/* * BinaryDeserializer.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #pragma once #include #include "CTypeList.h" #include "../mapObjects/CGHeroInstance.h" #include "../../Global.h" class CStackInstance; class FileStream; class DLL_LINKAGE CLoaderBase { protected: IBinaryReader * reader; public: CLoaderBase(IBinaryReader * r): reader(r){}; inline int read(void * data, unsigned size) { return reader->read(data, size); }; }; /// Main class for deserialization of classes from binary form /// Effectively revesed version of BinarySerializer class DLL_LINKAGE BinaryDeserializer : public CLoaderBase { template struct VariantLoaderHelper { Source & source; std::vector> funcs; VariantLoaderHelper(Source & source): source(source) { boost::mpl::for_each(std::ref(*this)); } template void operator()(Type) { funcs.push_back([&]() -> Variant { Type obj; source.load(obj); return Variant(obj); }); } }; template struct LoadIfStackInstance { static bool invoke(Ser &s, T &data) { return false; } }; template struct LoadIfStackInstance { static bool invoke(Ser &s, CStackInstance* &data) { CArmedInstance *armedObj; SlotID slot; s.load(armedObj); s.load(slot); if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER) { assert(armedObj->hasStackAtSlot(slot)); data = armedObj->stacks[slot]; } else { auto hero = dynamic_cast(armedObj); assert(hero); assert(hero->commander); data = hero->commander; } return true; } }; template struct ClassObjectCreator { static T *invoke() { static_assert(!std::is_abstract::value, "Cannot call new upon abstract classes!"); return new T(); } }; template struct ClassObjectCreator::value>::type> { static T *invoke() { throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name())); } }; STRONG_INLINE ui32 readAndCheckLength() { ui32 length; load(length); if(length > 500000) { logGlobal->warn("Warning: very big length: %d", length); reader->reportState(logGlobal); }; return length; } template class CPointerLoader; class CBasicPointerLoader { public: virtual const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER virtual ~CBasicPointerLoader(){} template static CBasicPointerLoader *getApplier(const T * t=nullptr) { return new CPointerLoader(); } }; template class CPointerLoader : public CBasicPointerLoader { public: const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const override //data is pointer to the ACTUAL POINTER { BinaryDeserializer &s = static_cast(ar); T *&ptr = *static_cast(data); //create new object under pointer typedef typename std::remove_pointer::type npT; ptr = ClassObjectCreator::invoke(); //does new npT or throws for abstract classes s.ptrAllocated(ptr, pid); //T is most derived known type, it's time to call actual serialize assert(s.fileVersion != 0); ptr->serialize(s,s.fileVersion); return &typeid(T); } }; CApplier applier; int write(const void * data, unsigned size); public: bool reverseEndianess; //if source has different endianness than us, we reverse bytes si32 fileVersion; std::map loadedPointers; std::map loadedPointersTypes; std::map loadedSharedPointers; bool smartPointerSerialization; bool saving; BinaryDeserializer(IBinaryReader * r): CLoaderBase(r) { saving = false; fileVersion = 0; smartPointerSerialization = true; reverseEndianess = false; } template BinaryDeserializer & operator&(T & t) { this->load(t); return * this; } template < class T, typename std::enable_if < std::is_fundamental::value && !std::is_same::value, int >::type = 0 > void load(T &data) { unsigned length = sizeof(data); char* dataPtr = (char*)&data; this->read(dataPtr,length); if(reverseEndianess) std::reverse(dataPtr, dataPtr + length); } template < typename T, typename std::enable_if < is_serializeable::value, int >::type = 0 > void load(T &data) { assert( fileVersion != 0 ); ////that const cast is evil because it allows to implicitly overwrite const objects when deserializing typedef typename std::remove_const::type nonConstT; nonConstT &hlp = const_cast(data); hlp.serialize(*this,fileVersion); } template < typename T, typename std::enable_if < std::is_array::value, int >::type = 0 > void load(T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i = 0; i < size; i++) load(data[i]); } template < typename T, typename std::enable_if < std::is_enum::value, int >::type = 0 > void load(T &data) { si32 read; load( read ); data = static_cast(read); } template < typename T, typename std::enable_if < std::is_same::value, int >::type = 0 > void load(T &data) { ui8 read; load( read ); data = static_cast(read); } template < typename T, typename std::enable_if < std::is_same >::value, int >::type = 0 > void load(T & data) { std::vector convData; load(convData); convData.resize(data.size()); range::copy(convData, data.begin()); } template ::value, int >::type = 0> void load(std::vector &data) { ui32 length = readAndCheckLength(); data.resize(length); for(ui32 i=0;i::value, int >::type = 0 > void load(T &data) { ui8 hlp; load( hlp ); if(!hlp) { data = nullptr; return; } if(reader->smartVectorMembersSerialization) { typedef typename std::remove_const::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance typedef typename VectorizedTypeFor::type VType; //eg: CGHeroInstance -> CGobjectInstance typedef typename VectorizedIDType::type IDType; if(const auto *info = reader->getVectorizedTypeInfo()) { IDType id; load(id); if(id != IDType(-1)) { data = static_cast(reader->getVectorItemFromId(*info, id)); return; } } } if(reader->sendStackInstanceByIds) { bool gotLoaded = LoadIfStackInstance::invoke(* this, data); if(gotLoaded) return; } ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id) if(smartPointerSerialization) { load( pid ); //get the id std::map::iterator i = loadedPointers.find(pid); //lookup if(i != loadedPointers.end()) { // We already got this pointer // Cast it in case we are loading it to a non-first base pointer assert(loadedPointersTypes.count(pid)); data = reinterpret_cast(typeList.castRaw(i->second, loadedPointersTypes.at(pid), &typeid(typename std::remove_const::type>::type))); return; } } //get type id ui16 tid; load( tid ); if(!tid) { typedef typename std::remove_pointer::type npT; typedef typename std::remove_const::type ncpT; data = ClassObjectCreator::invoke(); ptrAllocated(data, pid); load(*data); } else { auto app = applier.getApplier(tid); if(app == nullptr) { logGlobal->error("load %d %d - no loader exists", tid, pid); data = nullptr; return; } auto typeInfo = app->loadPtr(*this,&data, pid); data = reinterpret_cast(typeList.castRaw((void*)data, typeInfo, &typeid(typename std::remove_const::type>::type))); } } template void ptrAllocated(const T *ptr, ui32 pid) { if(smartPointerSerialization && pid != 0xffffffff) { loadedPointersTypes[pid] = &typeid(T); loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt } } template void registerType(const Base * b = nullptr, const Derived * d = nullptr) { applier.registerType(b, d); } template void load(std::shared_ptr &data) { typedef typename std::remove_const::type NonConstT; NonConstT *internalPtr; load(internalPtr); void *internalPtrDerived = typeList.castToMostDerived(internalPtr); if(internalPtr) { auto itr = loadedSharedPointers.find(internalPtrDerived); if(itr != loadedSharedPointers.end()) { // This pointers is already loaded. The "data" needs to be pointed to it, // so their shared state is actually shared. try { auto actualType = typeList.getTypeInfo(internalPtr); auto typeWeNeedToReturn = typeList.getTypeInfo(); if(*actualType == *typeWeNeedToReturn) { // No casting needed, just unpack already stored shared_ptr and return it data = boost::any_cast>(itr->second); } else { // We need to perform series of casts auto ret = typeList.castShared(itr->second, actualType, typeWeNeedToReturn); data = boost::any_cast>(ret); } } catch(std::exception &e) { logGlobal->error(e.what()); logGlobal->error("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME", itr->second.type().name(), typeid(std::shared_ptr).name()); //TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa) throw; } } else { auto hlp = std::shared_ptr(internalPtr); data = hlp; loadedSharedPointers[internalPtrDerived] = typeList.castSharedToMostDerived(hlp); } } else data.reset(); } template void load(std::shared_ptr &data) //version of the above for const ptr { typedef typename std::remove_const::type NonConstT; NonConstT *internalPtr; load(internalPtr); void *internalPtrDerived = typeList.castToMostDerived(internalPtr); if(internalPtr) { auto itr = loadedSharedPointers.find(internalPtrDerived); if(itr != loadedSharedPointers.end()) { // This pointer is already loaded. The "data" needs to be pointed to it, // so their shared state is actually shared. try { auto actualType = typeList.getTypeInfo(internalPtr); auto typeWeNeedToReturn = typeList.getTypeInfo(); if(*actualType == *typeWeNeedToReturn) { // No casting needed, just unpack already stored shared_ptr and return it data = boost::any_cast>(itr->second); } else { // We need to perform series of casts auto ret = typeList.castShared(itr->second, actualType, typeWeNeedToReturn); data = boost::any_cast>(ret); } } catch(std::exception &e) { logGlobal->error(e.what()); logGlobal->error("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME", itr->second.type().name(), typeid(std::shared_ptr).name()); //TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa) throw; } } else { auto hlp = std::shared_ptr(internalPtr); data = hlp; //possibly adds const loadedSharedPointers[internalPtrDerived] = typeList.castSharedToMostDerived(hlp); } } else data.reset(); } template void load(std::unique_ptr &data) { T *internalPtr; load( internalPtr ); data.reset(internalPtr); } template void load(std::array &data) { for(ui32 i = 0; i < N; i++) load( data[i] ); } template void load(std::set &data) { ui32 length = readAndCheckLength(); data.clear(); T ins; for(ui32 i=0;i void load(std::unordered_set &data) { ui32 length = readAndCheckLength(); data.clear(); T ins; for(ui32 i=0;i void load(std::list &data) { ui32 length = readAndCheckLength(); data.clear(); T ins; for(ui32 i=0;i void load(std::pair &data) { load(data.first); load(data.second); } template void load(std::map &data) { ui32 length = readAndCheckLength(); data.clear(); T1 key; T2 value; for(ui32 i=0;i(std::move(key), std::move(value))); } } template void load(std::multimap &data) { ui32 length = readAndCheckLength(); data.clear(); T1 key; T2 value; for(ui32 i = 0; i < length; i++) { load(key); load(value); data.insert(std::pair(std::move(key), std::move(value))); } } void load(std::string &data) { ui32 length = readAndCheckLength(); data.resize(length); this->read((void*)data.c_str(),length); } template void load(boost::variant &data) { typedef boost::variant TVariant; VariantLoaderHelper loader(*this); si32 which; load( which ); assert(which < loader.funcs.size()); data = loader.funcs.at(which)(); } template void load(boost::optional & data) { ui8 present; load( present ); if(present) { //TODO: replace with emplace once we start request Boost 1.56+, see PR360 T t; load(t); data = boost::make_optional(std::move(t)); } else { data = boost::optional(); } } template void load(boost::multi_array & data) { ui32 length = readAndCheckLength(); ui32 x, y, z; load(x); load(y); load(z); data.resize(boost::extents[x][y][z]); assert(length == data.num_elements()); //x*y*z should be equal to number of elements for(ui32 i = 0; i < length; i++) load(data.data()[i]); } }; class DLL_LINKAGE CLoadFile : public IBinaryReader { public: BinaryDeserializer serializer; std::string fName; std::unique_ptr sfile; CLoadFile(const boost::filesystem::path & fname, int minimalVersion = SERIALIZATION_VERSION); //throws! virtual ~CLoadFile(); int read(void * data, unsigned size) override; //throws! void openNextFile(const boost::filesystem::path & fname, int minimalVersion); //throws! void clear(); void reportState(vstd::CLoggerBase * out) override; void checkMagicBytes(const std::string & text); template CLoadFile & operator>>(T &t) { serializer & t; return * this; } };