/* * Connection.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #pragma once #include <typeinfo> #include <type_traits> #include <boost/mpl/eval_if.hpp> #include <boost/mpl/equal_to.hpp> #include <boost/mpl/int.hpp> #include <boost/mpl/identity.hpp> #include <boost/mpl/for_each.hpp> #include <boost/any.hpp> #include "ConstTransitivePtr.h" #include "CCreatureSet.h" //for CStackInstance #include "mapObjects/CGHeroInstance.h" #include "mapping/CCampaignHandler.h" //for CCampaignState #include "rmg/CMapGenerator.h" // for CMapGenOptions const ui32 version = 754; const ui32 minSupportedVersion = 753; class CISer; class COSer; class CConnection; class CGObjectInstance; class CStackInstance; class CGameState; class CCreature; class LibClasses; class CHero; struct CPack; extern DLL_LINKAGE LibClasses * VLC; namespace mpl = boost::mpl; const std::string SAVEGAME_MAGIC = "VCMISVG"; namespace boost { namespace asio { namespace ip { class tcp; } class io_service; template <typename Protocol> class stream_socket_service; template <typename Protocol,typename StreamSocketService> class basic_stream_socket; template <typename Protocol> class socket_acceptor_service; template <typename Protocol,typename SocketAcceptorService> class basic_socket_acceptor; } class mutex; } enum SerializationLvl { Wrong=0, Boolean, Primitive, Array, Pointer, Enum, Serializable, BooleanVector }; struct TypeComparer { bool operator()(const std::type_info *a, const std::type_info *b) const { return a->before(*b); } }; struct IPointerCaster { virtual boost::any castRawPtr(const boost::any &ptr) const = 0; // takes From*, performs dynamic cast, returns To* virtual boost::any castSharedPtr(const boost::any &ptr) const = 0; // takes std::shared_ptr<From>, performs dynamic cast, returns std::shared_ptr<To> virtual boost::any castWeakPtr(const boost::any &ptr) const = 0; // takes std::weak_ptr<From>, performs dynamic cast, returns std::weak_ptr<To>. The object under poitner must live. //virtual boost::any castUniquePtr(const boost::any &ptr) const = 0; // takes std::unique_ptr<From>, performs dynamic cast, returns std::unique_ptr<To> }; template <typename From, typename To> struct PointerCaster : IPointerCaster { virtual boost::any castRawPtr(const boost::any &ptr) const override // takes void* pointing to From object, performs dynamic cast, returns void* pointing to To object { From * from = (From*)boost::any_cast<void*>(ptr); To * ret = dynamic_cast<To*>(from); return (void*)ret; } // Helper function performing casts between smart pointers using dynamic_pointer_cast template<typename SmartPt> boost::any castSmartPtr(const boost::any &ptr) const { try { auto from = boost::any_cast<SmartPt>(ptr); auto ret = std::dynamic_pointer_cast<To>(from); return ret; } catch(std::exception &e) { THROW_FORMAT("Failed cast %s -> %s. Given argument was %s. Error message: %s", typeid(From).name() % typeid(To).name() % ptr.type().name() % e.what()); } } virtual boost::any castSharedPtr(const boost::any &ptr) const override { return castSmartPtr<std::shared_ptr<From>>(ptr); } virtual boost::any castWeakPtr(const boost::any &ptr) const override { auto from = boost::any_cast<std::weak_ptr<From>>(ptr); return castSmartPtr<std::shared_ptr<From>>(from.lock()); } // virtual boost::any castUniquePtr(const boost::any &ptr) const override // { // return castSmartPtr<std::unique_ptr<From>>(ptr); // } }; class DLL_LINKAGE CTypeList { public: struct TypeDescriptor; typedef std::shared_ptr<TypeDescriptor> TypeInfoPtr; struct TypeDescriptor { ui16 typeID; const char *name; std::vector<TypeInfoPtr> children, parents; }; private: std::map<const std::type_info *, TypeInfoPtr, TypeComparer> typeInfos; std::map<std::pair<TypeInfoPtr, TypeInfoPtr>, std::unique_ptr<const IPointerCaster>> casters; //for each pair <Base, Der> we provide a caster (each registered relations creates a single entry here) CTypeList(CTypeList &) { // This type is non-copyable. // Unfortunately on Windows it is required for DLL_EXPORT-ed type to provide copy c-tor, so we can't =delete it. assert(0); } CTypeList &operator=(CTypeList &) { // As above. assert(0); return *this; } public: CTypeList(); TypeInfoPtr registerType(const std::type_info *type); template <typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr) { static_assert(std::is_base_of<Base, Derived>::value, "First registerType template parameter needs to ba a base class of the second one."); static_assert(std::has_virtual_destructor<Base>::value, "Base class needs to have a virtual destructor."); static_assert(!std::is_same<Base, Derived>::value, "Parameters of registerTypes should be two diffrenet types."); auto bt = getTypeInfo(b), dt = getTypeInfo(d); //obtain std::type_info auto bti = registerType(bt), dti = registerType(dt); //obtain our TypeDescriptor // register the relation between classes bti->children.push_back(dti); dti->parents.push_back(bti); casters[std::make_pair(bti, dti)] = make_unique<const