/* * CZonePlacer.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "CZonePlacer.h" #include "../CRandomGenerator.h" #include "../CTownHandler.h" #include "../TerrainHandler.h" #include "../mapping/CMap.h" #include "../mapping/CMapEditManager.h" #include "CMapGenOptions.h" #include "RmgMap.h" #include "Zone.h" #include "Functions.h" #include "PenroseTiling.h" VCMI_LIB_NAMESPACE_BEGIN //#define ZONE_PLACEMENT_LOG true class CRandomGenerator; CZonePlacer::CZonePlacer(RmgMap & map) : width(0), height(0), mapSize(0), gravityConstant(1e-3f), stiffnessConstant(3e-3f), stifness(0), stiffnessIncreaseFactor(1.03f), bestTotalDistance(1e10), bestTotalOverlap(1e10), map(map) { } int3 CZonePlacer::cords(const float3 & f) const { return int3(static_cast(std::max(0.f, (f.x * map.width()) - 1)), static_cast(std::max(0.f, (f.y * map.height() - 1))), f.z); } float CZonePlacer::getDistance (float distance) const { return (distance ? distance * distance : 1e-6f); } void CZonePlacer::findPathsBetweenZones() { auto zones = map.getZones(); std::set> zonesToCheck; // Iterate through each pair of nodes in the graph for (const auto& zone : zones) { int start = zone.first; distancesBetweenZones[start][start] = 0; // Distance from a node to itself is 0 std::queue q; std::map visited; visited[start] = true; q.push(start); // Perform Breadth-First Search from the starting node while (!q.empty()) { int current = q.front(); q.pop(); const auto& currentZone = zones.at(current); const auto& connectedZoneIds = currentZone->getConnections(); for (auto & connection : connectedZoneIds) { if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE) { //Do not consider virtual connections for graph distance continue; } auto neighbor = connection.getOtherZoneId(current); if (!visited[neighbor]) { visited[neighbor] = true; q.push(neighbor); distancesBetweenZones[start][neighbor] = distancesBetweenZones[start][current] + 1; } } } } } void CZonePlacer::placeOnGrid(CRandomGenerator* rand) { auto zones = map.getZones(); assert(zones.size()); //Make sure there are at least as many grid fields as the number of zones size_t gridSize = std::ceil(std::sqrt(zones.size())); typedef boost::multi_array, 2> GridType; GridType grid(boost::extents[gridSize][gridSize]); TZoneVector zonesVector(zones.begin(), zones.end()); //Place first zone auto firstZone = zonesVector[0].second; size_t x = 0; size_t y = 0; auto getRandomEdge = [rand, gridSize](size_t& x, size_t& y) { switch (rand->nextInt() % 4) { case 0: x = 0; y = gridSize / 2; break; case 1: x = gridSize - 1; y = gridSize / 2; break; case 2: x = gridSize / 2; y = 0; break; case 3: x = gridSize / 2; y = gridSize - 1; break; } }; switch (firstZone->getType()) { case ETemplateZoneType::PLAYER_START: case ETemplateZoneType::CPU_START: if (firstZone->getConnectedZoneIds().size() > 2) { getRandomEdge(x, y); } else { //Random corner if (rand->nextInt() % 2) { x = 0; } else { x = gridSize - 1; } if (rand->nextInt() % 2) { y = 0; } else { y = gridSize - 1; } } break; case ETemplateZoneType::TREASURE: if (gridSize & 1) //odd { x = y = (gridSize / 2); } else { //One of 4 squares in the middle x = (gridSize / 2) - 1 + rand->nextInt() % 2; y = (gridSize / 2) - 1 + rand->nextInt() % 2; } break; case ETemplateZoneType::JUNCTION: getRandomEdge(x, y); break; } grid[x][y] = firstZone; //Ignore z placement for simplicity for (size_t i = 1; i < zones.size(); i++) { auto zone = zonesVector[i].second; auto connectedZoneIds = zone->getConnectedZoneIds(); float maxDistance = -1000.0; int3 mostDistantPlace; //Iterate over free positions for (size_t freeX = 0; freeX < gridSize; ++freeX) { for (size_t freeY = 0; freeY < gridSize; ++freeY) { if (!grid[freeX][freeY]) { //There is free space left here int3 potentialPos(freeX, freeY, 0); //Compute distance to every existing zone float distance = 0; for (size_t existingX = 0; existingX < gridSize; ++existingX) { for (size_t existingY = 0; existingY < gridSize; ++existingY) { auto existingZone = grid[existingX][existingY]; if (existingZone) { //There is already zone here float localDistance = 0.0f; auto