/*
 * BinarySerializer.h, part of VCMI engine
 *
 * Authors: listed in file AUTHORS in main folder
 *
 * License: GNU General Public License v2.0 or later
 * Full text of license available in license.txt file, in main folder
 *
 */
#pragma once

#include "CTypeList.h"
#include "../mapObjects/CArmedInstance.h"

VCMI_LIB_NAMESPACE_BEGIN

class DLL_LINKAGE CSaverBase
{
protected:
	IBinaryWriter * writer;
public:
	CSaverBase(IBinaryWriter * w): writer(w){};

	inline int write(const void * data, unsigned size)
	{
		return writer->write(data, size);
	};
};

/// Main class for serialization of classes into binary form
/// Behaviour for various classes is following:
/// Primitives:    copy memory into underlying stream (defined in CSaverBase)
/// Containers:    custom overloaded method that decouples class into primitives
/// VCMI Classes:  recursively serialize them via ClassName::serialize( BinarySerializer &, int version) call
class DLL_LINKAGE BinarySerializer : public CSaverBase
{
	template<typename Handler>
	struct VariantVisitorSaver
	{
		Handler &h;
		VariantVisitorSaver(Handler &H):h(H)
		{
		}

		template <typename T>
		void operator()(const T &t)
		{
			h & t;
		}
	};

	template<typename Ser,typename T>
	struct SaveIfStackInstance
	{
		static bool invoke(Ser &s, const T &data)
		{
			return false;
		}
	};

	template<typename Ser>
	struct SaveIfStackInstance<Ser, CStackInstance *>
	{
		static bool invoke(Ser &s, const CStackInstance* const &data)
		{
			assert(data->armyObj);
			SlotID slot;

			if(data->getNodeType() == CBonusSystemNode::COMMANDER)
				slot = SlotID::COMMANDER_SLOT_PLACEHOLDER;
			else
				slot = data->armyObj->findStack(data);

			assert(slot != SlotID());
			s & data->armyObj & slot;
			return true;
		}
	};

	template <typename T> class CPointerSaver;

	class CBasicPointerSaver
	{
	public:
		virtual void savePtr(CSaverBase &ar, const void *data) const =0;
		virtual ~CBasicPointerSaver(){}

		template<typename T> static CBasicPointerSaver *getApplier(const T * t=nullptr)
		{
			return new CPointerSaver<T>();
		}
	};


	template <typename T>
	class CPointerSaver : public CBasicPointerSaver
	{
	public:
		void savePtr(CSaverBase &ar, const void *data) const override
		{
			auto & s = static_cast<BinarySerializer &>(ar);
			const T *ptr = static_cast<const T*>(data);

			//T is most derived known type, it's time to call actual serialize
			const_cast<T*>(ptr)->serialize(s, SERIALIZATION_VERSION);
		}
	};

	CApplier<CBasicPointerSaver> applier;

public:
	std::map<const void*, ui32> savedPointers;

	bool smartPointerSerialization;
	bool saving;

	BinarySerializer(IBinaryWriter * w): CSaverBase(w)
	{
		saving=true;
		smartPointerSerialization = true;
	}

	template<typename Base, typename Derived>
	void registerType(const Base * b = nullptr, const Derived * d = nullptr)
	{
		applier.registerType(b, d);
	}

	template<class T>
	BinarySerializer & operator&(const T & t)
	{
		this->save(t);
		return * this;
	}

	template < typename T, typename std::enable_if < std::is_same<T, bool>::value, int >::type = 0 >
	void save(const T &data)
	{
		ui8 writ = static_cast<ui8>(data);
		save(writ);
	}

	template < typename T, typename std::enable_if < std::is_same<T, std::vector<bool> >::value, int  >::type = 0 >
	void save(const T &data)
	{
		std::vector<ui8> convData;
		std::copy(data.begin(), data.end(), std::back_inserter(convData));
		save(convData);
	}

	template < class T, typename std::enable_if < std::is_fundamental<T>::value && !std::is_same<T, bool>::value, int  >::type = 0 >
	void save(const T &data)
	{
		// save primitive - simply dump binary data to output
		this->write(&data,sizeof(data));
	}

	template < typename T, typename std::enable_if < std::is_enum<T>::value, int  >::type = 0 >
	void save(const T &data)
	{
		si32 writ = static_cast<si32>(data);
		*this & writ;
	}

	template < typename T, typename std::enable_if < std::is_array<T>::value, int  >::type = 0 >
	void save(const T &data)
	{
		ui32 size = std::size(data);
		for(ui32 i=0; i < size; i++)
			*this & data[i];
	}

	template < typename T, typename std::enable_if < std::is_pointer<T>::value, int  >::type = 0 >
	void save(const T &data)
	{
		//write if pointer is not nullptr
		ui8 hlp = (data!=nullptr);
		save(hlp);

		//if pointer is nullptr then we don't need anything more...
		if(!hlp)
			return;

		if(writer->smartVectorMembersSerialization)
		{
			typedef typename std::remove_const<typename std::remove_pointer<T>::type>::type TObjectType;
			typedef typename VectorizedTypeFor<TObjectType>::type VType;
			typedef typename VectorizedIDType<TObjectType>::type IDType;

			if(const auto *info = writer->getVectorizedTypeInfo<VType, IDType>())
			{
				IDType id = writer->getIdFromVectorItem<VType>(*info, data);
				save(id);
				if(id != IDType(-1)) //vector id is enough
					return;
			}
		}

		if(writer->sendStackInstanceByIds)
		{
			const bool gotSaved = SaveIfStackInstance<BinarySerializer,T>::invoke(*this, data);
			if(gotSaved)
				return;
		}

		if(smartPointerSerialization)
		{
			// We might have an object that has multiple inheritance and store it via the non-first base pointer.
			// Therefore, all pointers need to be normalized to the actual object address.
			auto actualPointer = typeList.castToMostDerived(data);
			auto i = savedPointers.find(actualPointer);
			if(i != savedPointers.end())
			{
				//this pointer has been already serialized - write only it's id
				save(i->second);
				return;
			}