PointerCaster<Base, Derived>>(); casters[std::make_pair(dti, bti)] = make_unique<const PointerCaster<Derived, Base>>(); } ui16 getTypeID(const std::type_info *type); TypeInfoPtr getTypeDescriptor(const std::type_info *type, bool throws = true); //if not throws, failure returns nullptr template <typename T> ui16 getTypeID(const T * t = nullptr) { return getTypeID(getTypeInfo(t)); } // Returns sequence of types starting from "from" and ending on "to". Every next type is derived from the previous. // Throws if there is no link registered. std::vector<TypeInfoPtr> castSequence(TypeInfoPtr from, TypeInfoPtr to); std::vector<TypeInfoPtr> castSequence(const std::type_info *from, const std::type_info *to); template<boost::any(IPointerCaster::*CastingFunction)(const boost::any &) const> boost::any castHelper(boost::any inputPtr, const std::type_info *fromArg, const std::type_info *toArg) { auto typesSequence = castSequence(fromArg, toArg); boost::any ptr = inputPtr; for(int i = 0; i < (int)typesSequence.size() - 1; i++) { auto &from = typesSequence[i]; auto &to = typesSequence[i + 1]; auto castingPair = std::make_pair(from, to); if(!casters.count(castingPair)) THROW_FORMAT("Cannot find caster for conversion %s -> %s which is needed to cast %s -> %s", from->name % to->name % fromArg->name() % toArg->name()); auto &caster = casters.at(castingPair); ptr = (*caster.*CastingFunction)(ptr); //Why does unique_ptr does not have operator->* ..? } return ptr; } template<typename TInput> void *castToMostDerived(const TInput *inputPtr) { auto &baseType = typeid(typename std::remove_cv<TInput>::type); auto derivedType = getTypeInfo(inputPtr); if(baseType == *derivedType) return (void*)inputPtr; return boost::any_cast<void*>(castHelper<&IPointerCaster::castRawPtr>((void*)inputPtr, &baseType, derivedType)); } template<typename TInput> boost::any castSharedToMostDerived(const std::shared_ptr<TInput> inputPtr) { auto &baseType = typeid(typename std::remove_cv<TInput>::type); auto derivedType = getTypeInfo(inputPtr.get()); if(baseType == *derivedType) return inputPtr; return castHelper<&IPointerCaster::castSharedPtr>(inputPtr, &baseType, derivedType); } void* castRaw(void *inputPtr, const std::type_info *from, const std::type_info *to) { return boost::any_cast<void*>(castHelper<&IPointerCaster::castRawPtr>(inputPtr, from, to)); } boost::any castShared(boost::any inputPtr, const std::type_info *from, const std::type_info *to) { return castHelper<&IPointerCaster::castSharedPtr>(inputPtr, from, to); } template <typename T> const std::type_info * getTypeInfo(const T * t = nullptr) { if(t) return &typeid(*t); else return &typeid(T); } }; extern DLL_LINKAGE CTypeList typeList; template<typename Variant, typename Source> struct VariantLoaderHelper { Source & source; std::vector<std::function<Variant()>> funcs; VariantLoaderHelper(Source & source): source(source) { mpl::for_each<typename Variant::types>(std::ref(*this)); } template<typename Type> void operator()(Type) { funcs.push_back([&]() -> Variant { Type obj; source >> obj; return Variant(obj); }); } }; template<typename T> struct SerializationLevel { typedef mpl::integral_c_tag tag; typedef typename mpl::eval_if< boost::is_same<T, bool>, mpl::int_<Boolean>, //else typename mpl::eval_if< boost::is_same<T, std::vector<bool> >, mpl::int_<BooleanVector>, //else typename mpl::eval_if< boost::is_fundamental<T>, mpl::int_<Primitive>, //else typename mpl::eval_if< boost::is_enum<T>, mpl::int_<Enum>, //else typename mpl::eval_if< boost::is_class<T>, mpl::int_<Serializable>, //else typename mpl::eval_if< boost::is_array<T>, mpl::int_<Array>, //else typename mpl::eval_if< boost::is_pointer<T>, mpl::int_<Pointer>, //else typename mpl::eval_if< boost::is_enum<T>, mpl::int_<Primitive>, //else mpl::int_<Wrong> > > > > > > > >::type type; static const int value = SerializationLevel::type::value; }; template <typename ObjType, typename IdType> struct VectorisedObjectInfo { const std::vector<ConstTransitivePtr<ObjType> > *vector; //pointer to the appropriate vector std::function<IdType(const ObjType &)> idRetriever; //const IdType ObjType::*idPtr; //pointer to the field representing the position in the vector VectorisedObjectInfo(const std::vector< ConstTransitivePtr<ObjType> > *Vector, std::function<IdType(const ObjType &)> IdGetter) :vector(Vector), idRetriever(IdGetter) { } }; template<typename T> si32 idToNumber(const T &t, typename boost::enable_if<boost::is_convertible<T,si32> >::type * dummy = 0) { return t; } template<typename T, typename NT> NT idToNumber(const BaseForID<T, NT> &t) { return t.getNum(); } /// Class which is responsible for storing and loading data. class DLL_LINKAGE CSerializer { public: typedef std::map<const std::type_info *, boost::any, TypeComparer> TTypeVecMap; TTypeVecMap vectors; //entry must be a pointer to vector containing pointers to the objects of key type bool