graphDistance = distancesBetweenZones[zone->getId()][existingZone->getId()]; if (graphDistance > 1) { //No direct connection localDistance = potentialPos.dist2d(int3(existingX, existingY, 0)) * graphDistance; } else { //Has direct connection - place as close as possible localDistance = -potentialPos.dist2d(int3(existingX, existingY, 0)); } localDistance *= scaleForceBetweenZones(zone, existingZone); distance += localDistance; } } } if (distance > maxDistance) { maxDistance = distance; mostDistantPlace = potentialPos; } } } } //Place in a free slot grid[mostDistantPlace.x][mostDistantPlace.y] = zone; } //TODO: toggle with a flag #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Initial zone grid:"); for (size_t x = 0; x < gridSize; ++x) { std::string s; for (size_t y = 0; y < gridSize; ++y) { if (grid[x][y]) { s += (boost::format("%3d ") % grid[x][y]->getId()).str(); } else { s += " -- "; } } logGlobal->trace(s); } #endif //Set initial position for zones - random position in square centered around (x, y) for (size_t x = 0; x < gridSize; ++x) { for (size_t y = 0; y < gridSize; ++y) { auto zone = grid[x][y]; if (zone) { //i.e. for grid size 5 we get range (0.25 - 4.75) auto targetX = rand->nextDouble(x + 0.25f, x + 0.75f); vstd::abetween(targetX, 0.5, gridSize - 0.5); auto targetY = rand->nextDouble(y + 0.25f, y + 0.75f); vstd::abetween(targetY, 0.5, gridSize - 0.5); zone->setCenter(float3(targetX / gridSize, targetY / gridSize, zone->getPos().z)); } } } } float CZonePlacer::scaleForceBetweenZones(const std::shared_ptr zoneA, const std::shared_ptr zoneB) const { if (zoneA->getOwner() && zoneB->getOwner()) //Players participate in game { int firstPlayer = zoneA->getOwner().value(); int secondPlayer = zoneB->getOwner().value(); //Players with lower indexes (especially 1 and 2) will be placed further apart return (1.0f + (2.0f / (firstPlayer * secondPlayer))); } else { return 1; } } void CZonePlacer::placeZones(CRandomGenerator * rand) { logGlobal->info("Starting zone placement"); width = map.getMapGenOptions().getWidth(); height = map.getMapGenOptions().getHeight(); auto zones = map.getZones(); vstd::erase_if(zones, [](const std::pair> & pr) { return pr.second->getType() == ETemplateZoneType::WATER; }); bool underground = map.getMapGenOptions().getHasTwoLevels(); findPathsBetweenZones(); placeOnGrid(rand); /* Fruchterman-Reingold algorithm Let's assume we try to fit N circular zones with radius = size on a map Connected zones attract, intersecting zones and map boundaries push back */ TZoneVector zonesVector(zones.begin(), zones.end()); assert (zonesVector.size()); RandomGeneratorUtil::randomShuffle(zonesVector, *rand); //0. set zone sizes and surface / underground level prepareZones(zones, zonesVector, underground, rand); std::map, float3> bestSolution; TForceVector forces; TForceVector totalForces; // both attraction and pushback, overcomplicated? TDistanceVector distances; TDistanceVector overlaps; auto evaluateSolution = [this, zones, &distances, &overlaps, &bestSolution]() -> bool { bool improvement = false; float totalDistance = 0; float totalOverlap = 0; for (const auto& zone : distances) //find most misplaced zone { totalDistance += zone.second; float overlap = overlaps[zone.first]; totalOverlap += overlap; } //check fitness function if ((totalDistance + 1) * (totalOverlap + 1) < (bestTotalDistance + 1) * (bestTotalOverlap + 1)) { //multiplication is better for auto-scaling, but stops working if one factor is 0 improvement = true; } //Save best solution if (improvement) { bestTotalDistance = totalDistance; bestTotalOverlap = totalOverlap; for (const auto& zone : zones) bestSolution[zone.second] = zone.second->getCenter(); } #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s", totalDistance, totalOverlap , improvement); #endif return improvement; }; //Start with low stiffness. Bigger graphs need more time and more flexibility for (stifness = stiffnessConstant / zones.size(); stifness <= stiffnessConstant;) { //1. attract connected zones attractConnectedZones(zones, forces, distances); for(const auto & zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); totalForces[zone.first] = zone.second; //override } //2. separate overlapping zones separateOverlappingZones(zones, forces, overlaps); for(const auto & zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); totalForces[zone.first] += zone.second; //accumulate } bool improved = evaluateSolution(); if (!improved) { //3. now perform drastic movement of zone that is completely not linked //TODO: Don't do this is fitness was improved moveOneZone(zones, totalForces, distances, overlaps); improved |= evaluateSolution(); } if (!improved) { //Only cool down if we didn't see any improvement stifness *= stiffnessIncreaseFactor; } } logGlobal->trace("Best fitness reached: total distance %2.4f, total overlap %2.4f", bestTotalDistance, bestTotalOverlap); for(const auto & zone : zones) //finalize zone positions { zone.second->setPos (cords (bestSolution[zone.second])); #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Placed zone %d at relative position %s and coordinates %s", zone.first, zone.second->getCenter().toString(), zone.second->getPos().toString()); #endif } } void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, CRandomGenerator * rand) { std::vector totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map int zonesOnLevel[2] = { 0, 0 }; //even distribution for surface / underground zones. Surface zones always have priority. TZoneVector zonesToPlace; std::map levels; //first pass - determine fixed surface for zones for(const auto & zone : zonesVector) { if (!underground) //this step is ignored zonesToPlace.push_back(zone); else //place players depending on their factions { if(std::optional owner = zone.second->getOwner()) { auto player = PlayerColor(*owner - 1); auto playerSettings = map.getMapGenOptions().getPlayersSettings(); FactionID faction = FactionID::RANDOM; if (vstd::contains(playerSettings, player)) { faction = playerSettings[player].getStartingTown(); } else { logGlobal->trace("Player %d (starting zone %d) does not participate in game", player.getNum(), zone.first); } if (faction == FactionID::RANDOM) //TODO: check this after a town has already been randomized zonesToPlace.push_back(zone); else { auto & tt = (*VLC->townh)[faction]->nativeTerrain; if(tt == ETerrainId::NONE) { //any / random zonesToPlace.push_back(zone); } else { const auto & terrainType = VLC->terrainTypeHandler->getById(tt); if(terrainType->isUnderground() && !terrainType->isSurface()) { //underground only zonesOnLevel[1]++; levels[zone.first] = 1; } else { //surface zonesOnLevel[0]++; levels[zone.first] = 0; } } } } else //no starting zone or no underground altogether { zonesToPlace.push_back(zone); } } } for(const auto & zone : zonesToPlace) { if (underground) //only then consider underground zones { int level = 0; if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones level = 1; else level = 0; levels[zone.first] = level; zonesOnLevel[level]++; } else levels[zone.first] = 0; } for(const auto & zone : zonesVector) { int level = levels[zone.first]; totalSize[level] += (zone.second->getSize() * zone.second->getSize()); float3 center = zone.second->getCenter(); center.z = level; zone.second->setCenter(center); } /* prescale zones formula: sum((prescaler*n)^2)*pi = WH prescaler = sqrt((WH)/(sum(n^2)*pi)) */ std::vector prescaler = { 0, 0 }; for (int i = 0; i < 2; i++) prescaler[i] = std::sqrt((width * height) / (totalSize[i] * PI_CONSTANT)); mapSize = static_cast(sqrt(width * height)); for(const auto & zone : zones) { zone.second->setSize(static_cast(zone.second->getSize() * prescaler[zone.second->getCenter().z])); } } void CZonePlacer::attractConnectedZones(TZoneMap & zones, TForceVector & forces, TDistanceVector & distances) const { for(const auto & zone : zones) { float3 forceVector(0, 0, 0); float3 pos = zone.second->getCenter(); float totalDistance = 0; for (const auto & connection : zone.second->getConnections()) { if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE) { continue; } auto otherZone = zones[connection.getOtherZoneId(zone.second->getId())]; float3 