/* * CZonePlacer.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "../CRandomGenerator.h" #include "CZonePlacer.h" #include "CRmgTemplateZone.h" #include "../mapping/CMap.h" #include "CZoneGraphGenerator.h" class CRandomGenerator; CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone) { } CZonePlacer::CZonePlacer(CMapGenerator * Gen) : width(0), height(0), scaleX(0), scaleY(0), mapSize(0), gravityConstant(0), stiffnessConstant(0), gen(Gen) { } CZonePlacer::~CZonePlacer() { } int3 CZonePlacer::cords (const float3 f) const { return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z); } float CZonePlacer::getDistance (float distance) const { return (distance ? distance * distance : 1e-6); } void CZonePlacer::placeZones(const CMapGenOptions * mapGenOptions, CRandomGenerator * rand) { logGlobal->infoStream() << "Starting zone placement"; width = mapGenOptions->getWidth(); height = mapGenOptions->getHeight(); auto zones = gen->getZones(); bool underground = mapGenOptions->getHasTwoLevels(); /* gravity-based algorithm let's assume we try to fit N circular zones with radius = size on a map */ gravityConstant = 4e-3; stiffnessConstant = 4e-3; TZoneVector zonesVector(zones.begin(), zones.end()); assert (zonesVector.size()); RandomGeneratorUtil::randomShuffle(zonesVector, *rand); //0. set zone sizes and surface / underground level prepareZones(zones, zonesVector, underground, rand); //gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back //remember best solution float bestTotalDistance = 1e10; float bestTotalOverlap = 1e10; std::map bestSolution; TForceVector forces; TForceVector totalForces; // both attraction and pushback, overcomplicated? TDistanceVector distances; TDistanceVector overlaps; const int MAX_ITERATIONS = 100; for (int i = 0; i < MAX_ITERATIONS; ++i) //until zones reach their desired size and fill the map tightly { //1. attract connected zones attractConnectedZones(zones, forces, distances); for (auto zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); totalForces[zone.first] = zone.second; //override } //2. separate overlapping zones separateOverlappingZones(zones, forces, overlaps); for (auto zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); totalForces[zone.first] += zone.second; //accumulate } //3. now perform drastic movement of zone that is completely not linked moveOneZone(zones, totalForces, distances, overlaps); //4. NOW after everything was moved, re-evaluate zone positions attractConnectedZones(zones, forces, distances); separateOverlappingZones(zones, forces, overlaps); float totalDistance = 0; float totalOverlap = 0; for (auto zone : distances) //find most misplaced zone { totalDistance += zone.second; float overlap = overlaps[zone.first]; totalOverlap += overlap; } //check fitness function bool improvement = false; if (bestTotalDistance > 0 && bestTotalOverlap > 0) { if (totalDistance * totalOverlap < bestTotalDistance * bestTotalOverlap) //multiplication is better for auto-scaling, but stops working if one factor is 0 improvement = true; } else if (totalDistance + totalOverlap < bestTotalDistance + bestTotalOverlap) improvement = true; logGlobal->traceStream() << boost::format("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s") % totalDistance % totalOverlap % improvement; //save best solution if (improvement) { bestTotalDistance = totalDistance; bestTotalOverlap = totalOverlap; for (auto zone : zones) bestSolution[zone.second] = zone.second->getCenter(); } } logGlobal->traceStream() << boost::format("Best fitness reached: total distance %2.4f, total overlap %2.4f") % bestTotalDistance % bestTotalOverlap; for (auto zone : zones) //finalize zone positions { zone.second->setPos (cords (bestSolution[zone.second])); logGlobal->traceStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos(); } } void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, CRandomGenerator * rand) { std::vector totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map const float radius = 0.4f; const float pi2 = 6.28f; int zonesOnLevel[2] = { 0, 0 }; //even distribution for surface / underground zones. Surface zones always have priority. TZoneVector zonesToPlace; std::map levels; //first pass - determine fixed surface for zones for (auto zone : zonesVector) { if (!underground) //this step is ignored zonesToPlace.push_back(zone); else //place players depending on their factions { if (boost::optional owner = zone.second->getOwner()) { auto player = PlayerColor(*owner - 1); auto playerSettings = gen->mapGenOptions->getPlayersSettings(); si32 faction = CMapGenOptions::CPlayerSettings::RANDOM_TOWN; if (vstd::contains(playerSettings, player)) faction = playerSettings[player].getStartingTown(); else logGlobal->errorStream() << boost::format("Can't find info for player %d (starting zone)") % player.getNum(); if (faction == CMapGenOptions::CPlayerSettings::RANDOM_TOWN) //TODO: