/* * CZonePlacer.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include #include "../CRandomGenerator.h" #include "CZonePlacer.h" #include "../TerrainHandler.h" #include "../mapping/CMap.h" #include "../mapping/CMapEditManager.h" #include "CMapGenOptions.h" #include "RmgMap.h" #include "Zone.h" #include "Functions.h" VCMI_LIB_NAMESPACE_BEGIN class CRandomGenerator; CZonePlacer::CZonePlacer(RmgMap & map) : width(0), height(0), scaleX(0), scaleY(0), mapSize(0), gravityConstant(0), stiffnessConstant(0), map(map) { } int3 CZonePlacer::cords(const float3 & f) const { return int3(static_cast(std::max(0.f, (f.x * map.map().width) - 1)), static_cast(std::max(0.f, (f.y * map.map().height - 1))), f.z); } float CZonePlacer::getDistance (float distance) const { return (distance ? distance * distance : 1e-6f); } void CZonePlacer::findPathsBetweenZones() { typedef std::pair ConnectionIndex; auto zones = map.getZones(); std::set> zonesToCheck; //Initialize direct connections for (auto zone : zones) { auto zoneId = zone.second->getId(); for (auto connection : zone.second->getConnections()) { if (!vstd::contains(distancesBetweenZones[zoneId], connection)) { distancesBetweenZones[zoneId][connection] = 1; distancesBetweenZones[connection][zoneId] = 1; } } } for (auto startZone : zones) { size_t start = startZone.second->getId(); for (auto endZone : zones) { size_t end = endZone.second->getId(); if (start != end) { auto currentEnd = end; while (!vstd::contains(distancesBetweenZones[start], end)) { size_t distance = 10; //Some large but not infinite number to not blow up the weights std::stack nearbyZones; std::set checkedZones; //FIXME: we may know the path from previous iterations, but can't be sure if it's optimal :? for (auto nearbyZone : startZone.second->getConnections()) { nearbyZones.push(nearbyZone); } while (!nearbyZones.empty()) { auto currentZone = nearbyZones.top(); nearbyZones.pop(); checkedZones.insert(currentZone); for (auto neighbourZone : distancesBetweenZones[currentZone]) { if (neighbourZone.first == currentEnd) { //This zone has connection to our end zone if (!vstd::contains(distancesBetweenZones[currentZone], currentEnd)) { //Initialize the connection of adjacent zones distancesBetweenZones[currentZone][currentEnd] = 1; } if ((distancesBetweenZones[currentZone][currentEnd] + 1) < distance) { //We found new, shorter path distance = distancesBetweenZones[currentZone][currentEnd] + 1; //Add just found connection distancesBetweenZones[start][currentEnd] = distance; //Connection is bidirectional distancesBetweenZones[currentEnd][start] = distance; //Unwind the stack, find the path between start previous-to-last zone currentEnd = currentZone; } } else { if (!vstd::contains(checkedZones, neighbourZone.first)) { //We didn't check that zone yet nearbyZones.push(neighbourZone.first); } } } } //At the very least after this step we will find 1 more step connecting the two zones } } } } //Dump debug for (auto startZone : zones) { auto startId = startZone.second->getId(); for (auto endZone : zones) { auto endId = endZone.second->getId(); if (startId >= endId) { //Print only conections in one way continue; } logGlobal->info((boost::format("Distance between zone %2d and %2d: %d") % startId % endId % distancesBetweenZones[startId][endId]).str()); } } } void CZonePlacer::placeOnGrid(CRandomGenerator* rand) { auto zones = map.getZones(); assert(zones.size()); //Make sure there are at least as many grid fields as the number of zones size_t gridSize = std::ceil(std::sqrt(zones.size())); typedef boost::multi_array, 2> GridType; GridType grid(boost::extents[gridSize][gridSize]); TZoneVector zonesVector(zones.begin(), zones.end()); RandomGeneratorUtil::randomShuffle(zonesVector, *rand); //Place first zone auto firstZone = zonesVector[0].second; size_t x = 0, y = 0; auto getRandomEdge = [rand, gridSize](size_t& x, size_t& y) { switch (rand->nextInt() % 4) { case 0: x = 0; y = gridSize / 2; break; case 1: x = gridSize - 1; y = gridSize / 2; break; case 2: x = gridSize / 2; y = 0; break; case 3: x = gridSize / 2; y = gridSize - 1; break; } }; switch (firstZone->getType()) { case ETemplateZoneType::PLAYER_START: case ETemplateZoneType::CPU_START: if (firstZone->getConnections().size() > 2) { getRandomEdge(x, y); } else { //Random corner if (rand->nextInt() % 2) { x = 0; } else { x = gridSize - 1; } if (rand->nextInt() % 2) { y = 0; } else { y = gridSize - 1; } } break; case ETemplateZoneType::TREASURE: if (gridSize && 1) //odd { x = y = (gridSize / 2); } else { //One of 4 squares in the middle x = (gridSize / 2) - 1 + rand->nextInt() % 2; y = (gridSize / 2) - 1 + rand->nextInt() % 2; } break; case ETemplateZoneType::JUNCTION: getRandomEdge(x, y); break; } grid[x][y] = firstZone; //Ignore z placement for simplicity for (size_t i = 1; i < zones.size(); i++) { auto zone = zonesVector[i].second; auto connections = zone->getConnections(); float maxDistance = -1000.0; int3 mostDistantPlace; //Iterate over free positions for (size_t freeX = 0; freeX < gridSize; ++freeX) { for (size_t freeY = 0; freeY < gridSize; ++freeY) { if (!grid[freeX][freeY]) { //There is free space left here int3 potentialPos(freeX, freeY, 0); //Compute distance to every existing zone float distance = 0; for (size_t existingX = 0; existingX < gridSize; ++existingX) { for (size_t existingY = 0; existingY < gridSize; ++existingY) { auto existingZone = grid[existingX][existingY]; if (existingZone) { //There is already zone here float localDistance = 0.0f; auto graphDistance = distancesBetweenZones[zone->getId()][existingZone->getId()]; if (graphDistance > 1) { //No direct connection localDistance = potentialPos.dist2d(int3(existingX, existingY, 0)) * graphDistance; } else { //Has direct connection - place as close as possible localDistance = -potentialPos.dist2d(int3(existingX, existingY, 0)); } //Spread apart player starting zones auto zoneType = zone->getType(); auto existingZoneType = existingZone->getType(); if ((zoneType == ETemplateZoneType::PLAYER_START || zoneType == ETemplateZoneType::CPU_START) && (existingZoneType == ETemplateZoneType::PLAYER_START || existingZoneType == ETemplateZoneType::CPU_START)) { int firstPlayer = zone->getOwner().get(); int secondPlayer = existingZone->getOwner().get(); //Players with lower indexes (especially 1 and 2) will be placed further apart localDistance *= (1.0f + (std::abs(firstPlayer - secondPlayer) / (firstPlayer * secondPlayer))); } distance += localDistance; } } } if (distance > maxDistance) { maxDistance = distance; mostDistantPlace = potentialPos; } } } } //Place in a free slot grid[mostDistantPlace.x][mostDistantPlace.y] = zone; } //TODO: toggle with a flag logGlobal->info("Initial zone grid:"); for (size_t x = 0; x < gridSize; ++x) { std::string s; for (size_t y = 0; y < gridSize; ++y) { if (grid[x][y]) { s += (boost::format("%3d ") % grid[x][y]->getId()).str(); } else { s += " -- "; } } logGlobal->info(s); } //Set initial position for zones - random position in square centered around (x, y) for (size_t x = 0; x < gridSize; ++x) { for (size_t y = 0; y < gridSize; ++y) { auto zone = grid[x][y]; if (zone) { auto targetX = rand->nextDouble(x - 0.5f, x + 0.5f); vstd::clamp(targetX, 0, gridSize); auto targetY = rand->nextDouble(y - 0.5f, y + 0.5f); vstd::clamp(targetY, 0, gridSize); zone->setCenter(float3(targetX / gridSize, targetY / gridSize, zone->getPos().z)); } } } } void CZonePlacer::placeZones(CRandomGenerator * rand) { logGlobal->info("Starting zone placement"); width = map.getMapGenOptions().getWidth(); height = map.getMapGenOptions().getHeight(); auto zones = map.getZones(); vstd::erase_if(zones, [](const std::pair> & pr) { return pr.second->getType() == ETemplateZoneType::WATER; }); bool underground = map.getMapGenOptions().getHasTwoLevels(); findPathsBetweenZones(); placeOnGrid(rand); /* gravity-based algorithm let's assume we try to fit N circular zones with radius = size on a map */ gravityConstant = 4e-3f; stiffnessConstant = 4e-3f; TZoneVector zonesVector(zones.begin(), zones.end()); assert (zonesVector.size()); RandomGeneratorUtil::randomShuffle(zonesVector, *rand); //0. set zone sizes and surface / underground level prepareZones(zones, zonesVector, underground, rand); //gravity-based algorithm. connected zones attract, intersecting zones and map boundaries push back //remember best solution float bestTotalDistance = 1e10; float bestTotalOverlap = 1e10; std::map, float3> bestSolution; TForceVector forces; TForceVector totalForces; // both attraction and pushback, overcomplicated? TDistanceVector distances; TDistanceVector overlaps; const int MAX_ITERATIONS = 100; for (int i = 0; i < MAX_ITERATIONS; ++i) //until zones reach their desired size and fill the map tightly { //1. attract connected zones attractConnectedZones(zones, forces, distances); for(const auto & zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); totalForces[zone.first] = zone.second; //override } //2. separate overlapping zones