smartVectorMembersSerialization; bool sendStackInstanceByIds; CSerializer(); ~CSerializer(); virtual void reportState(CLogger * out){}; template <typename T, typename U> void registerVectoredType(const std::vector<T*> *Vector, const std::function<U(const T&)> &idRetriever) { vectors[&typeid(T)] = VectorisedObjectInfo<T, U>(Vector, idRetriever); } template <typename T, typename U> void registerVectoredType(const std::vector<ConstTransitivePtr<T> > *Vector, const std::function<U(const T&)> &idRetriever) { vectors[&typeid(T)] = VectorisedObjectInfo<T, U>(Vector, idRetriever); } template <typename T, typename U> const VectorisedObjectInfo<T, U> *getVectorisedTypeInfo() { const std::type_info *myType = nullptr; // // if(boost::is_base_of<CGObjectInstance, T>::value) //ugly workaround to support also types derived from CGObjectInstance -> if we encounter one, treat it aas CGObj.. // myType = &typeid(CGObjectInstance); // else myType = &typeid(T); TTypeVecMap::iterator i = vectors.find(myType); if(i == vectors.end()) return nullptr; else { assert(!i->second.empty()); assert(i->second.type() == typeid(VectorisedObjectInfo<T, U>)); VectorisedObjectInfo<T, U> *ret = &(boost::any_cast<VectorisedObjectInfo<T, U>&>(i->second)); return ret; } } template <typename T, typename U> T* getVectorItemFromId(const VectorisedObjectInfo<T, U> &oInfo, U id) const { /* if(id < 0) return nullptr;*/ si32 idAsNumber = idToNumber(id); assert(oInfo.vector); assert(static_cast<si32>(oInfo.vector->size()) > idAsNumber); return const_cast<T*>((*oInfo.vector)[idAsNumber].get()); } template <typename T, typename U> U getIdFromVectorItem(const VectorisedObjectInfo<T, U> &oInfo, const T* obj) const { if(!obj) return U(-1); return oInfo.idRetriever(*obj); } void addStdVecItems(CGameState *gs, LibClasses *lib = VLC); }; class IBinaryWriter : public virtual CSerializer { public: virtual int write(const void * data, unsigned size) = 0; }; class DLL_LINKAGE CSaverBase { protected: IBinaryWriter * writer; public: CSaverBase(IBinaryWriter * w): writer(w){}; inline int write(const void * data, unsigned size) { return writer->write(data, size); }; }; class CBasicPointerSaver { public: virtual void savePtr(CSaverBase &ar, const void *data) const =0; virtual ~CBasicPointerSaver(){} }; template <typename T> //metafunction returning CGObjectInstance if T is its derivate or T elsewise struct VectorisedTypeFor { typedef typename //if mpl::eval_if<boost::is_same<CGHeroInstance,T>, mpl::identity<CGHeroInstance>, //else if mpl::eval_if<boost::is_base_of<CGObjectInstance,T>, mpl::identity<CGObjectInstance>, //else mpl::identity<T> > >::type type; }; template <typename U> struct VectorizedIDType { typedef typename //if mpl::eval_if<boost::is_same<CArtifact,U>, mpl::identity<ArtifactID>, //else if mpl::eval_if<boost::is_same<CCreature,U>, mpl::identity<CreatureID>, //else if mpl::eval_if<boost::is_same<CHero,U>, mpl::identity<HeroTypeID>, //else if mpl::eval_if<boost::is_same<CArtifactInstance,U>, mpl::identity<ArtifactInstanceID>, //else if mpl::eval_if<boost::is_same<CGHeroInstance,U>, mpl::identity<HeroTypeID>, //else if mpl::eval_if<boost::is_base_of<CGObjectInstance,U>, mpl::identity<ObjectInstanceID>, //else mpl::identity<si32> > > > > > >::type type; }; template <typename Handler> struct VariantVisitorSaver : boost::static_visitor<> { Handler &h; VariantVisitorSaver(Handler &H):h(H) { } template <typename T> void operator()(const T &t) { h << t; } }; template<typename Ser,typename T> struct SaveIfStackInstance { static bool invoke(Ser &s, const T &data) { return false; } }; template<typename Ser> struct SaveIfStackInstance<Ser, CStackInstance *> { static bool invoke(Ser &s, const CStackInstance* const &data) { assert(data->armyObj); SlotID slot; if(data->getNodeType() == CBonusSystemNode::COMMANDER) slot = SlotID::COMMANDER_SLOT_PLACEHOLDER; else slot = data->armyObj->findStack(data); assert(slot != SlotID()); s << data->armyObj << slot; return true; } }; template<typename Ser,typename T> struct LoadIfStackInstance { static bool invoke(Ser &s, T &data) { return false; } }; template<typename Ser> struct LoadIfStackInstance<Ser, CStackInstance *> { static bool invoke(Ser &s, CStackInstance* &data) { CArmedInstance *armedObj; SlotID slot; s >> armedObj >> slot; if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER) { assert(armedObj->hasStackAtSlot(slot)); data = armedObj->stacks[slot]; } else { auto hero = dynamic_cast<CGHeroInstance *>(armedObj); assert(hero); assert(hero->commander); data = hero->commander; } return true; } }; /// The class which manages saving objects. class DLL_LINKAGE COSer : public CSaverBase { public: struct SaveBoolean { static void invoke(COSer &s, const bool &data) { s.saveBoolean(data); } }; struct SaveBooleanVector { static void invoke(COSer &s, const std::vector<bool> &data) { s.saveBooleanVector(data); } }; template<typename T> struct SavePrimitive { static