/* * SDLImageScaler.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "SDLImageScaler.h" #include "SDL_Extensions.h" #include "../CMT.h" #include "../xBRZ/xbrz.h" #include <tbb/parallel_for.h> #include <SDL_surface.h> SDLImageOptimizer::SDLImageOptimizer(SDL_Surface * surf, const Rect & virtualDimensions) : surf(surf) , virtualDimensions(virtualDimensions) { } void SDLImageOptimizer::optimizeSurface(SDL_Surface * formatSourceSurface) { if (!surf) return; int left = surf->w; int top = surf->h; int right = 0; int bottom = 0; // locate fully-transparent area around image // H3 hadles this on format level, but mods or images scaled in runtime do not if (surf->format->palette) { for (int y = 0; y < surf->h; ++y) { const uint8_t * row = static_cast<uint8_t *>(surf->pixels) + y * surf->pitch; for (int x = 0; x < surf->w; ++x) { if (row[x] != 0) { // opaque or can be opaque (e.g. disabled shadow) top = std::min(top, y); left = std::min(left, x); right = std::max(right, x); bottom = std::max(bottom, y); } } } } else { for (int y = 0; y < surf->h; ++y) { for (int x = 0; x < surf->w; ++x) { ColorRGBA color; SDL_GetRGBA(CSDL_Ext::getPixel(surf, x, y), surf->format, &color.r, &color.g, &color.b, &color.a); if (color.a != SDL_ALPHA_TRANSPARENT) { // opaque top = std::min(top, y); left = std::min(left, x); right = std::max(right, x); bottom = std::max(bottom, y); } } } } // empty image if (left == surf->w) return; if (left != 0 || top != 0 || right != surf->w - 1 || bottom != surf->h - 1) { // non-zero border found Rect newDimensions(left, top, right - left + 1, bottom - top + 1); SDL_Rect rectSDL = CSDL_Ext::toSDL(newDimensions); auto newSurface = CSDL_Ext::newSurface(newDimensions.dimensions(), formatSourceSurface); SDL_SetSurfaceBlendMode(surf, SDL_BLENDMODE_NONE); SDL_BlitSurface(surf, &rectSDL, newSurface, nullptr); if (SDL_HasColorKey(surf)) { uint32_t colorKey; SDL_GetColorKey(surf, &colorKey); SDL_SetColorKey(newSurface, SDL_TRUE, colorKey); } output = newSurface; virtualDimensions.x += left; virtualDimensions.y += top; } else { output = surf; output->refcount += 1; } } SDL_Surface * SDLImageOptimizer::acquireResultSurface() { SDL_Surface * result = output; output = nullptr; return result; } const Rect & SDLImageOptimizer::getResultDimensions() const { return virtualDimensions; } void SDLImageScaler::scaleSurface(Point targetDimensions, EScalingAlgorithm algorithm) { if (!intermediate) return; // may happen on scaling of empty images if(!targetDimensions.x || !targetDimensions.y) throw std::runtime_error("invalid scaling dimensions!"); Point inputSurfaceSize(intermediate->w, intermediate->h); Point outputSurfaceSize = targetDimensions * inputSurfaceSize / virtualDimensionsInput.dimensions(); Point outputMargins = targetDimensions * virtualDimensionsInput.topLeft() / virtualDimensionsInput.dimensions(); // TODO: use xBRZ if possible? E.g. when scaling to 150% do 100% -> 200% via xBRZ and then linear downscale 200% -> 150%? // Need to investigate which is optimal for performance and for visuals ret = CSDL_Ext::newSurface(Point(outputSurfaceSize.x, outputSurfaceSize.y), intermediate); virtualDimensionsOutput = Rect(outputMargins, targetDimensions); // TODO: account for input virtual size const uint32_t * srcPixels = static_cast<const uint32_t*>(intermediate->pixels); uint32_t * dstPixels = static_cast<uint32_t*>(ret->pixels); if (algorithm == EScalingAlgorithm::NEAREST) xbrz::nearestNeighborScale(srcPixels, intermediate->w, intermediate->h, dstPixels, ret->w, ret->h); else xbrz::bilinearScale(srcPixels, intermediate->w, intermediate->h, dstPixels, ret->w, ret->h); } void SDLImageScaler::scaleSurfaceIntegerFactor(int factor, EScalingAlgorithm algorithm) { if (!intermediate) return; // may happen on scaling of empty images if(factor == 0) throw std::runtime_error("invalid scaling factor!"); int newWidth = intermediate->w * factor; int newHight = intermediate->h * factor; virtualDimensionsOutput = virtualDimensionsInput * factor; ret = CSDL_Ext::newSurface(Point(newWidth, newHight), intermediate); assert(intermediate->pitch == intermediate->w * 4); assert(ret->pitch == ret->w * 4); const uint32_t * srcPixels = static_cast<const uint32_t*>(intermediate->pixels); uint32_t * dstPixels = static_cast<uint32_t*>(ret->pixels); switch (algorithm) { case EScalingAlgorithm::NEAREST: xbrz::nearestNeighborScale(srcPixels, intermediate->w, intermediate->h, dstPixels, ret->w, ret->h); break; case EScalingAlgorithm::BILINEAR: xbrz::bilinearScale(srcPixels, intermediate->w, intermediate->h, dstPixels, ret->w, ret->h); break; case EScalingAlgorithm::XBRZ_ALPHA: case EScalingAlgorithm::XBRZ_OPAQUE: { auto format = algorithm == EScalingAlgorithm::XBRZ_OPAQUE ? xbrz::ColorFormat::ARGB_CLAMPED : xbrz::ColorFormat::ARGB; if(intermediate->h < 32) { // for tiny images tbb incurs too high overhead xbrz::scale(factor, srcPixels, dstPixels, intermediate->w, intermediate->h, format, {}); } else { // xbrz recommends granulation of 16, but according to tests, for smaller images granulation of 4 is actually the best option const int granulation = intermediate->h > 400 ? 16 : 4; tbb::parallel_for(tbb::blocked_range<size_t>(0, intermediate->h, granulation), [this, factor, srcPixels, dstPixels, format](const tbb::blocked_range<size_t> & r) { xbrz::scale(factor, srcPixels, dstPixels, intermediate->w, intermediate->h, format, {}, r.begin(), r.end()); }); } break; } default: throw std::runtime_error("invalid scaling algorithm!"); } } SDLImageScaler::SDLImageScaler(SDL_Surface * surf) :SDLImageScaler(surf, Rect(0,0,surf->w, surf->h), false) { } SDLImageScaler::SDLImageScaler(SDL_Surface * surf, const Rect & virtualDimensions, bool optimizeImage) { if (optimizeImage) { SDLImageOptimizer optimizer(surf, virtualDimensions); optimizer.optimizeSurface(screen); intermediate = optimizer.acquireResultSurface(); virtualDimensionsInput = optimizer.getResultDimensions(); } else { intermediate = surf; intermediate->refcount += 1; virtualDimensionsInput = virtualDimensions; } if (intermediate == surf) { SDL_FreeSurface(intermediate); intermediate = SDL_ConvertSurfaceFormat(surf, SDL_PIXELFORMAT_ARGB8888, 0); } } SDLImageScaler::~SDLImageScaler() { SDL_FreeSurface(intermediate); SDL_FreeSurface(ret); } SDL_Surface * SDLImageScaler::acquireResultSurface() { SDL_Surface * result = ret; ret = nullptr; return result; } const Rect & SDLImageScaler::getResultDimensions() const { return virtualDimensionsOutput; }