/* * Connection.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #pragma once #include <typeinfo> //XXX this is in namespace std if you want w/o use typeinfo.h? #include <type_traits> #include <boost/variant.hpp> #include <boost/mpl/eval_if.hpp> #include <boost/mpl/equal_to.hpp> #include <boost/mpl/int.hpp> #include <boost/mpl/identity.hpp> #include <boost/any.hpp> #include "ConstTransitivePtr.h" #include "CCreatureSet.h" //for CStackInstance #include "CObjectHandler.h" //for CArmedInstance #include "mapping/CCampaignHandler.h" //for CCampaignState #include "rmg/CMapGenerator.h" // for CMapGenOptions const ui32 version = 741; class CConnection; class CGObjectInstance; class CStackInstance; class CGameState; class CCreature; class LibClasses; class CHero; struct CPack; extern DLL_LINKAGE LibClasses * VLC; namespace mpl = boost::mpl; const std::string SAVEGAME_MAGIC = "VCMISVG"; namespace boost { namespace asio { namespace ip { class tcp; } class io_service; template <typename Protocol> class stream_socket_service; template <typename Protocol,typename StreamSocketService> class basic_stream_socket; template <typename Protocol> class socket_acceptor_service; template <typename Protocol,typename SocketAcceptorService> class basic_socket_acceptor; } class mutex; } enum SerializationLvl { Wrong=0, Boolean, Primitive, Array, Pointer, Enum, Serializable, BooleanVector }; struct TypeComparer { bool operator()(const std::type_info *a, const std::type_info *b) const { return a->before(*b); } }; class DLL_LINKAGE CTypeList { typedef std::multimap<const std::type_info *,ui16,TypeComparer> TTypeMap; TTypeMap types; public: CTypeList(); ui16 registerType(const std::type_info *type); template <typename T> ui16 registerType(const T * t = nullptr) { return registerType(getTypeInfo(t)); } ui16 getTypeID(const std::type_info *type); template <typename T> ui16 getTypeID(const T * t = nullptr) { return getTypeID(getTypeInfo(t)); } template <typename T> const std::type_info * getTypeInfo(const T * t = nullptr) { if(t) return &typeid(*t); else return &typeid(T); } }; extern DLL_LINKAGE CTypeList typeList; template<typename Ser> struct SaveBoolean { static void invoke(Ser &s, const bool &data) { s.saveBoolean(data); } }; template<typename Ser> struct LoadBoolean { static void invoke(Ser &s, bool &data) { s.loadBoolean(data); } }; template<typename Ser> struct SaveBooleanVector { static void invoke(Ser &s, const std::vector<bool> &data) { s.saveBooleanVector(data); } }; template<typename Ser> struct LoadBooleanVector { static void invoke(Ser &s, std::vector<bool> &data) { s.loadBooleanVector(data); } }; template<typename Ser,typename T> struct SavePrimitive { static void invoke(Ser &s, const T &data) { s.savePrimitive(data); } }; template<typename Ser,typename T> struct SaveSerializable { static void invoke(Ser &s, const T &data) { s.saveSerializable(data); } }; template<typename Ser,typename T> struct SaveEnum { static void invoke(Ser &s, const T &data) { s.saveEnum(data); } }; template<typename Ser,typename T> struct LoadEnum { static void invoke(Ser &s, T &data) { s.loadEnum(data); } }; template<typename Ser,typename T> struct LoadPrimitive { static void invoke(Ser &s, T &data) { s.loadPrimitive(data); } }; template<typename Ser,typename T> struct SavePointer { static void invoke(Ser &s, const T &data) { s.savePointer(data); } }; template<typename Ser,typename T> struct LoadPointer { static void invoke(Ser &s, T &data) { s.loadPointer(data); } }; template<typename Ser,typename T> struct SaveArray { static void invoke(Ser &s, const T &data) { s.saveArray(data); } }; template<typename Ser,typename T> struct LoadArray { static void invoke(Ser &s, T &data) { s.loadArray(data); } }; template<typename Ser,typename T> struct LoadSerializable { static void invoke(Ser &s, T &data) { s.loadSerializable(data); } }; template<typename Ser,typename T> struct SaveWrong { static void invoke(Ser &s, const T &data) { throw std::runtime_error("Wrong save serialization call!"); } }; template<typename Ser,typename T> struct LoadWrong { static void invoke(Ser &s, const T &data) { throw std::runtime_error("Wrong load serialization call!"); } }; template<typename T> struct SerializationLevel { typedef mpl::integral_c_tag