separateOverlappingZones(zones, forces, overlaps); for(const auto & zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); totalForces[zone.first] += zone.second; //accumulate } //3. now perform drastic movement of zone that is completely not linked moveOneZone(zones, totalForces, distances, overlaps); //4. NOW after everything was moved, re-evaluate zone positions attractConnectedZones(zones, forces, distances); separateOverlappingZones(zones, forces, overlaps); float totalDistance = 0; float totalOverlap = 0; for(const auto & zone : distances) //find most misplaced zone { totalDistance += zone.second; float overlap = overlaps[zone.first]; totalOverlap += overlap; } //check fitness function bool improvement = false; if (bestTotalDistance > 0 && bestTotalOverlap > 0) { if (totalDistance * totalOverlap < bestTotalDistance * bestTotalOverlap) //multiplication is better for auto-scaling, but stops working if one factor is 0 improvement = true; } else { if (totalDistance + totalOverlap < bestTotalDistance + bestTotalOverlap) improvement = true; } logGlobal->trace("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s", totalDistance, totalOverlap , improvement); //save best solution if (improvement) { bestTotalDistance = totalDistance; bestTotalOverlap = totalOverlap; for(const auto & zone : zones) bestSolution[zone.second] = zone.second->getCenter(); } } logGlobal->trace("Best fitness reached: total distance %2.4f, total overlap %2.4f", bestTotalDistance, bestTotalOverlap); for(const auto & zone : zones) //finalize zone positions { zone.second->setPos (cords (bestSolution[zone.second])); logGlobal->trace("Placed zone %d at relative position %s and coordinates %s", zone.first, zone.second->getCenter().toString(), zone.second->getPos().toString()); } } void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, CRandomGenerator * rand) { std::vector totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map const float radius = 0.4f; const float pi2 = 6.28f; int zonesOnLevel[2] = { 0, 0 }; //even distribution for surface / underground zones. Surface zones always have priority. TZoneVector zonesToPlace; std::map levels; //first pass - determine fixed surface for zones for(const auto & zone : zonesVector) { if (!underground) //this step is ignored zonesToPlace.push_back(zone); else //place players depending on their factions { if(std::optional owner = zone.second->getOwner()) { auto player = PlayerColor(*owner - 1); auto playerSettings = map.getMapGenOptions().getPlayersSettings(); si32 faction = CMapGenOptions::CPlayerSettings::RANDOM_TOWN; if (vstd::contains(playerSettings, player)) faction = playerSettings[player].getStartingTown(); else logGlobal->error("Can't find info for player %d (starting zone)", player.getNum()); if (faction == CMapGenOptions::CPlayerSettings::RANDOM_TOWN) //TODO: check this after a town has already been randomized zonesToPlace.push_back(zone); else { auto & tt = (*VLC->townh)[faction]->nativeTerrain; if(tt == ETerrainId::NONE) { //any / random zonesToPlace.push_back(zone); } else { const auto & terrainType = VLC->terrainTypeHandler->getById(tt); if(terrainType->isUnderground() && !terrainType->isSurface()) { //underground only zonesOnLevel[1]++; levels[zone.first] = 1; } else { //surface zonesOnLevel[0]++; levels[zone.first] = 0; } } } } else //no starting zone or no underground altogether { zonesToPlace.push_back(zone); } } } for(const auto & zone : zonesToPlace) { if (underground) //only then consider underground zones { int level = 0; if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones level = 1; else level = 0; levels[zone.first] = level; zonesOnLevel[level]++; } else levels[zone.first] = 0; } for(const auto & zone : zonesVector) { int level = levels[zone.first]; totalSize[level] += (zone.second->getSize() * zone.second->getSize()); auto randomAngle = static_cast(rand->nextDouble(0, pi2)); zone.second->setCenter(float3(0.5f + std::sin(randomAngle) * radius, 0.5f + std::cos(randomAngle) * radius, level)); //place zones around circle } /* prescale zones formula: sum((prescaler*n)^2)*pi = WH prescaler = sqrt((WH)/(sum(n^2)*pi)) */ std::vector prescaler = { 0, 0 }; for (int i = 0; i < 2; i++) prescaler[i] = std::sqrt((width * height) / (totalSize[i] * 3.14f)); mapSize = static_cast(sqrt(width * height)); for(const auto & zone : zones) { zone.second->setSize(static_cast(zone.second->getSize() * prescaler[zone.second->getCenter().z])); } } void CZonePlacer::attractConnectedZones(TZoneMap & zones, TForceVector & forces, TDistanceVector & distances) const { for(const auto & zone : zones) { float3 forceVector(0, 0, 0); float3 pos = zone.second->getCenter(); float totalDistance = 0; for (auto con : zone.second->getConnections()) { auto otherZone = zones[con]; float3 otherZoneCenter = otherZone->getCenter(); auto distance = static_cast(pos.dist2d(otherZoneCenter)); float minDistance = 0; if (pos.z != otherZoneCenter.z) minDistance = 0; //zones on different levels can overlap completely else minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates if (distance > minDistance) { //WARNING: compiler used to 'optimize' that line so it never actually worked float overlapMultiplier = (pos.z == otherZoneCenter.z) ? (minDistance / distance) : 1.0f; forceVector += ((otherZoneCenter - pos)* overlapMultiplier / getDistance(distance)) * gravityConstant; //positive value totalDistance += (distance - minDistance); } } distances[zone.second] = totalDistance; forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector; } } void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps) { for(const auto & zone : zones) { float3 forceVector(0, 0, 0); float3 pos = zone.second->getCenter(); float overlap = 0; //separate overlapping zones for(const auto & otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); //zones on different levels don't push away if (zone == otherZone || pos.z != otherZoneCenter.z) continue; auto distance = static_cast(pos.dist2d(otherZoneCenter)); float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize; if (distance < minDistance) { forceVector -= (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stiffnessConstant; //negative value overlap += (minDistance - distance); //overlapping of small zones hurts us more } } //move zones away from boundaries //do not scale boundary distance - zones tend to get squashed float size = zone.second->getSize() / mapSize; auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y) { float3 boundary = float3(x, y, pos.z); auto distance = static_cast(pos.dist2d(boundary)); overlap += std::max(0, distance - size); //check if we're closer to map boundary than value of zone size forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stiffnessConstant; //negative value }; if (pos.x < size) { pushAwayFromBoundary(0, pos.y); } if (pos.x > 1 - size) { pushAwayFromBoundary(1, pos.y); } if (pos.y < size) { pushAwayFromBoundary(pos.x, 0); } if (pos.y > 1 - size) { pushAwayFromBoundary(pos.x, 1); } overlaps[zone.second] = overlap; forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector; } } void CZonePlacer::moveOneZone(TZoneMap & zones, TForceVector & totalForces, TDistanceVector & distances, TDistanceVector & overlaps) const { float maxRatio = 0; const int maxDistanceMovementRatio = static_cast(zones.size() * zones.size()); //experimental - the more zones, the greater total distance expected std::shared_ptr misplacedZone; float totalDistance = 0; float totalOverlap = 0; for(const auto & zone : distances) //find most misplaced zone { totalDistance += zone.second; float overlap = overlaps[zone.first]; totalOverlap += overlap; float ratio = (zone.second + overlap) / static_cast(totalForces[zone.first].mag()); //if distance to actual movement is long, the zone is misplaced if (ratio > maxRatio) { maxRatio = ratio; misplacedZone = zone.first; } } logGlobal->trace("Worst misplacement/movement ratio: %3.2f", maxRatio); if (maxRatio > maxDistanceMovementRatio && misplacedZone) { std::shared_ptr targetZone; float3 ourCenter = misplacedZone->getCenter(); if (totalDistance > totalOverlap) { //find most distant zone that should be attracted and move inside it float maxDistance = 0; for (auto con : misplacedZone->getConnections()) { auto otherZone = zones[con]; float distance = static_cast(otherZone->getCenter().dist2dSQ(ourCenter)); if (distance > maxDistance) { maxDistance = distance; targetZone = otherZone; } } if (targetZone) //TODO: consider refactoring duplicated code { float3 vec = targetZone->getCenter() - ourCenter; float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize; logGlobal->trace("Trying to move zone %d %s towards %d %s. Old distance %f", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), maxDistance); logGlobal->trace("direction is %s", vec.toString()); misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size logGlobal->trace("New distance %f", targetZone->getCenter().dist2d(misplacedZone->getCenter())); } } else { float