otherZoneCenter = otherZone->getCenter(); auto distance = static_cast(pos.dist2d(otherZoneCenter)); forceVector += (otherZoneCenter - pos) * distance * gravityConstant * scaleForceBetweenZones(zone.second, otherZone); //positive value //Attract zone centers always float minDistance = 0; if (pos.z != otherZoneCenter.z) minDistance = 0; //zones on different levels can overlap completely else minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates if (distance > minDistance) totalDistance += (distance - minDistance); } distances[zone.second] = totalDistance; forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector; } } void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps) { for(const auto & zone : zones) { float3 forceVector(0, 0, 0); float3 pos = zone.second->getCenter(); float overlap = 0; //separate overlapping zones for(const auto & otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); //zones on different levels don't push away if (zone == otherZone || pos.z != otherZoneCenter.z) continue; auto distance = static_cast(pos.dist2d(otherZoneCenter)); float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize; if (distance < minDistance) { float3 localForce = (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stifness; //negative value localForce *= scaleForceBetweenZones(zone.second, otherZone.second); forceVector -= localForce * (distancesBetweenZones[zone.second->getId()][otherZone.second->getId()] / 2.0f); overlap += (minDistance - distance); //overlapping of small zones hurts us more } } //move zones away from boundaries //do not scale boundary distance - zones tend to get squashed float size = zone.second->getSize() / mapSize; auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y) { float3 boundary = float3(x, y, pos.z); auto distance = static_cast(pos.dist2d(boundary)); overlap += std::max(0, distance - size); //check if we're closer to map boundary than value of zone size forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stifness; //negative value }; if (pos.x < size) { pushAwayFromBoundary(0, pos.y); } if (pos.x > 1 - size) { pushAwayFromBoundary(1, pos.y); } if (pos.y < size) { pushAwayFromBoundary(pos.x, 0); } if (pos.y > 1 - size) { pushAwayFromBoundary(pos.x, 1); } //Always move repulsive zones away, no matter their distance //TODO: Consider z plane? for (auto& connection : zone.second->getConnections()) { if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE) { auto & otherZone = zones[connection.getOtherZoneId(zone.second->getId())]; float3 otherZoneCenter = otherZone->getCenter(); //TODO: Roll into lambda? auto distance = static_cast(pos.dist2d(otherZoneCenter)); float minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; float3 localForce = (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stifness; localForce *= (distancesBetweenZones[zone.second->getId()][otherZone->getId()]); forceVector -= localForce * scaleForceBetweenZones(zone.second, otherZone); } } overlaps[zone.second] = overlap; forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector; } } void CZonePlacer::moveOneZone(TZoneMap& zones, TForceVector& totalForces, TDistanceVector& distances, TDistanceVector& overlaps) { //The more zones, the greater total distance expected //Also, higher stiffness make expected movement lower const int maxDistanceMovementRatio = zones.size() * zones.size() * (stiffnessConstant / stifness); typedef std::pair> Misplacement; std::vector misplacedZones; float totalDistance = 0; float totalOverlap = 0; for (const auto& zone : distances) //find most misplaced zone { if (vstd::contains(lastSwappedZones, zone.first->getId())) { continue; } totalDistance += zone.second; float overlap = overlaps[zone.first]; totalOverlap += overlap; //if distance to actual movement is long, the zone is misplaced float ratio = (zone.second + overlap) / static_cast(totalForces[zone.first].mag()); if (ratio > maxDistanceMovementRatio) { misplacedZones.emplace_back(std::make_pair(ratio, zone.first)); } } if (misplacedZones.empty()) return; boost::sort(misplacedZones, [](const