void invoke(COSer &s, const T &data) { s.savePrimitive(data); } }; template<typename T> struct SaveSerializable { static void invoke(COSer &s, const T &data) { s.saveSerializable(data); } }; template<typename T> struct SaveEnum { static void invoke(COSer &s, const T &data) { s.saveEnum(data); } }; template<typename T> struct SavePointer { static void invoke(COSer &s, const T &data) { s.savePointer(data); } }; template<typename T> struct SaveArray { static void invoke(COSer &s, const T &data) { s.saveArray(data); } }; template<typename T> struct SaveWrong { static void invoke(COSer &s, const T &data) { throw std::runtime_error("Wrong save serialization call!"); } }; template <typename T> class CPointerSaver : public CBasicPointerSaver { public: void savePtr(CSaverBase &ar, const void *data) const override { COSer &s = static_cast<COSer&>(ar); const T *ptr = static_cast<const T*>(data); //T is most derived known type, it's time to call actual serialize const_cast<T&>(*ptr).serialize(s,version); } }; bool saving; std::map<ui16,CBasicPointerSaver*> savers; // typeID => CPointerSaver<serializer,type> std::map<const void*, ui32> savedPointers; bool smartPointerSerialization; COSer(IBinaryWriter * w): CSaverBase(w) { saving=true; smartPointerSerialization = true; } ~COSer() { std::map<ui16,CBasicPointerSaver*>::iterator iter; for(iter = savers.begin(); iter != savers.end(); iter++) delete iter->second; } template<typename T> void addSaver(const T * t = nullptr) { auto ID = typeList.getTypeID(t); if(!savers.count(ID)) savers[ID] = new CPointerSaver<T>; } template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr) { typeList.registerType(b, d); addSaver(b); addSaver(d); } template<class T> COSer & operator<<(const T &t) { this->save(t); return * this; } template<class T> COSer & operator&(const T & t) { return * this << t; } template <typename T> void savePrimitive(const T &data) { this->write(&data,sizeof(data)); } template <typename T> void savePointer(const T &data) { //write if pointer is not nullptr ui8 hlp = (data!=nullptr); *this << hlp; //if pointer is nullptr then we don't need anything more... if(!hlp) return; if(writer->smartVectorMembersSerialization) { typedef typename boost::remove_const<typename boost::remove_pointer<T>::type>::type TObjectType; typedef typename VectorisedTypeFor<TObjectType>::type VType; typedef typename VectorizedIDType<TObjectType>::type IDType; if(const auto *info = writer->getVectorisedTypeInfo<VType, IDType>()) { IDType id = writer->getIdFromVectorItem<VType>(*info, data); *this << id; if(id != IDType(-1)) //vector id is enough return; } } if(writer->sendStackInstanceByIds) { const bool gotSaved = SaveIfStackInstance<COSer,T>::invoke(*this, data); if(gotSaved) return; } if(smartPointerSerialization) { // We might have an object that has multiple inheritance and store it via the non-first base pointer. // Therefore, all pointers need to be normalized to the actual object address. auto actualPointer = typeList.castToMostDerived(data); std::map<const void*,ui32>::iterator i = savedPointers.find(actualPointer); if(i != savedPointers.end()) { //this pointer has been already serialized - write only it's id *this << i->second; return; } //give id to this pointer ui32 pid = (ui32)savedPointers.size(); savedPointers[actualPointer] = pid; *this << pid; } //write type identifier ui16 tid = typeList.getTypeID(data); *this << tid; this->savePointerHlp(tid, data); } //that part of ptr serialization was extracted to allow customization of its behavior in derived classes template <typename T> void savePointerHlp(ui16 tid, const T &data) { if(!tid) *this << *data; //if type is unregistered simply write all data in a standard way else savers[tid]->savePtr(*this, typeList.castToMostDerived(data)); //call serializer specific for our real type } template <typename T> void saveArray(const T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i=0; i < size; i++) *this << data[i]; } template <typename T> void save(const T &data) { typedef //if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Boolean> >, mpl::identity<SaveBoolean>, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<BooleanVector> >, mpl::identity<SaveBooleanVector>, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Primitive> >, mpl::identity<SavePrimitive<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Enum> >, mpl::identity<SaveEnum<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Pointer> >, mpl::identity<SavePointer<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Array> >, mpl::identity<SaveArray<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Serializable> >, mpl::identity<SaveSerializable<T> >, //else mpl::identity<SaveWrong<T> > > > > > > > >::type typex; typex::invoke(* this, data); } template <typename T> void saveSerializable(const T &data) { const_cast<T&>(data).serialize(*this,version); } template <typename T> void saveSerializable(const shared_ptr<T> &data) { T *internalPtr = data.get(); *this << internalPtr; } template <typename T> void saveSerializable(const unique_ptr<T> &data) { T *internalPtr = data.get(); *this << internalPtr; } template <typename T> void saveSerializable(const std::vector<T> &data) { ui32 length = data.size(); *this << length; for(ui32 i=0;i<length;i++) *this << data[i]; } template <typename T, size_t N> void saveSerializable(const std::array<T, N> &data) { for(ui32 i=0; i < N; i++) *this << data[i]; } template <typename T> void saveSerializable(const std::set<T> &data) { std::set<T> &d = const_cast<std::set<T> &>(data); ui32 length = d.size(); *this << length; for(typename std::set<T>::iterator i=d.begin();i!