tag; typedef typename mpl::eval_if< boost::is_same<T, bool>, mpl::int_<Boolean>, //else typename mpl::eval_if< boost::is_same<T, std::vector<bool> >, mpl::int_<BooleanVector>, //else typename mpl::eval_if< boost::is_fundamental<T>, mpl::int_<Primitive>, //else typename mpl::eval_if< boost::is_enum<T>, mpl::int_<Enum>, //else typename mpl::eval_if< boost::is_class<T>, mpl::int_<Serializable>, //else typename mpl::eval_if< boost::is_array<T>, mpl::int_<Array>, //else typename mpl::eval_if< boost::is_pointer<T>, mpl::int_<Pointer>, //else typename mpl::eval_if< boost::is_enum<T>, mpl::int_<Primitive>, //else mpl::int_<Wrong> > > > > > > > >::type type; static const int value = SerializationLevel::type::value; }; template <typename ObjType, typename IdType> struct VectorisedObjectInfo { const std::vector<ConstTransitivePtr<ObjType> > *vector; //pointer to the appropriate vector std::function<IdType(const ObjType &)> idRetriever; //const IdType ObjType::*idPtr; //pointer to the field representing the position in the vector VectorisedObjectInfo(const std::vector< ConstTransitivePtr<ObjType> > *Vector, std::function<IdType(const ObjType &)> IdGetter) :vector(Vector), idRetriever(IdGetter) { } }; template<typename T> si32 idToNumber(const T &t, typename boost::enable_if<boost::is_convertible<T,si32> >::type * dummy = 0) { return t; } template<typename T, typename NT> NT idToNumber(const BaseForID<T, NT> &t) { return t.getNum(); } /// Class which is responsible for storing and loading data. class DLL_LINKAGE CSerializer { public: typedef std::map<const std::type_info *, boost::any, TypeComparer> TTypeVecMap; TTypeVecMap vectors; //entry must be a pointer to vector containing pointers to the objects of key type bool smartVectorMembersSerialization; bool sendStackInstanceByIds; CSerializer(); ~CSerializer(); virtual void reportState(CLogger * out){}; template <typename T, typename U> void registerVectoredType(const std::vector<T*> *Vector, const std::function<U(const T&)> &idRetriever) { vectors[&typeid(T)] = VectorisedObjectInfo<T, U>(Vector, idRetriever); } template <typename T, typename U> void registerVectoredType(const std::vector<ConstTransitivePtr<T> > *Vector, const std::function<U(const T&)> &idRetriever) { vectors[&typeid(T)] = VectorisedObjectInfo<T, U>(Vector, idRetriever); } template <typename T, typename U> const VectorisedObjectInfo<T, U> *getVectorisedTypeInfo() { const std::type_info *myType = nullptr; // // if(boost::is_base_of<CGObjectInstance, T>::value) //ugly workaround to support also types derived from CGObjectInstance -> if we encounter one, treat it aas CGObj.. // myType = &typeid(CGObjectInstance); // else myType = &typeid(T); TTypeVecMap::iterator i = vectors.find(myType); if(i == vectors.end()) return nullptr; else { assert(!i->second.empty()); assert(i->second.type() == typeid(VectorisedObjectInfo<T, U>)); VectorisedObjectInfo<T, U> *ret = &(boost::any_cast<VectorisedObjectInfo<T, U>&>(i->second)); return ret; } } template <typename T, typename U> T* getVectorItemFromId(const VectorisedObjectInfo<T, U> &oInfo, U id) const { /* if(id < 0) return nullptr;*/ si32 idAsNumber = idToNumber(id); assert(oInfo.vector); assert(static_cast<si32>(oInfo.vector->size()) > idAsNumber); return const_cast<T*>((*oInfo.vector)[idAsNumber].get()); } template <typename T, typename U> U getIdFromVectorItem(const VectorisedObjectInfo<T, U> &oInfo, const T* obj) const { if(!obj) return U(-1); return oInfo.idRetriever(*obj); } void addStdVecItems(CGameState *gs, LibClasses *lib = VLC); }; class DLL_LINKAGE CSaverBase : public virtual CSerializer { }; class CBasicPointerSaver { public: virtual void savePtr(CSaverBase &ar, const void *data) const =0; virtual ~CBasicPointerSaver(){} }; template <typename Serializer, typename T> class CPointerSaver : public CBasicPointerSaver { public: void savePtr(CSaverBase &ar, const void *data) const { Serializer &s = static_cast<Serializer&>(ar); const T *ptr = static_cast<const T*>(data); //T is most derived known type, it's time to call actual serialize const_cast<T&>(*ptr).serialize(s,version); } }; template <typename T> //metafunction returning CGObjectInstance if T is its derivate or T elsewise struct VectorisedTypeFor { typedef typename //if