Misplacement& lhs, Misplacement& rhs) { return lhs.first > rhs.first; //Largest dispalcement first }); #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Worst misplacement/movement ratio: %3.2f", misplacedZones.front().first); #endif if (misplacedZones.size() >= 2) { //Swap 2 misplaced zones auto firstZone = misplacedZones.front().second; std::shared_ptr secondZone; std::set connectedZones; for (const auto& connection : firstZone->getConnections()) { //FIXME: Should we also exclude fictive connections? if (connection.getConnectionType() != rmg::EConnectionType::REPULSIVE) { connectedZones.insert(connection.getOtherZoneId(firstZone->getId())); } } auto level = firstZone->getCenter().z; for (size_t i = 1; i < misplacedZones.size(); i++) { //Only swap zones on the same level //Don't swap zones that should be connected (Jebus) if (misplacedZones[i].second->getCenter().z == level && !vstd::contains(connectedZones, misplacedZones[i].second->getId())) { secondZone = misplacedZones[i].second; break; } } if (secondZone) { #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Swapping two misplaced zones %d and %d", firstZone->getId(), secondZone->getId()); #endif auto firstCenter = firstZone->getCenter(); auto secondCenter = secondZone->getCenter(); firstZone->setCenter(secondCenter); secondZone->setCenter(firstCenter); lastSwappedZones.insert(firstZone->getId()); lastSwappedZones.insert(secondZone->getId()); return; } } lastSwappedZones.clear(); //If we didn't swap zones in this iteration, we can do it in the next //find most distant zone that should be attracted and move inside it std::shared_ptr targetZone; auto misplacedZone = misplacedZones.front().second; float3 ourCenter = misplacedZone->getCenter(); if ((totalDistance / (bestTotalDistance + 1)) > (totalOverlap / (bestTotalOverlap + 1))) { //Move one zone towards most distant zone to reduce distance float maxDistance = 0; for (auto con : misplacedZone->getConnections()) { if (con.getConnectionType() == rmg::EConnectionType::REPULSIVE) { continue; } auto otherZone = zones[con.getOtherZoneId(misplacedZone->getId())]; float distance = static_cast(otherZone->getCenter().dist2dSQ(ourCenter)); if (distance > maxDistance) { maxDistance = distance; targetZone = otherZone; } } if (targetZone) { float3 vec = targetZone->getCenter() - ourCenter; float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize; #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Trying to move zone %d %s towards %d %s. Direction is %s", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), vec.toString()); #endif misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size } } else { //Move misplaced zone away from overlapping zone float maxOverlap = 0; for(const auto & otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z) continue; auto distance = static_cast(otherZoneCenter.dist2dSQ(ourCenter)); if (distance > maxOverlap) { maxOverlap = distance; targetZone = otherZone.second; } } if (targetZone) { float3 vec = ourCenter - targetZone->getCenter(); float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize; #ifdef ZONE_PLACEMENT_LOG logGlobal->trace("Trying to move zone %d %s away from %d %s. Direction is %s", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), vec.toString()); #endif misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated } } //Don't swap that zone in next iteration lastSwappedZones.insert(misplacedZone->getId()); } float CZonePlacer::metric (const int3 &A, const int3 &B) const { return A.dist2dSQ(B); } void CZonePlacer::assignZones(CRandomGenerator * rand) { logGlobal->info("Starting zone colouring"); auto width = map.getMapGenOptions().getWidth(); auto height = map.getMapGenOptions().getHeight(); auto zones = map.getZones(); vstd::erase_if(zones, [](const std::pair> & pr) { return pr.second->getType() == ETemplateZoneType::WATER; }); using Dpair = std::pair, float>; std::vector distances; distances.reserve(zones.size()); //now place zones correctly and assign tiles to each zone auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool { //bigger zones have