check this after a town has already been randomized zonesToPlace.push_back(zone); else { switch (VLC->townh->factions[faction]->nativeTerrain) { case ETerrainType::GRASS: case ETerrainType::SWAMP: case ETerrainType::SNOW: case ETerrainType::SAND: case ETerrainType::ROUGH: //surface zonesOnLevel[0]++; levels[zone.first] = 0; break; case ETerrainType::LAVA: case ETerrainType::SUBTERRANEAN: //underground zonesOnLevel[1]++; levels[zone.first] = 1; break; case ETerrainType::DIRT: default: //any / random zonesToPlace.push_back(zone); break; } } } else //no starting zone or no underground altogether { zonesToPlace.push_back(zone); } } } for (auto zone : zonesToPlace) { if (underground) //only then consider underground zones { int level = 0; if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones level = 1; else level = 0; levels[zone.first] = level; zonesOnLevel[level]++; } else levels[zone.first] = 0; } for (auto zone : zonesVector) { int level = levels[zone.first]; totalSize[level] += (zone.second->getSize() * zone.second->getSize()); float randomAngle = rand->nextDouble(0, pi2); zone.second->setCenter(float3(0.5f + std::sin(randomAngle) * radius, 0.5f + std::cos(randomAngle) * radius, level)); //place zones around circle } /* prescale zones formula: sum((prescaler*n)^2)*pi = WH prescaler = sqrt((WH)/(sum(n^2)*pi)) */ std::vector prescaler = { 0, 0 }; for (int i = 0; i < 2; i++) prescaler[i] = sqrt((width * height) / (totalSize[i] * 3.14f)); mapSize = sqrt(width * height); for (auto zone : zones) { zone.second->setSize(zone.second->getSize() * prescaler[zone.second->getCenter().z]); } } void CZonePlacer::attractConnectedZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &distances) { for (auto zone : zones) { float3 forceVector(0, 0, 0); float3 pos = zone.second->getCenter(); float totalDistance = 0; for (auto con : zone.second->getConnections()) { auto otherZone = zones[con]; float3 otherZoneCenter = otherZone->getCenter(); float distance = pos.dist2d(otherZoneCenter); float minDistance = 0; if (pos.z != otherZoneCenter.z) minDistance = 0; //zones on different levels can overlap completely else minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates if (distance > minDistance) { //WARNING: compiler used to 'optimize' that line so it never actually worked float overlapMultiplier = (pos.z == otherZoneCenter.z) ? (minDistance / distance) : 1.0f; forceVector += (((otherZoneCenter - pos)* overlapMultiplier / getDistance(distance))) * gravityConstant; //positive value totalDistance += (distance - minDistance); } } distances[zone.second] = totalDistance; forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector; } } void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps) { for (auto zone : zones) { float3 forceVector(0, 0, 0); float3 pos = zone.second->getCenter(); float overlap = 0; //separate overlaping zones for (auto otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); //zones on different levels don't push away if (zone == otherZone || pos.z != otherZoneCenter.z) continue; float distance = pos.dist2d(otherZoneCenter); float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize; if (distance < minDistance) { forceVector -= (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3))) / getDistance(distance)) * stiffnessConstant; //negative value overlap += (minDistance - distance); //overlapping of small zones hurts us more } } //move zones away from boundaries //do not scale boundary distance - zones tend to get squashed float size = zone.second->getSize() / mapSize; auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y) { float3 boundary = float3(x, y, pos.z); float distance = pos.dist2d(boundary); overlap += std::max(0, distance - size); //check if we're closer to map boundary than value of zone size forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stiffnessConstant; //negative value }; if (pos.x < size) { pushAwayFromBoundary(0, pos.y); } if (pos.x > 1 - size) { pushAwayFromBoundary(1, pos.y); } if (pos.y < size) { pushAwayFromBoundary(pos.x, 0); } if (pos.y > 1 - size) { pushAwayFromBoundary(pos.x, 1); } overlaps[zone.second] = overlap; forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector; } } void CZonePlacer::moveOneZone(TZoneMap &zones, TForceVector &totalForces, TDistanceVector &distances, TDistanceVector &overlaps) { float maxRatio = 0; const int maxDistanceMovementRatio = zones.size() * zones.size(); //experimental - the more zones, the greater total distance expected CRmgTemplateZone * misplacedZone = nullptr; float totalDistance = 0; float totalOverlap = 0; for (auto zone : distances) //find most misplaced zone { totalDistance += zone.second; float overlap = overlaps[zone.first]; totalOverlap += overlap; float ratio = (zone.second + overlap) / totalForces[zone.first].mag(); //if distance to actual movement is long, the