			//give id to this pointer
			ui32 pid = (ui32)savedPointers.size();
			savedPointers[actualPointer] = pid;
			save(pid);
		}

		//write type identifier
		ui16 tid = typeList.getTypeID(data);
		save(tid);

		if(!tid)
			save(*data); //if type is unregistered simply write all data in a standard way
		else
			applier.getApplier(tid)->savePtr(*this, typeList.castToMostDerived(data));  //call serializer specific for our real type
	}

	template < typename T, typename std::enable_if < is_serializeable<BinarySerializer, T>::value, int  >::type = 0 >
	void save(const T &data)
	{
		const_cast<T&>(data).serialize(*this, SERIALIZATION_VERSION);
	}

	void save(const std::monostate & data)
	{
		// no-op
	}

	template <typename T>
	void save(const std::shared_ptr<T> &data)
	{
		T *internalPtr = data.get();
		save(internalPtr);
	}
	template <typename T>
	void save(const std::shared_ptr<const T> &data)
	{
		const T *internalPtr = data.get();
		save(internalPtr);
	}
	template <typename T>
	void save(const std::unique_ptr<T> &data)
	{
		T *internalPtr = data.get();
		save(internalPtr);
	}
	template <typename T, typename std::enable_if < !std::is_same<T, bool >::value, int  >::type = 0>
	void save(const std::vector<T> &data)
	{
		ui32 length = (ui32)data.size();
		*this & length;
		for(ui32 i=0;i<length;i++)
			save(data[i]);
	}
	template <typename T, size_t N>
	void save(const std::array<T, N> &data)
	{
		for(ui32 i=0; i < N; i++)
			save(data[i]);
	}
	template <typename T>
	void save(const std::set<T> &data)
	{
		auto & d = const_cast<std::set<T> &>(data);
		ui32 length = (ui32)d.size();
		save(length);
		for(auto i = d.begin(); i != d.end(); i++)
			save(*i);
	}
	template <typename T, typename U>
	void save(const std::unordered_set<T, U> &data)
	{
		auto & d = const_cast<std::unordered_set<T, U> &>(data);
		ui32 length = (ui32)d.size();
		*this & length;
		for(auto i = d.begin(); i != d.end(); i++)
			save(*i);
	}
	template <typename T>
	void save(const std::list<T> &data)
	{
		auto & d = const_cast<std::list<T> &>(data);
		ui32 length = (ui32)d.size();
		*this & length;
		for(auto i = d.begin(); i != d.end(); i++)
			save(*i);
	}
	void save(const std::string &data)
	{
		save(ui32(data.length()));
		this->write(data.c_str(),(unsigned int)data.size());
	}
	template <typename T1, typename T2>
	void save(const std::pair<T1,T2> &data)
	{
		save(data.first);
		save(data.second);
	}
	template <typename T1, typename T2>
	void save(const std::map<T1,T2> &data)
	{
		*this & ui32(data.size());
		for(auto i = data.begin(); i != data.end(); i++)
		{
			save(i->first);
			save(i->second);
		}
	}
	template <typename T1, typename T2>
	void save(const std::multimap<T1, T2> &data)
	{
		*this & ui32(data.size());
		for(auto i = data.begin(); i != data.end(); i++)
		{
			save(i->first);
			save(i->second);
		}
	}
	template<typename T0, typename... TN>
	void save(const std::variant<T0, TN...> & data)
	{
		si32 which = data.index();
		save(which);

		VariantVisitorSaver<BinarySerializer> visitor(*this);
		std::visit(visitor, data);
	}
	template<typename T>
	void save(const std::optional<T> & data)
	{
		if(data)
		{
			save((ui8)1);
			save(*data);
		}
		else
		{
			save((ui8)0);
		}
	}

	template <typename T>
	void save(const boost::multi_array<T, 3> &data)
	{
		ui32 length = data.num_elements();
		*this & length;
		auto shape = data.shape();
		ui32 x = shape[0], y = shape[1], z = shape[2];
		*this & x & y & z;
		for(ui32 i = 0; i < length; i++)
			save(data.data()[i]);
	}
	template <std::size_t T>
	void save(const std::bitset<T> &data)
	{
		static_assert(T <= 64);
		if constexpr (T <= 16)
		{
			auto writ = static_cast<uint16_t>(data.to_ulong());
			save(writ);
		}
		else if constexpr (T <= 32)
		{
			auto writ = static_cast<uint32_t>(data.to_ulong());
			save(writ);
		}
		else if constexpr (T <= 64)
		{
			auto writ = static_cast<uint64_t>(data.to_ulong());
			save(writ);
		}
	}
};

class DLL_LINKAGE CSaveFile : public IBinaryWriter
{
public:
	BinarySerializer serializer;

	boost::filesystem::path fName;
	std::unique_ptr<std::fstream> sfile;

	CSaveFile(const boost::filesystem::path &fname); //throws!
	~CSaveFile();
	int write(const void * data, unsigned size) override;

	void openNextFile(const boost::filesystem::path &fname); //throws!
	void clear();
	void reportState(vstd::CLoggerBase * out) override;

	void putMagicBytes(const std::string &text);

	template<class T>
	CSaveFile & operator<<(const T &t)
	{
		serializer & t;
		return * this;
	}
};

VCMI_LIB_NAMESPACE_END