/* * CZonePlacer.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "../CRandomGenerator.h" #include "CZonePlacer.h" #include "CRmgTemplateZone.h" #include "CZoneGraphGenerator.h" class CRandomGenerator; CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone) : zone(zone) { } CZonePlacer::CZonePlacer(CMapGenerator * Gen) : gen(Gen) { } CZonePlacer::~CZonePlacer() { } int3 CZonePlacer::cords (const float3 f) const { return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z); } void CZonePlacer::placeZones(shared_ptr mapGenOptions, CRandomGenerator * rand) { //some relaxation-simmulated annealing algorithm const int iterations = 100; float temperature = 1e-2;; const float temperatureModifier = 0.99; logGlobal->infoStream() << "Starting zone placement"; int width = mapGenOptions->getWidth(); int height = mapGenOptions->getHeight(); auto zones = gen->getZones(); //TODO: consider underground zones /* let's assume we try to fit N circular zones with radius = size on a map formula: sum((prescaler*n)^2)*pi = WH prescaler = sqrt((WH)/(sum(n^2)*pi)) */ float totalSize = 0; for (auto zone : zones) { totalSize += (zone.second->getSize() * zone.second->getSize()); zone.second->setCenter (float3(rand->nextDouble(0.2,0.8), rand->nextDouble(0.2,0.8), 0)); //start away from borders } //prescale zones float prescaler = sqrt ((width * height) / (totalSize * 3.14f)); float mapSize = sqrt (width * height); for (auto zone : zones) { zone.second->setSize (zone.second->getSize() * prescaler); } //gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back auto getDistance = [](float distance) -> float { return (distance ? distance * distance : 1e-6); }; std::map forces; for (int i = 0; i < iterations; ++i) { for (auto zone : zones) { float3 forceVector(0,0,0); float3 pos = zone.second->getCenter(); //attract connected zones for (auto con : zone.second->getConnections()) { auto otherZone = zones[con]; float distance = pos.dist2d (otherZone->getCenter()); float minDistance = (zone.second->getSize() + otherZone->getSize())/mapSize; //scale down to (0,1) coordinates if (distance > minDistance) { forceVector += (otherZone->getCenter() - pos) / getDistance(distance); //positive value } } //separate overlaping zones for (auto otherZone : zones) { if (zone == otherZone) continue; float distance = pos.dist2d (otherZone.second->getCenter()); float minDistance = (zone.second->getSize() + otherZone.second->getSize())/mapSize; if (distance < minDistance) { forceVector -= (otherZone.second->getCenter() - pos) / getDistance(distance); //negative value } } //move zones away from boundaries float3 boundary(0,0,pos.z); float size = zone.second->getSize() / mapSize; if (pos.x < size) { boundary = float3 (0, pos.y, pos.z); float distance = pos.dist2d(boundary); forceVector -= (boundary - pos) / getDistance(distance); //negative value } if (pos.x > 1-size) { boundary = float3 (1, pos.y, pos.z); float distance = pos.dist2d(boundary); forceVector -= (boundary - pos) / getDistance(distance); //negative value } if (pos.y < size) { boundary = float3 (pos.x, 0, pos.z); float distance = pos.dist2d(boundary); forceVector -= (boundary - pos) / getDistance(distance); //negative value } if (pos.y > 1-size) { boundary = float3 (pos.x, 1, pos.z); float distance = pos.dist2d(boundary); forceVector -= (boundary - pos) / getDistance(distance); //negative value } forces[zone.second] = forceVector; } //update positions for (auto zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second * temperature); } temperature *= temperatureModifier; //decrease temperature (needed?) } for (auto zone : zones) //finalize zone positions { zone.second->setPos(cords(zone.second->getCenter())); logGlobal->infoStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos(); } } float CZonePlacer::metric (const int3 &A, const int3 &B) const { /* Matlab code dx = abs(A(1) - B(1)); %distance must be symmetric dy = abs(A(2) - B(2)); d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ... 0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy; */ float dx = abs(A.x - B.x) * scaleX; float dy = abs(A.y - B.y) * scaleY; //Horner scheme return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618)); } void CZonePlacer::assignZones(shared_ptr mapGenOptions) { logGlobal->infoStream() << "Starting zone colouring"; auto width = mapGenOptions->getWidth(); auto height = mapGenOptions->getHeight(); //scale to Medium map to ensure smooth results scaleX = 72.f / width; scaleY = 72.f / height; auto zones = gen->getZones(); typedef std::pair Dpair; std::vector distances; distances.reserve(zones.size()); auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool { return lhs.second < rhs.second; }; int levels = gen->map->twoLevel ? 2 : 1; for (int i=0; igetPos()))); } boost::sort (distances, compareByDistance); distances.front().first->addTile(pos); //closest tile belongs to zone } } } //set position to center of mass for (auto zone : zones) { int3 total(0,0,0); auto tiles = zone.second->getTileInfo(); for (auto tile : tiles) { total += tile; } int size = tiles.size(); zone.second->setPos (int3(total.x/size, total.y/size, total.z/size)); } logGlobal->infoStream() << "Finished zone colouring"; }