=d.end();i++) *this << *i; } template <typename T, typename U> void saveSerializable(const std::unordered_set<T, U> &data) { std::unordered_set<T, U> &d = const_cast<std::unordered_set<T, U> &>(data); ui32 length = d.size(); *this << length; for(typename std::unordered_set<T, U>::iterator i=d.begin();i!=d.end();i++) *this << *i; } template <typename T> void saveSerializable(const std::list<T> &data) { std::list<T> &d = const_cast<std::list<T> &>(data); ui32 length = d.size(); *this << length; for(typename std::list<T>::iterator i=d.begin();i!=d.end();i++) *this << *i; } void saveSerializable(const std::string &data) { *this << ui32(data.length()); this->write(data.c_str(),data.size()); } template <typename T1, typename T2> void saveSerializable(const std::pair<T1,T2> &data) { *this << data.first << data.second; } template <typename T1, typename T2> void saveSerializable(const std::map<T1,T2> &data) { *this << ui32(data.size()); for(typename std::map<T1,T2>::const_iterator i=data.begin();i!=data.end();i++) *this << i->first << i->second; } template <typename T1, typename T2> void saveSerializable(const std::multimap<T1, T2> &data) { *this << ui32(data.size()); for(typename std::map<T1, T2>::const_iterator i = data.begin(); i != data.end(); i++) *this << i->first << i->second; } template <BOOST_VARIANT_ENUM_PARAMS(typename T)> void saveSerializable(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data) { si32 which = data.which(); *this << which; VariantVisitorSaver<COSer> visitor(*this); boost::apply_visitor(visitor, data); } template <typename T> void saveSerializable(const boost::optional<T> &data) { if(data) { *this << (ui8)1; *this << *data; } else { *this << (ui8)0; } } template <typename E> void saveEnum(const E &data) { si32 writ = static_cast<si32>(data); *this << writ; } void saveBoolean(const bool & data) { ui8 writ = static_cast<ui8>(data); *this << writ; } void saveBooleanVector(const std::vector<bool> & data) { std::vector<ui8> convData; std::copy(data.begin(), data.end(), std::back_inserter(convData)); saveSerializable(convData); } }; class IBinaryReader : public virtual CSerializer { public: virtual int read(void * data, unsigned size) = 0; }; class DLL_LINKAGE CLoaderBase { protected: IBinaryReader * reader; public: CLoaderBase(IBinaryReader * r): reader(r){}; inline int read(void * data, unsigned size) { return reader->read(data, size); }; }; class CBasicPointerLoader { public: virtual const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER virtual ~CBasicPointerLoader(){} }; template <typename T, typename Enable = void> struct ClassObjectCreator { static T *invoke() { static_assert(!std::is_abstract<T>::value, "Cannot call new upon abstract classes!"); return new T(); } }; template<typename T> struct ClassObjectCreator<T, typename std::enable_if<std::is_abstract<T>::value>::type> { static T *invoke() { throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name())); } }; /// The class which manages loading of objects. class DLL_LINKAGE CISer : public CLoaderBase { public: struct LoadBoolean { static void invoke(CISer &s, bool &data) { s.loadBoolean(data); } }; struct LoadBooleanVector { static void invoke(CISer &s, std::vector<bool> &data) { s.loadBooleanVector(data); } }; template<typename T> struct LoadEnum { static void invoke(CISer &s, T &data) { s.loadEnum(data); } }; template<typename T> struct LoadPrimitive { static void invoke(CISer &s, T &data) { s.loadPrimitive(data); } }; template<typename T> struct LoadPointer { static void invoke(CISer &s, T &data) { s.loadPointer(data); } }; template<typename T> struct LoadArray { static void invoke(CISer &s, T &data) { s.loadArray(data); } }; template<typename T> struct LoadSerializable { static void invoke(CISer &s, T &data) { s.loadSerializable(data); } }; template<typename T> struct LoadWrong { static void invoke(CISer &s, const T &data) { throw std::runtime_error("Wrong load serialization call!"); } }; template <typename T> class CPointerLoader : public CBasicPointerLoader { public: const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const override //data is pointer to the ACTUAL POINTER { CISer &s = static_cast<CISer&>(ar); T *&ptr = *static_cast<T**>(data); //create new object under pointer typedef typename boost::remove_pointer<T>::type npT; ptr = ClassObjectCreator<npT>::invoke(); //does new npT or throws for abstract classes s.ptrAllocated(ptr, pid); //T is most derived known type, it's time to call actual serialize ptr->serialize(s,version); return &typeid(T); } }; bool saving; std::map<ui16,CBasicPointerLoader*> loaders; // typeID => CPointerSaver<serializer,type> si32 fileVersion; bool reverseEndianess; //if source has different endianness than us, we reverse bytes std::map<ui32, void*> loadedPointers; std::map<ui32, const std::type_info*> loadedPointersTypes; std::map<const void*, boost::any> loadedSharedPointers; bool smartPointerSerialization; CISer(IBinaryReader * r): CLoaderBase(r) { saving = false; fileVersion = 0; smartPointerSerialization = true; reverseEndianess = false; } ~CISer() { std::map<ui16,CBasicPointerLoader*>::iterator iter; for(iter = loaders.begin(); iter != loaders.end(); iter++) delete iter->second; } template<typename T> void addLoader(const T * t = nullptr) { auto ID = typeList.getTypeID(t); if(!loaders.count(ID)) loaders[ID] = new CPointerLoader<T>; } template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr) { typeList.registerType(b, d); addLoader(b); addLoader(d); } template<class T> CISer & operator>>(T &t) { this->load(t); return * this; } template<class T> CISer & operator&(T & t) { return * this >> t; } int write(const void * data, unsigned size); template <typename T> void load(T &data) { typedef //if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Boolean> >, mpl::identity<LoadBoolean>, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<BooleanVector> >, mpl::identity<LoadBooleanVector>, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Primitive> >, mpl::identity<LoadPrimitive<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Enum> >, mpl::identity<LoadEnum<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Pointer> >, mpl::identity<LoadPointer<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Array> >, mpl::identity<LoadArray<T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Serializable> >, mpl::identity<LoadSerializable<T> >, //else mpl::identity<LoadWrong<T> > > > > > > > >::type typex; typex::invoke(* this, data); } template <typename T> void loadPrimitive(T &data) { if(0) //for testing #989 { this->read(&data,sizeof(data)); } else { unsigned length = sizeof(data); char* dataPtr = (char*)&data; this->read(dataPtr,length); if(reverseEndianess) std::reverse(dataPtr, dataPtr + length); } } template <typename T> void loadSerializableBySerializeCall(T &data) { ////that const cast is evil because it allows to implicitly overwrite const objects when deserializing typedef typename boost::remove_const<T>::type nonConstT; nonConstT &hlp = const_cast<nonConstT&>(data); hlp.serialize(*this,fileVersion); //data.serialize(*this,myVersion); } template <typename T> void loadSerializable(T &data) { loadSerializableBySerializeCall(data); } template <typename T> void loadArray(T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i = 0; i < size; i++) *this >> data[i]; } template <typename T> void loadPointer(T &data) { ui8 hlp; *this >> hlp; if(!hlp) { data = nullptr; return; } if(reader->smartVectorMembersSerialization) { typedef typename boost::remove_const<typename boost::remove_pointer<T>::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance typedef typename VectorisedTypeFor<TObjectType>::type VType; //eg: CGHeroInstance -> CGobjectInstance typedef typename VectorizedIDType<TObjectType>::type IDType; if(const auto *info = reader->getVectorisedTypeInfo<VType, IDType>()) { IDType id; *this >> id; if(id != IDType(-1)) { data = static_cast<T>(reader->getVectorItemFromId<VType, IDType>(*info, id)); return; } } } if(reader->sendStackInstanceByIds) { bool gotLoaded = LoadIfStackInstance<CISer,T>::invoke(* this, data); if(gotLoaded) return; } ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id) if(smartPointerSerialization) { *this >> pid; //get the id std::map<ui32, void*>::iterator i = loadedPointers.find(pid); //lookup if(i != loadedPointers.end()) { // We already got this pointer // Cast it in case we are loading it to a non-first base pointer assert(loadedPointersTypes.count(pid)); data = reinterpret_cast<T>(typeList.castRaw(i->second, loadedPointersTypes.at(pid), &typeid(typename boost::remove_const<typename boost::remove_pointer<T>::type>::type))); return; } } //get type id ui16 tid; *this >> tid; this->loadPointerHlp(tid, data, pid); } //that part of ptr deserialization was extracted to allow customization of its behavior in derived classes template <typename T> void loadPointerHlp( ui16 tid, T & data, ui32 pid ) { if(!tid) { typedef typename boost::remove_pointer<T>::type npT; typedef typename boost::remove_const<npT>::type ncpT; data = ClassObjectCreator<ncpT>::invoke(); ptrAllocated(data, pid); *this >> *data; } else { auto typeInfo = loaders[tid]->loadPtr(*this,&data, pid); data = reinterpret_cast<T>(typeList.castRaw((void*)data, typeInfo, &typeid(typename boost::remove_const<typename boost::remove_pointer<T>::type>::type))); } } template <typename T> void ptrAllocated(const T *ptr, ui32 pid) { if(smartPointerSerialization && pid != 0xffffffff) { loadedPointersTypes[pid] = &typeid(T); loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt } } #define READ_CHECK_U32(x) \ ui32 length; \ *this >> length; \ if(length > 500000) \ { \ logGlobal->warnStream() << "Warning: very big length: " << length;\ reader->reportState(logGlobal); \ }; template <typename T> void loadSerializable(shared_ptr<T> &data) { typedef typename boost::remove_const<T>::type NonConstT; NonConstT *internalPtr; *this >> internalPtr; void *internalPtrDerived = typeList.castToMostDerived(internalPtr); if(internalPtr) { auto itr = loadedSharedPointers.find(internalPtrDerived); if(itr != loadedSharedPointers.end()) { // This pointers is already loaded. The "data" needs to be pointed to it, // so their shared state is actually shared. try { auto actualType = typeList.getTypeInfo(internalPtr); auto typeWeNeedToReturn = typeList.getTypeInfo<T>(); if(*actualType == *typeWeNeedToReturn) { // No casting needed, just unpack already stored shared_ptr and return it data = boost::any_cast<std::shared_ptr<T>>(itr->second); } else { // We need to perform series of casts auto ret = typeList.castShared(itr->second, actualType, typeWeNeedToReturn); data = boost::any_cast<std::shared_ptr<T>>(ret); } } catch(std::exception &e) { logGlobal->errorStream() << e.what(); logGlobal->errorStream() << boost::format("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME") % itr->second.type().name() % typeid(std::shared_ptr<T>).name(); //TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa) assert(0); } } else { auto hlp = std::shared_ptr<NonConstT>(internalPtr); data = hlp; //possibly adds const loadedSharedPointers[internalPtrDerived] = typeList.castSharedToMostDerived(hlp); } } else data.reset(); } template <typename T> void loadSerializable(unique_ptr<T> &data) { T *internalPtr; *this >> internalPtr; data.reset(internalPtr); } template <typename T> void loadSerializable(std::vector<T> &data) { READ_CHECK_U32(length); data.resize(length); for(ui32 i=0;i<length;i++) *this >> data[i]; } template <typename T, size_t N> void loadSerializable(std::array<T, N> &data) { for(ui32 i = 0; i < N; i++) *this >> data[i]; } template <typename T> void loadSerializable(std::set<T> &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i<length;i++) { *this >> ins; data.insert(ins); } } template <typename T, typename U> void loadSerializable(std::unordered_set<T, U> &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i<length;i++) { *this >> ins; data.insert(ins); } } template <typename T> void loadSerializable(std::list<T> &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i<length;i++) { *this >> ins; data.push_back(ins); } } template <typename T1, typename T2> void loadSerializable(std::pair<T1,T2> &data) { *this >> data.first >> data.second; } template <typename T1, typename T2> void loadSerializable(std::map<T1,T2> &data) { READ_CHECK_U32(length); data.clear(); T1 key; T2 value; for(ui32 i=0;i<length;i++) { *this >> key >> value; data.insert(std::pair<T1, T2>(std::move(key), std::move(value))); } } template <typename T1, typename T2> void loadSerializable(std::multimap<T1, T2> &data) { READ_CHECK_U32(length); data.clear(); T1 key; T2 value; for(ui32 i = 0; i < length; i++) { *this >> key >> value; data.insert(std::pair<T1, T2>(std::move(key), std::move(value))); } } void loadSerializable(std::string &data) { READ_CHECK_U32(length); data.resize(length); this->read((void*)data.c_str(),length); } template <BOOST_VARIANT_ENUM_PARAMS(typename T)> void loadSerializable(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data) { typedef boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> TVariant; VariantLoaderHelper<TVariant, CISer> loader(*this); si32 which; *this >> which; assert(which < loader.funcs.size()); data = loader.funcs.at(which)(); } template <typename T> void loadSerializable(boost::optional<T> & data) { ui8 present; *this >> present; if(present) { T t; *this >> t; data = t; } else { data = boost::optional<T>(); } } // void loadSerializable(CStackInstance *&s) // { // if(sendStackInstanceByIds) // { // CArmedInstance *armed; // SlotID slot; // *this >> armed >> slot; // assert(armed->hasStackAtSlot(slot)); // s = armed->stacks[slot]; // } // else // loadSerializableBySerializeCall(s); // } template <typename E> void loadEnum(E &data) { si32 read; *this >> read; data = static_cast<E>(read); } void loadBoolean(bool &data) { ui8 read; *this >> read; data = static_cast<bool>(read); } void loadBooleanVector(std::vector<bool> & data) { std::vector<ui8> convData; loadSerializable(convData); convData.resize(data.size()); range::copy(convData, data.begin()); } }; class