smaller distance return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize(); }; auto simpleCompareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool { //bigger zones have smaller distance return lhs.second < rhs.second; }; auto moveZoneToCenterOfMass = [width, height](const std::shared_ptr & zone) -> void { int3 total(0, 0, 0); auto tiles = zone->area().getTiles(); for(const auto & tile : tiles) { total += tile; } int size = static_cast(tiles.size()); assert(size); auto newPos = int3(total.x / size, total.y / size, total.z / size); zone->setPos(newPos); zone->setCenter(float3(float(newPos.x) / width, float(newPos.y) / height, newPos.z)); }; int levels = map.levels(); // Find current center of mass for each zone. Move zone to that center to balance zones sizes std::vector zonesOnLevel; for(int level = 0; level < levels; level++) { zonesOnLevel.push_back(map.getZonesOnLevel(level)); } int3 pos; for(pos.z = 0; pos.z < levels; pos.z++) { for(pos.x = 0; pos.x < width; pos.x++) { for(pos.y = 0; pos.y < height; pos.y++) { distances.clear(); for(const auto & zone : zonesOnLevel[pos.z]) { distances.emplace_back(zone.second, static_cast(pos.dist2dSQ(zone.second->getPos()))); } boost::min_element(distances, compareByDistance)->first->area().add(pos); //closest tile belongs to zone } } } for(const auto & zone : zones) { if(zone.second->area().empty()) throw rmgException("Empty zone is generated, probably RMG template is inappropriate for map size"); moveZoneToCenterOfMass(zone.second); } for(const auto & zone : zones) zone.second->clearTiles(); //now populate them again PenroseTiling penrose; for (int level = 0; level < levels; level++) { //Create different tiling for each level // Assign zones to closest Penrose vertex // TODO: Count zones on a level exactly? auto vertices = penrose.generatePenroseTiling(zones.size() / map.levels(), rand); std::map, std::set> vertexMapping; for (const auto & vertex : vertices) { distances.clear(); for(const auto & zone : zonesOnLevel[level]) { distances.emplace_back(zone.second, zone.second->getCenter().dist2dSQ(float3(vertex.x(), vertex.y(), level))); } auto closestZone = boost::min_element(distances, compareByDistance)->first; vertexMapping[closestZone].insert(int3(vertex.x() * width, vertex.y() * height, level)); //Closest vertex belongs to zone } //Assign actual tiles to each zone pos.z = level; for (pos.x = 0; pos.x < width; pos.x++) { for (pos.y = 0; pos.y < height; pos.y++) { distances.clear(); for(const auto & zoneVertex : vertexMapping) { auto zone = zoneVertex.first; for (const auto & vertex : zoneVertex.second) { distances.emplace_back(zone, metric(pos, vertex)); } } //Tile closest to vertex belongs to zone auto closestZone = boost::min_element(distances, simpleCompareByDistance)->first; closestZone->area().add(pos); map.setZoneID(pos, closestZone->getId()); } } for(const auto & zone : zonesOnLevel[level]) { if(zone.second->area().empty()) { // FIXME: Some vertices are duplicated, but it's not a source of problem logGlobal->error("Zone %d at %s is empty, dumping Penrose tiling", zone.second->getId(), zone.second->getCenter().toString()); for (const auto & vertex : vertices) { logGlobal->warn("Penrose Vertex: %s", vertex.toString()); } throw rmgException("Empty zone after Penrose tiling"); } } } //set position (town position) to center of mass of irregular zone for(const auto & zone : zones) { moveZoneToCenterOfMass(zone.second); //TODO: similiar for islands #define CREATE_FULL_UNDERGROUND true //consider linking this with water amount if (zone.second->isUnderground()) { if (!CREATE_FULL_UNDERGROUND) { auto discardTiles = collectDistantTiles(*zone.second, zone.second->getSize() + 1.f); for(const auto & t : discardTiles) zone.second->area().erase(t); } //make sure that terrain inside zone is not a rock auto v = zone.second->getArea().getTilesVector(); map.getMapProxy()->drawTerrain(*rand, v, ETerrainId::SUBTERRANEAN); } } logGlobal->info("Finished zone colouring"); } const TDistanceMap& CZonePlacer::getDistanceMap() { return distancesBetweenZones; } VCMI_LIB_NAMESPACE_END