mpl::eval_if<boost::is_same<CGHeroInstance,T>, mpl::identity<CGHeroInstance>, //else if mpl::eval_if<boost::is_base_of<CGObjectInstance,T>, mpl::identity<CGObjectInstance>, //else mpl::identity<T> > >::type type; }; template <typename U> struct VectorizedIDType { typedef typename //if mpl::eval_if<boost::is_same<CArtifact,U>, mpl::identity<ArtifactID>, //else if mpl::eval_if<boost::is_same<CCreature,U>, mpl::identity<CreatureID>, //else if mpl::eval_if<boost::is_same<CHero,U>, mpl::identity<HeroTypeID>, //else if mpl::eval_if<boost::is_same<CArtifactInstance,U>, mpl::identity<ArtifactInstanceID>, //else if mpl::eval_if<boost::is_same<CGHeroInstance,U>, mpl::identity<HeroTypeID>, //else if mpl::eval_if<boost::is_base_of<CGObjectInstance,U>, mpl::identity<ObjectInstanceID>, //else mpl::identity<si32> > > > > > >::type type; }; template <typename Handler> struct VariantVisitorSaver : boost::static_visitor<> { Handler &h; VariantVisitorSaver(Handler &H):h(H) { } template <typename T> void operator()(const T &t) { h << t; } }; template<typename Ser,typename T> struct SaveIfStackInstance { static bool invoke(Ser &s, const T &data) { return false; } }; template<typename Ser> struct SaveIfStackInstance<Ser, CStackInstance *> { static bool invoke(Ser &s, const CStackInstance* const &data) { assert(data->armyObj); SlotID slot; if(data->getNodeType() == CBonusSystemNode::COMMANDER) slot = SlotID::COMMANDER_SLOT_PLACEHOLDER; else slot = data->armyObj->findStack(data); assert(slot != SlotID()); s << data->armyObj << slot; return true; } }; template<typename Ser,typename T> struct LoadIfStackInstance { static bool invoke(Ser &s, T &data) { return false; } }; template<typename Ser> struct LoadIfStackInstance<Ser, CStackInstance *> { static bool invoke(Ser &s, CStackInstance* &data) { CArmedInstance *armedObj; SlotID slot; s >> armedObj >> slot; if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER) { assert(armedObj->hasStackAtSlot(slot)); data = armedObj->stacks[slot]; } else { auto hero = dynamic_cast<CGHeroInstance *>(armedObj); assert(hero); assert(hero->commander); data = hero->commander; } return true; } }; /// The class which manages saving objects. template <typename Serializer> class DLL_LINKAGE COSer : public CSaverBase { public: bool saving; std::map<ui16,CBasicPointerSaver*> savers; // typeID => CPointerSaver<serializer,type> std::map<const void*, ui32> savedPointers; bool smartPointerSerialization; COSer() { saving=true; smartPointerSerialization = true; } ~COSer() { std::map<ui16,CBasicPointerSaver*>::iterator iter; for(iter = savers.begin(); iter != savers.end(); iter++) delete iter->second; } template<typename T> void registerType(const T * t=nullptr) { ui16 ID = typeList.registerType(t); savers[ID] = new CPointerSaver<COSer<Serializer>,T>; } Serializer * This() { return static_cast<Serializer*>(this); } template<class T> Serializer & operator<<(const T &t) { this->This()->save(t); return * this->This(); } template<class T> COSer & operator&(const T & t) { return * this->This() << t; } int write(const void * data, unsigned size); template <typename T> void savePrimitive(const T &data) { this->This()->write(&data,sizeof(data)); } template <typename T> void savePointer(const T &data) { //write if pointer is not nullptr ui8 hlp = (data!=nullptr); *this << hlp; //if pointer is nullptr then we don't need anything more... if(!hlp) return; if(smartVectorMembersSerialization) { typedef typename boost::remove_const<typename boost::remove_pointer<T>::type>::type TObjectType; typedef typename VectorisedTypeFor<TObjectType>::type VType; typedef typename VectorizedIDType<TObjectType>::type IDType; if(const auto *info = getVectorisedTypeInfo<VType, IDType>()) { IDType id = getIdFromVectorItem<VType>(*info, data); *this << id; if(id != IDType(-1)) //vector id is enough return; } } if(sendStackInstanceByIds) { const bool gotSaved = SaveIfStackInstance<Serializer,T>::invoke(*This(), data); if(gotSaved) return; } if(smartPointerSerialization) { std::map<const void*,ui32>::iterator i = savedPointers.find(data); if(i != savedPointers.end()) { //this pointer has been already serialized - write only it's id *this << i->second; return; } //give id to this pointer ui32 pid = (ui32)savedPointers.size(); savedPointers[data] = pid; *this << pid; } //write type identifier ui16 tid = typeList.getTypeID(data); *this << tid; This()->savePointerHlp(tid, data); } //that part of ptr serialization was extracted to allow customization of its behavior in derived classes template <typename T> void savePointerHlp(ui16 tid, const T &data) { if(!tid) *this << *data; //if type is unregistered simply write all data in a standard way else savers[tid]->savePtr(*this,data); //call serializer specific for our real type } template <typename T> void saveArray(const T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i=0; i < size; i++) *this << data[i]; } template <typename T> void save(const T &data) { typedef //if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Boolean> >, mpl::identity<SaveBoolean<Serializer> >, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<BooleanVector> >, mpl::identity<SaveBooleanVector<Serializer> >, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Primitive> >, mpl::identity<SavePrimitive<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Enum> >, mpl::identity<SaveEnum<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Pointer> >, mpl::identity<SavePointer<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Array> >, mpl::identity<SaveArray<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Serializable> >, mpl::identity<SaveSerializable<Serializer,T> >, //else mpl::identity<SaveWrong<Serializer,T> > > > > > > > >::type typex; typex::invoke(* this->This(), data); } template <typename T> void saveSerializable(const T &data) { const_cast<T&>(data).serialize(*this,version); } template <typename T> void saveSerializable(const shared_ptr<T> &data) { T *internalPtr = data.get(); *this << internalPtr; } template <typename T> void saveSerializable(const unique_ptr<T> &data) { T *internalPtr = data.get(); *this << internalPtr; } template <typename T> void saveSerializable(const std::vector<T> &data) { ui32 length = data.size(); *this << length; for(ui32 i=0;i<length;i++) *this << data[i]; } template <typename T, size_t N> void saveSerializable(const std::array<T, N> &data) { for(ui32 i=0; i < N; i++) *this << data[i]; } template <typename T> void saveSerializable(const std::set<T> &data) { std::set<T> &d = const_cast<std::set<T> &>(data); ui32 length = d.size(); *this << length; for(typename std::set<T>::iterator i=d.begin();i!=d.end();i++) *this << *i; } template <typename T, typename U> void saveSerializable(const std::unordered_set<T, U> &data) { std::unordered_set<T, U> &d = const_cast<std::unordered_set<T, U> &>(data); ui32 length = d.size(); *this << length; for(typename std::unordered_set<T, U>::iterator i=d.begin();i!=d.end();i++) *this << *i; } template <typename T> void saveSerializable(const std::list<T> &data) { std::list<T> &d = const_cast<std::list<T> &>(data); ui32 length = d.size(); *this << length; for(typename std::list<T>::iterator i=d.begin();i!=d.end();i++) *this << *i; } void saveSerializable(const std::string &data) { *this << ui32(data.length()); this->This()->write(data.c_str(),data.size()); } template <typename T1, typename T2> void saveSerializable(const std::pair<T1,T2> &data) { *this << data.first << data.second; } template <typename T1, typename T2> void saveSerializable(const std::map<T1,T2> &data) { *this << ui32(data.size()); for(typename std::map<T1,T2>::const_iterator i=data.begin();i!=data.end();i++) *this << i->first << i->second; } template <BOOST_VARIANT_ENUM_PARAMS(typename T)> void saveSerializable(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data) { si32 which = data.which(); *this << which; VariantVisitorSaver<Serializer> visitor(*this->This()); boost::apply_visitor(visitor, data); } template <typename T> void saveSerializable(const boost::optional<T> &data) { if(data) { *this << (ui8)1; *this << *data; } else { *this << (ui8)0; } } template <typename E> void saveEnum(const E &data) { si32 writ = static_cast<si32>(data); *this << writ; } void saveBoolean(const bool & data) { ui8 writ = static_cast<ui8>(data); *this << writ; } void saveBooleanVector(const std::vector<bool> & data) { std::vector<ui8> convData; std::copy(data.begin(), data.end(), std::back_inserter(convData)); saveSerializable(convData); } }; class