maxOverlap = 0; for(const auto & otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z) continue; auto distance = static_cast(otherZoneCenter.dist2dSQ(ourCenter)); if (distance > maxOverlap) { maxOverlap = distance; targetZone = otherZone.second; } } if (targetZone) { float3 vec = ourCenter - targetZone->getCenter(); float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize; logGlobal->trace("Trying to move zone %d %s away from %d %s. Old distance %f", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), maxOverlap); logGlobal->trace("direction is %s", vec.toString()); misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated logGlobal->trace("New distance %f", targetZone->getCenter().dist2d(misplacedZone->getCenter())); } } } } float CZonePlacer::metric (const int3 &A, const int3 &B) const { /* Matlab code dx = abs(A(1) - B(1)); %distance must be symmetric dy = abs(A(2) - B(2)); d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ... 0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy; */ float dx = abs(A.x - B.x) * scaleX; float dy = abs(A.y - B.y) * scaleY; //Horner scheme return dx * (1.0f + dx * (0.1f + dx * 0.01f)) + dy * (1.618f + dy * (-0.1618f + dy * 0.01618f)); } void CZonePlacer::assignZones(CRandomGenerator * rand) { logGlobal->info("Starting zone colouring"); auto width = map.getMapGenOptions().getWidth(); auto height = map.getMapGenOptions().getHeight(); //scale to Medium map to ensure smooth results scaleX = 72.f / width; scaleY = 72.f / height; auto zones = map.getZones(); vstd::erase_if(zones, [](const std::pair> & pr) { return pr.second->getType() == ETemplateZoneType::WATER; }); using Dpair = std::pair, float>; std::vector distances; distances.reserve(zones.size()); //now place zones correctly and assign tiles to each zone auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool { //bigger zones have smaller distance return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize(); }; auto moveZoneToCenterOfMass = [](const std::shared_ptr & zone) -> void { int3 total(0, 0, 0); auto tiles = zone->area().getTiles(); for(const auto & tile : tiles) { total += tile; } int size = static_cast(tiles.size()); assert(size); zone->setPos(int3(total.x / size, total.y / size, total.z / size)); }; int levels = map.map().levels(); /* 1. Create Voronoi diagram 2. find current center of mass for each zone. Move zone to that center to balance zones sizes */ int3 pos; for(pos.z = 0; pos.z < levels; pos.z++) { for(pos.x = 0; pos.x < width; pos.x++) { for(pos.y = 0; pos.y < height; pos.y++) { distances.clear(); for(const auto & zone : zones) { if (zone.second->getPos().z == pos.z) distances.emplace_back(zone.second, static_cast(pos.dist2dSQ(zone.second->getPos()))); else distances.emplace_back(zone.second, std::numeric_limits::max()); } boost::min_element(distances, compareByDistance)->first->area().add(pos); //closest tile belongs to zone } } } for(const auto & zone : zones) { if(zone.second->area().empty()) throw rmgException("Empty zone is generated, probably RMG template is inappropriate for map size"); moveZoneToCenterOfMass(zone.second); } //assign actual tiles to each zone using nonlinear norm for fine edges for(const auto & zone : zones) zone.second->clearTiles(); //now populate them again for (pos.z = 0; pos.z < levels; pos.z++) { for (pos.x = 0; pos.x < width; pos.x++) { for (pos.y = 0; pos.y < height; pos.y++) { distances.clear(); for(const auto & zone : zones) { if (zone.second->getPos().z == pos.z) distances.emplace_back(zone.second, metric(pos, zone.second->getPos())); else distances.emplace_back(zone.second, std::numeric_limits::max()); } auto zone = boost::min_element(distances, compareByDistance)->first; //closest tile belongs to zone zone->area().add(pos); map.setZoneID(pos, zone->getId()); } } } //set position (town position) to center of mass of irregular zone for(const auto & zone : zones) { moveZoneToCenterOfMass(zone.second); //TODO: similiar for islands #define CREATE_FULL_UNDERGROUND true //consider linking this with water amount if (zone.second->isUnderground()) { if (!CREATE_FULL_UNDERGROUND) { auto discardTiles = collectDistantTiles(*zone.second, zone.second->getSize() + 1.f); for(const auto & t : discardTiles) zone.second->area().erase(t); } //make sure that terrain inside zone is not a rock //FIXME: reorder actions? paintZoneTerrain(*zone.second, *rand, map, ETerrainId::SUBTERRANEAN); } } logGlobal->info("Finished zone colouring"); } VCMI_LIB_NAMESPACE_END