auto bonuses = artinst->getBonuses([](const Bonus *){ return true; });
|
||||
// BOOST_FOREACH(Bonus *b, *bonuses)
|
||||
// {
|
||||
// std::cout << format("%s (%d) value:%d, description: %s\n") % bonusTypeToString(b->type) % b->subtype % b->val % b->Description();
|
||||
// }
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
//returns how good the artifact is for the neural network
|
||||
double runSSN(FANN::neural_net & net, CArtifactInstance * inst)
|
||||
double runSSN(FANN::neural_net & net, const DuelParameters dp, CArtifactInstance * inst)
|
||||
{
|
||||
TArtSet setL, setR;
|
||||
setL[inst->artType->possibleSlots[0]] = inst;
|
||||
|
||||
return 0.0;
|
||||
double resultLR = cmpArtSets(dp, setL, setR),
|
||||
resultRL = cmpArtSets(dp, setR, setL),
|
||||
resultsBase = cmpArtSets(dp, TArtSet(), TArtSet());
|
||||
|
||||
double LRgain = resultLR - resultsBase,
|
||||
RLgain = resultRL - resultsBase;
|
||||
return LRgain+RLgain;
|
||||
}
|
||||
|
||||
|
||||
const unsigned int num_input = 2;
|
||||
const unsigned int num_input = 16;
|
||||
|
||||
double * genSSNinput(const DuelParameters & dp, CArtifactInstance * art)
|
||||
{
|
||||
@ -170,15 +180,31 @@ double * genSSNinput(const DuelParameters & dp, CArtifactInstance * art)
|
||||
}
|
||||
|
||||
//bonus description
|
||||
auto & blist = art->getBonusList();
|
||||
|
||||
*(cur++) = art->Attack();
|
||||
*(cur++) = art->Defense();
|
||||
*(cur++) = blist.valOfBonuses(Selector::type(Bonus::STACKS_SPEED));
|
||||
*(cur++) = blist.valOfBonuses(Selector::type(Bonus::STACK_HEALTH));
|
||||
|
||||
return ret;
|
||||
}
|
||||
|
||||
void learnSSN(FANN::neural_net & net, const DuelParameters & dp, CArtifactInstance * art, double desiredVal)
|
||||
void learnSSN(FANN::neural_net & net, const std::vector<std::pair<DuelParameters, CArtifactInstance *> > & input)
|
||||
{
|
||||
double * input = genSSNinput(dp, art);
|
||||
net.train(input, &desiredVal);
|
||||
delete input;
|
||||
FANN::training_data td;
|
||||
|
||||
double ** inputs = new double *[input.size()];
|
||||
double ** outputs = new double *[input.size()];
|
||||
for(int i=0; i<input.size(); ++i)
|
||||
{
|
||||
inputs[i] = genSSNinput(input[i].first, input[i].second);
|
||||
outputs[i] = new double;
|
||||
*(outputs[i]) = runSSN(net, input[i].first, input[i].second);
|
||||
}
|
||||
td.set_train_data(input.size(), num_input, inputs, 1, outputs);
|
||||
|
||||
net.train_epoch(td);
|
||||
}
|
||||
|
||||
void initNet(FANN::neural_net & ret)
|
||||
@ -206,7 +232,6 @@ void initNet(FANN::neural_net & ret)
|
||||
|
||||
void SSNRun()
|
||||
{
|
||||
auto availableArts = genArts();
|
||||
std::vector<std::pair<CArtifactInstance *, double> > artNotes;
|
||||
|
||||
TArtSet setL, setR;
|
||||
@ -214,27 +239,27 @@ void SSNRun()
|
||||
FANN::neural_net network;
|
||||
initNet(network);
|
||||
|
||||
for(int i=0; i<availableArts.size(); ++i)
|
||||
{
|
||||
artNotes.push_back(std::make_pair(availableArts[i], runSSN(network, availableArts[i])));
|
||||
}
|
||||
boost::range::sort(artNotes,
|
||||
[](const std::pair<CArtifactInstance *, double> & a1, const std::pair<CArtifactInstance *, double> & a2)
|
||||
{return a1.second > a2.second;});
|
||||
|
||||
//pick best arts into setL
|
||||
BOOST_FOREACH(auto & ap, artNotes)
|
||||
{
|
||||
auto art = ap.first;
|
||||
BOOST_FOREACH(auto slot, art->artType->possibleSlots)
|
||||
{
|
||||
if(setL.find(slot) != setL.end())
|
||||
{
|
||||
setL[slot] = art;
|
||||
break;
|
||||
}
|
||||
}
|
||||
}
|
||||
// for(int i=0; i<availableArts.size(); ++i)
|
||||
// {
|
||||
// artNotes.push_back(std::make_pair(availableArts[i], runSSN(network, availableArts[i])));
|
||||
// }
|
||||
// boost::range::sort(artNotes,
|
||||
// [](const std::pair<CArtifactInstance *, double> & a1, const std::pair<CArtifactInstance *, double> & a2)
|
||||
// {return a1.second > a2.second;});
|
||||
//
|
||||
// //pick best arts into setL
|
||||
// BOOST_FOREACH(auto & ap, artNotes)
|
||||
// {
|
||||
// auto art = ap.first;
|
||||
// BOOST_FOREACH(auto slot, art->artType->possibleSlots)
|
||||
// {
|
||||
// if(setL.find(slot) != setL.end())
|
||||
// {
|
||||
// setL[slot] = art;
|
||||
// break;
|
||||
// }
|
||||
// }
|
||||
// }
|
||||
|
||||
|
||||
//duels to test on
|
||||
@ -274,17 +299,18 @@ void SSNRun()
|
||||
|
||||
}
|
||||
|
||||
auto arts = genArts(btt);
|
||||
|
||||
//evaluate
|
||||
std::vector<std::pair<DuelParameters, CArtifactInstance *> > setups;
|
||||
for(int i=0; i<dps.size(); ++i)
|
||||
{
|
||||
auto & dp = dps[i];
|
||||
double resultLR = cmpArtSets(dp, setL, setR),
|
||||
resultRL = cmpArtSets(dp, setR, setL),
|
||||
resultsBase = cmpArtSets(dp, TArtSet(), TArtSet());
|
||||
|
||||
double LRgain = resultLR - resultsBase,
|
||||
RLgain = resultRL - resultsBase;
|
||||
for(int j=0; j<arts.size(); ++j)
|
||||
{
|
||||
setups.push_back(std::make_pair(dps[i], arts[j]));
|
||||
}
|
||||
}
|
||||
learnSSN(network, setups);
|
||||
}
|
||||
|
||||
int main(int argc, char **argv)
|
||||
|
Loading…
x
Reference in New Issue
Block a user