DLL_LINKAGE CLoaderBase : public virtual CSerializer {}; class CBasicPointerLoader { public: virtual void loadPtr(CLoaderBase &ar, void *data, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER virtual ~CBasicPointerLoader(){} }; template <typename Serializer, typename T> class CPointerLoader : public CBasicPointerLoader { public: void loadPtr(CLoaderBase &ar, void *data, ui32 pid) const //data is pointer to the ACTUAL POINTER { Serializer &s = static_cast<Serializer&>(ar); T *&ptr = *static_cast<T**>(data); //create new object under pointer typedef typename boost::remove_pointer<T>::type npT; ptr = new npT; s.ptrAllocated(ptr, pid); //T is most derived known type, it's time to call actual serialize ptr->serialize(s,version); } }; /// The class which manages loading of objects. template <typename Serializer> class DLL_LINKAGE CISer : public CLoaderBase { public: bool saving; std::map<ui16,CBasicPointerLoader*> loaders; // typeID => CPointerSaver<serializer,type> ui32 fileVersion; bool reverseEndianess; //if source has different endianess than us, we reverse bytes std::map<ui32, void*> loadedPointers; std::map<const void*, boost::any> loadedSharedPointers; bool smartPointerSerialization; CISer() { saving = false; fileVersion = 0; smartPointerSerialization = true; reverseEndianess = false; } ~CISer() { std::map<ui16,CBasicPointerLoader*>::iterator iter; for(iter = loaders.begin(); iter != loaders.end(); iter++) delete iter->second; } template<typename T> void registerType(const T * t=nullptr) { ui16 ID = typeList.registerType(t); loaders[ID] = new CPointerLoader<CISer<Serializer>,T>; } Serializer * This() { return static_cast<Serializer*>(this); } template<class T> Serializer & operator>>(T &t) { this->This()->load(t); return * this->This(); } template<class T> CISer & operator&(T & t) { return * this->This() >> t; } int write(const void * data, unsigned size); template <typename T> void load(T &data) { typedef //if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Boolean> >, mpl::identity<LoadBoolean<Serializer> >, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<BooleanVector> >, mpl::identity<LoadBooleanVector<Serializer> >, //else if typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Primitive> >, mpl::identity<LoadPrimitive<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Enum> >, mpl::identity<LoadEnum<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Pointer> >, mpl::identity<LoadPointer<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Array> >, mpl::identity<LoadArray<Serializer,T> >, //else if typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Serializable> >, mpl::identity<LoadSerializable<Serializer,T> >, //else mpl::identity<LoadWrong<Serializer,T> > > > > > > > >::type typex; typex::invoke(* this->This(), data); } template <typename T> void loadPrimitive(T &data) { if(0) //for testing #989 { this->This()->read(&data,sizeof(data)); } else { unsigned length = sizeof(data); char* dataPtr = (char*)&data; this->This()->read(dataPtr,length); if(reverseEndianess) std::reverse(dataPtr, dataPtr + length); } } template <typename T> void loadSerializableBySerializeCall(T &data) { ////that const cast is evil because it allows to implicitly overwrite const objects when deserializing typedef typename boost::remove_const<T>::type nonConstT; nonConstT &hlp = const_cast<nonConstT&>(data); hlp.serialize(*this,fileVersion); //data.serialize(*this,myVersion); } template <typename T> void loadSerializable(T &data) { loadSerializableBySerializeCall(data); } template <typename T> void loadArray(T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i = 0; i < size; i++) *this >> data[i]; } template <typename T> void loadPointer(T &data) { ui8 hlp; *this >> hlp; if(!hlp) { data = nullptr; return; } if(smartVectorMembersSerialization) { typedef typename boost::remove_const<typename boost::remove_pointer<T>::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance typedef typename VectorisedTypeFor<TObjectType>::type VType; //eg: CGHeroInstance -> CGobjectInstance typedef typename VectorizedIDType<TObjectType>::type IDType; if(const auto *info = getVectorisedTypeInfo<VType, IDType>()) { IDType id; *this >> id; if(id != IDType(-1)) { data = static_cast<T>(getVectorItemFromId<VType, IDType>(*info, id)); return; } } } if(sendStackInstanceByIds) { bool gotLoaded = LoadIfStackInstance<Serializer,T>::invoke(*This(), data); if(gotLoaded) return; } ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id) if(smartPointerSerialization) { *this >> pid; //get the id std::map<ui32, void*>::iterator i = loadedPointers.find(pid); //lookup if(i != loadedPointers.end()) { //we already got this pointer data = static_cast<T>(i->second); return; } } //get type id ui16 tid; *this >> tid; This()->loadPointerHlp(tid, data, pid); } //that part of ptr deserialization was extracted to allow customization of its behavior in derived classes template <typename T> void loadPointerHlp( ui16 tid, T & data, ui32 pid ) { if(!tid) { typedef typename boost::remove_pointer<T>::type npT; typedef typename boost::remove_const<npT>::type ncpT; data = new ncpT; ptrAllocated(data, pid); *this >> *data; } else { loaders[tid]->loadPtr(*this,&data, pid); } } template <typename T> void ptrAllocated(const T *ptr, ui32 pid) { if(smartPointerSerialization && pid != 0xffffffff) loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt } #define READ_CHECK_U32(x) \ ui32 length; \ *this >> length; \ if(length > 500000) \ { \ logGlobal->warnStream() << "Warning: very big length: " << length;\ reportState(logGlobal); \ }; template <typename T> void loadSerializable(shared_ptr<T> &data) { T *internalPtr; *this >> internalPtr; if(internalPtr) { auto itr = loadedSharedPointers.find(internalPtr); if(itr != loadedSharedPointers.end()) { // This pointers is already loaded. The "data" needs to be pointed to it, // so their shared state is actually shared. try { data = boost::any_cast<std::shared_ptr<T>>(itr->second); } catch(std::exception &e) { logGlobal->errorStream() << e.what(); logGlobal->errorStream() << boost::format("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME") % itr->second.type().name() % typeid(std::shared_ptr<T>).name(); //TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa) assert(0); } } else { data = std::shared_ptr<T>(internalPtr); loadedSharedPointers[internalPtr] = data; } } else data.reset(); } template <typename T> void loadSerializable(unique_ptr<T> &data) { T *internalPtr; *this >> internalPtr; data.reset(internalPtr); } template <typename T> void loadSerializable(std::vector<T> &data) { READ_CHECK_U32(length); data.resize(length); for(ui32 i=0;i<length;i++) *this >> data[i]; } template <typename T, size_t N> void loadSerializable(std::array<T, N> &data) { for(ui32 i = 0; i < N; i++) *this >> data[i]; } template <typename T> void loadSerializable(std::set<T> &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i<length;i++) { *this >> ins; data.insert(ins); } } template <typename T, typename U> void loadSerializable(std::unordered_set<T, U> &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i<length;i++) { *this >> ins; data.insert(ins); } } template <typename T> void loadSerializable(std::list<T> &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i<length;i++) { *this >> ins; data.push_back(ins); } } template <typename T1, typename T2> void loadSerializable(std::pair<T1,T2> &data) { *this >> data.first >> data.second; } template <typename T1, typename T2> void loadSerializable(std::map<T1,T2> &data) { READ_CHECK_U32(length); data.clear(); T1 t; for(ui32 i=0;i<length;i++) { *this >> t; *this >> data[t]; } } void loadSerializable(std::string &data) { READ_CHECK_U32(length); data.resize(length); this->This()->read((void*)data.c_str(),length); } template <BOOST_VARIANT_ENUM_PARAMS(typename T)> void loadSerializable(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data) { si32 which; *this >> which; if(which == 0) { T0 obj; *this >> obj; data = obj; } else if(which == 1) { T1 obj; *this >> obj; data = obj; } else assert(0); //TODO write more if needed, general solution would be much longer } template <typename T> void loadSerializable(boost::optional<T> & data) { ui8 present; *this >> present; if(present) { T t; *this >> t; data = t; } else { data = boost::optional<T>(); } } // void loadSerializable(CStackInstance *&s) // { // if(sendStackInstanceByIds) // { // CArmedInstance *armed; // SlotID slot; // *this >> armed >> slot; // assert(armed->hasStackAtSlot(slot)); // s = armed->stacks[slot]; // } // else // loadSerializableBySerializeCall(s); // } template <typename E> void loadEnum(E &data) { si32 read; *this >> read; data = static_cast<E>(read); } void loadBoolean(bool &data) { ui8 read; *this >> read; data = static_cast<bool>(read); } void loadBooleanVector(std::vector<bool> & data) { std::vector<ui8> convData; loadSerializable(convData); std::copy(convData.begin(), convData.end(), std::back_inserter(data)); } }; class DLL_LINKAGE CSaveFile : public COSer<CSaveFile> { void dummyMagicFunction() { *this << std::string("This function makes stuff working."); } public: std::string fName; unique_ptr<std::ofstream> sfile; CSaveFile(const std::string &fname); //throws! ~CSaveFile(); int write(const void * data, unsigned size); void openNextFile(const std::string &fname); //throws! void clear(); void reportState(CLogger * out); void putMagicBytes(const std::string &text); }; class DLL_LINKAGE CLoadFile : public CISer<CLoadFile> { void dummyMagicFunction() { std::string dummy = "This function makes stuff working."; *this >> dummy; } public: std::string fName; unique_ptr<std::ifstream> sfile; CLoadFile(const std::string &fname, int minimalVersion = version); //throws! ~CLoadFile(); int read(const void * data, unsigned size); //throws! void openNextFile(const std::string &fname, int minimalVersion); //throws! void clear(); void reportState(CLogger * out); void checkMagicBytes(const std::string &text); }; class DLL_LINKAGE CLoadIntegrityValidator : public CISer<CLoadIntegrityValidator> { public: unique_ptr<CLoadFile> primaryFile, controlFile; bool foundDesync; CLoadIntegrityValidator(const std::string &primaryFileName, const std::string &controlFileName, int minimalVersion = version); //throws! int read(const void * data, unsigned size); //throws! void checkMagicBytes(const std::string &text); unique_ptr<CLoadFile> decay(); //returns primary file. CLoadIntegrityValidator stops being usable anymore }; typedef boost::asio::basic_stream_socket < boost::asio::ip::tcp , boost::asio::stream_socket_service<boost::asio::ip::tcp> > TSocket; typedef boost::asio::basic_socket_acceptor<boost::asio::ip::tcp, boost::asio::socket_acceptor_service<boost::asio::ip::tcp> > TAcceptor; class DLL_LINKAGE CConnection :public CISer<CConnection>, public COSer<CConnection> { //CGameState *gs; CConnection(void); void init(); void reportState(CLogger * out); public: boost::mutex *rmx, *wmx; // read/write mutexes TSocket * socket; bool logging; bool connected; bool myEndianess, contactEndianess; //true if little endian, if endianess is different we'll have to revert received multi-byte vars boost::asio::io_service *io_service; std::string name; //who uses this connection int connectionID; boost::thread *handler; bool receivedStop, sendStop; CConnection(std::string host, std::string port, std::string Name); CConnection(TAcceptor * acceptor, boost::asio::io_service *Io_service, std::string Name); CConnection(TSocket * Socket, std::string Name); //use immediately after accepting connection into socket int write(const void * data, unsigned size); int read(void * data, unsigned size); void close(); bool isOpen() const; template<class T> CConnection &operator&(const T&); virtual ~CConnection(void); CPack *retreivePack(); //gets from server next pack (allocates it with new) void sendPackToServer(const CPack &pack, PlayerColor player, ui32 requestID); void disableStackSendingByID(); void enableStackSendingByID(); void disableSmartPointerSerialization(); void enableSmartPointerSerializatoin(); void disableSmartVectorMemberSerialization(); void enableSmartVectorMemberSerializatoin(); void prepareForSendingHeroes(); //disables sending vectorised, enables smart pointer serialization, clears saved/loaded ptr cache void enterPregameConnectionMode(); }; DLL_LINKAGE std::ostream &operator<<(std::ostream &str, const CConnection &cpc); template<typename T> class CApplier { public: std::map<ui16,T*> apps; ~CApplier() { typename std::map<ui16, T*>::iterator iter; for(iter = apps.begin(); iter != apps.end(); iter++) delete iter->second; } template<typename U> void registerType(const U * t=nullptr) { ui16 ID = typeList.registerType(t); apps[ID] = T::getApplier(t); } };