DLL_LINKAGE CSaveFile :public IBinaryWriter { public: COSer serializer; std::string fName; unique_ptr<std::ofstream> sfile; CSaveFile(const std::string &fname); //throws! ~CSaveFile(); int write(const void * data, unsigned size) override; void openNextFile(const std::string &fname); //throws! void clear(); void reportState(CLogger * out) override; void putMagicBytes(const std::string &text); template<class T> CSaveFile & operator<<(const T &t) { serializer << t; return * this; } }; class DLL_LINKAGE CLoadFile : public IBinaryReader { public: CISer serializer; std::string fName; unique_ptr<boost::filesystem::ifstream> sfile; CLoadFile(const boost::filesystem::path & fname, int minimalVersion = version); //throws! ~CLoadFile(); int read(void * data, unsigned size) override; //throws! void openNextFile(const boost::filesystem::path & fname, int minimalVersion); //throws! void clear(); void reportState(CLogger * out) override; void checkMagicBytes(const std::string & text); template<class T> CLoadFile & operator>>(T &t) { serializer >> t; return * this; } }; class DLL_LINKAGE CLoadIntegrityValidator : public IBinaryReader { public: CISer serializer; unique_ptr<CLoadFile> primaryFile, controlFile; bool foundDesync; CLoadIntegrityValidator(const std::string &primaryFileName, const std::string &controlFileName, int minimalVersion = version); //throws! int read( void * data, unsigned size) override; //throws! void checkMagicBytes(const std::string &text); unique_ptr<CLoadFile> decay(); //returns primary file. CLoadIntegrityValidator stops being usable anymore }; typedef boost::asio::basic_stream_socket < boost::asio::ip::tcp , boost::asio::stream_socket_service<boost::asio::ip::tcp> > TSocket; typedef boost::asio::basic_socket_acceptor<boost::asio::ip::tcp, boost::asio::socket_acceptor_service<boost::asio::ip::tcp> > TAcceptor; class DLL_LINKAGE CConnection : public IBinaryReader, public IBinaryWriter { //CGameState *gs; CConnection(void); void init(); void reportState(CLogger * out) override; public: CISer iser; COSer oser; boost::mutex *rmx, *wmx; // read/write mutexes TSocket * socket; bool logging; bool connected; bool myEndianess, contactEndianess; //true if little endian, if endianness is different we'll have to revert received multi-byte vars boost::asio::io_service *io_service; std::string name; //who uses this connection int connectionID; boost::thread *handler; bool receivedStop, sendStop; CConnection(std::string host, std::string port, std::string Name); CConnection(TAcceptor * acceptor, boost::asio::io_service *Io_service, std::string Name); CConnection(TSocket * Socket, std::string Name); //use immediately after accepting connection into socket int write(const void * data, unsigned size) override; int read(void * data, unsigned size) override; void close(); bool isOpen() const; template<class T> CConnection &operator&(const T&); virtual ~CConnection(void); CPack *retreivePack(); //gets from server next pack (allocates it with new) void sendPackToServer(const CPack &pack, PlayerColor player, ui32 requestID); void disableStackSendingByID(); void enableStackSendingByID(); void disableSmartPointerSerialization(); void enableSmartPointerSerializatoin(); void disableSmartVectorMemberSerialization(); void enableSmartVectorMemberSerializatoin(); void prepareForSendingHeroes(); //disables sending vectorised, enables smart pointer serialization, clears saved/loaded ptr cache void enterPregameConnectionMode(); template<class T> CConnection & operator>>(T &t) { iser >> t; return * this; } template<class T> CConnection & operator<<(const T &t) { oser << t; return * this; } }; DLL_LINKAGE std::ostream &operator<<(std::ostream &str, const CConnection &cpc); // Serializer that stores objects in the dynamic buffer. Allows performing deep object copies. class DLL_LINKAGE CMemorySerializer : public IBinaryReader, public IBinaryWriter { std::vector<ui8> buffer; size_t readPos; //index of the next byte to be read public: CISer iser; COSer oser; int read(void * data, unsigned size) override; //throws! int write(const void * data, unsigned size) override; CMemorySerializer(); template <typename T> static unique_ptr<T> deepCopy(const T &data) { CMemorySerializer mem; mem.oser << &data; unique_ptr<T> ret; mem.iser >> ret; return ret; } }; template<typename T> class CApplier { public: std::map<ui16,T*> apps; ~CApplier() { typename std::map<ui16, T*>::iterator iter; for(iter = apps.begin(); iter != apps.end(); iter++) delete iter->second; } template<typename RegisteredType> void addApplier(ui16 ID) { if(!apps.count(ID)) { RegisteredType * rtype = nullptr; apps[ID] = T::getApplier(rtype); } } template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr) { typeList.registerType(b, d); addApplier<Base>(typeList.getTypeID(b)); addApplier<Derived>(typeList.getTypeID(d)); } };