zone is misplaced if (ratio > maxRatio) { maxRatio = ratio; misplacedZone = zone.first; } } logGlobal->traceStream() << boost::format("Worst misplacement/movement ratio: %3.2f") % maxRatio; if (maxRatio > maxDistanceMovementRatio && misplacedZone) { CRmgTemplateZone * targetZone = nullptr; float3 ourCenter = misplacedZone->getCenter(); if (totalDistance > totalOverlap) { //find most distant zone that should be attracted and move inside it float maxDistance = 0; for (auto con : misplacedZone->getConnections()) { auto otherZone = zones[con]; float distance = otherZone->getCenter().dist2dSQ(ourCenter); if (distance > maxDistance) { maxDistance = distance; targetZone = otherZone; } } if (targetZone) //TODO: consider refactoring duplicated code { float3 vec = targetZone->getCenter() - ourCenter; float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize; logGlobal->traceStream() << boost::format("Trying to move zone %d %s towards %d %s. Old distance %f") % misplacedZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxDistance; logGlobal->traceStream() << boost::format("direction is %s") % vec(); misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(misplacedZone->getCenter()); } } else { float maxOverlap = 0; for (auto otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z) continue; float distance = otherZoneCenter.dist2dSQ(ourCenter); if (distance > maxOverlap) { maxOverlap = distance; targetZone = otherZone.second; } } if (targetZone) { float3 vec = ourCenter - targetZone->getCenter(); float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize; logGlobal->traceStream() << boost::format("Trying to move zone %d %s away from %d %s. Old distance %f") % misplacedZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxOverlap; logGlobal->traceStream() << boost::format("direction is %s") % vec(); misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(misplacedZone->getCenter()); } } } } float CZonePlacer::metric (const int3 &A, const int3 &B) const { /* Matlab code dx = abs(A(1) - B(1)); %distance must be symmetric dy = abs(A(2) - B(2)); d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ... 0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy; */ float dx = abs(A.x - B.x) * scaleX; float dy = abs(A.y - B.y) * scaleY; //Horner scheme return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618)); } void CZonePlacer::assignZones(const CMapGenOptions * mapGenOptions) { logGlobal->infoStream() << "Starting zone colouring"; auto width = mapGenOptions->getWidth(); auto height = mapGenOptions->getHeight(); //scale to Medium map to ensure smooth results scaleX = 72.f / width; scaleY = 72.f / height; auto zones = gen->getZones(); typedef std::pair Dpair; std::vector distances; distances.reserve(zones.size()); //now place zones correctly and assign tiles to each zone auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool { //bigger zones have smaller distance return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize(); }; auto moveZoneToCenterOfMass = [](CRmgTemplateZone * zone) -> void { int3 total(0, 0, 0); auto tiles = zone->getTileInfo(); for (auto tile : tiles) { total += tile; } int size = tiles.size(); assert(size); zone->setPos(int3(total.x / size, total.y / size, total.z / size)); }; int levels = gen->map->twoLevel ? 2 : 1; /* 1. Create Voronoi diagram 2. find current center of mass for each zone. Move zone to that center to balance zones sizes */ for (int i = 0; igetPos().z == k) distances.push_back(std::make_pair(zone.second, pos.dist2dSQ(zone.second->getPos()))); else distances.push_back(std::make_pair(zone.second, std::numeric_limits::max())); } boost::min_element(distances, compareByDistance)->first->addTile(pos); //closest tile belongs to zone } } } for (auto zone : zones) moveZoneToCenterOfMass(zone.second); //assign actual tiles to each zone using nonlinear norm for fine edges for (auto zone : zones) zone.second->clearTiles(); //now populate them again for (int i=0; igetPos().z == k) distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos()))); else distances.push_back (std::make_pair(zone.second, std::numeric_limits::max())); } auto zone = boost::min_element(distances, compareByDistance)->first; //closest tile belongs to zone zone->addTile(pos); gen->setZoneID(pos, zone->getId()); } } } //set position (town position) to center of mass of irregular zone for (auto zone : zones) { moveZoneToCenterOfMass(zone.second); //TODO: similiar for islands #define CREATE_FULL_UNDERGROUND true //consider linking this with water amount if (zone.second->getPos().z) { if (!CREATE_FULL_UNDERGROUND) zone.second->discardDistantTiles(gen, zone.second->getSize() + 1); //make sure that terrain inside zone is not a rock //FIXME: reorder actions? zone.second->paintZoneTerrain (gen, ETerrainType::SUBTERRANEAN); } } logGlobal->infoStream() << "Finished zone colouring"; }