/* * Connection.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #pragma once #include #include #include #include #include #include #include #include #include "ConstTransitivePtr.h" #include "CCreatureSet.h" //for CStackInstance #include "mapObjects/CGHeroInstance.h" #include "mapping/CCampaignHandler.h" //for CCampaignState #include "rmg/CMapGenerator.h" // for CMapGenOptions const ui32 version = 759; const ui32 minSupportedVersion = 753; class CISer; class COSer; class CConnection; class CGObjectInstance; class CStackInstance; class CGameState; class CCreature; class LibClasses; class CHero; class FileStream; struct CPack; extern DLL_LINKAGE LibClasses * VLC; namespace mpl = boost::mpl; const std::string SAVEGAME_MAGIC = "VCMISVG"; namespace boost { namespace asio { namespace ip { class tcp; } class io_service; template class stream_socket_service; template class basic_stream_socket; template class socket_acceptor_service; template class basic_socket_acceptor; } class mutex; } enum SerializationLvl { Wrong=0, Boolean, Primitive, Array, Pointer, Enum, Serializable, BooleanVector }; struct TypeComparer { bool operator()(const std::type_info *a, const std::type_info *b) const { #ifndef __APPLE__ return a->before(*b); #else return strcmp(a->name(), b->name()) < 0; #endif } }; struct IPointerCaster { virtual boost::any castRawPtr(const boost::any &ptr) const = 0; // takes From*, performs dynamic cast, returns To* virtual boost::any castSharedPtr(const boost::any &ptr) const = 0; // takes std::shared_ptr, performs dynamic cast, returns std::shared_ptr virtual boost::any castWeakPtr(const boost::any &ptr) const = 0; // takes std::weak_ptr, performs dynamic cast, returns std::weak_ptr. The object under poitner must live. //virtual boost::any castUniquePtr(const boost::any &ptr) const = 0; // takes std::unique_ptr, performs dynamic cast, returns std::unique_ptr }; template struct PointerCaster : IPointerCaster { virtual boost::any castRawPtr(const boost::any &ptr) const override // takes void* pointing to From object, performs dynamic cast, returns void* pointing to To object { From * from = (From*)boost::any_cast(ptr); To * ret = dynamic_cast(from); if (ret == nullptr) { // Last resort when RTTI goes mad ret = static_cast(from); } return (void*)ret; } // Helper function performing casts between smart pointers using dynamic_pointer_cast template boost::any castSmartPtr(const boost::any &ptr) const { try { auto from = boost::any_cast(ptr); auto ret = std::dynamic_pointer_cast(from); if (!ret) { // Last resort when RTTI goes mad ret = std::static_pointer_cast(from); } return ret; } catch(std::exception &e) { THROW_FORMAT("Failed cast %s -> %s. Given argument was %s. Error message: %s", typeid(From).name() % typeid(To).name() % ptr.type().name() % e.what()); } } virtual boost::any castSharedPtr(const boost::any &ptr) const override { return castSmartPtr>(ptr); } virtual boost::any castWeakPtr(const boost::any &ptr) const override { auto from = boost::any_cast>(ptr); return castSmartPtr>(from.lock()); } // virtual boost::any castUniquePtr(const boost::any &ptr) const override // { // return castSmartPtr>(ptr); // } }; class DLL_LINKAGE CTypeList: public boost::noncopyable { public: struct TypeDescriptor; typedef std::shared_ptr TypeInfoPtr; struct TypeDescriptor { ui16 typeID; const char *name; std::vector children, parents; }; typedef boost::shared_mutex TMutex; typedef boost::unique_lock TUniqueLock; typedef boost::shared_lock TSharedLock; private: mutable TMutex mx; std::map typeInfos; std::map, std::unique_ptr> casters; //for each pair we provide a caster (each registered relations creates a single entry here) /// Returns sequence of types starting from "from" and ending on "to". Every next type is derived from the previous. /// Throws if there is no link registered. std::vector castSequence(TypeInfoPtr from, TypeInfoPtr to) const; std::vector castSequence(const std::type_info *from, const std::type_info *to) const; template boost::any castHelper(boost::any inputPtr, const std::type_info *fromArg, const std::type_info *toArg) const { TSharedLock lock(mx); auto typesSequence = castSequence(fromArg, toArg); boost::any ptr = inputPtr; for(int i = 0; i < static_cast(typesSequence.size()) - 1; i++) { auto &from = typesSequence[i]; auto &to = typesSequence[i + 1]; auto castingPair = std::make_pair(from, to); if(!casters.count(castingPair)) THROW_FORMAT("Cannot find caster for conversion %s -> %s which is needed to cast %s -> %s", from->name % to->name % fromArg->name() % toArg->name()); auto &caster = casters.at(castingPair); ptr = (*caster.*CastingFunction)(ptr); //Why does std::unique_ptr not have operator->* ..? } return ptr; } TypeInfoPtr getTypeDescriptor(const std::type_info *type, bool throws = true) const; //if not throws, failure returns nullptr TypeInfoPtr registerType(const std::type_info *type); public: CTypeList(); template void registerType(const Base * b = nullptr, const Derived * d = nullptr) { TUniqueLock lock(mx); static_assert(std::is_base_of::value, "First registerType template parameter needs to ba a base class of the second one."); static_assert(std::has_virtual_destructor::value, "Base class needs to have a virtual destructor."); static_assert(!std::is_same::value, "Parameters of registerTypes should be two diffrenet types."); auto bt = getTypeInfo(b), dt = getTypeInfo(d); //obtain std::type_info auto bti = registerType(bt), dti = registerType(dt); //obtain our TypeDescriptor // register the relation between classes bti->children.push_back(dti); dti->parents.push_back(bti); casters[std::make_pair(bti, dti)] = make_unique>(); casters[std::make_pair(dti, bti)] = make_unique>(); } ui16 getTypeID(const std::type_info *type, bool throws = false) const; template ui16 getTypeID(const T * t = nullptr, bool throws = false) const { return getTypeID(getTypeInfo(t), throws); } template void * castToMostDerived(const TInput * inputPtr) const { auto &baseType = typeid(typename std::remove_cv::type); auto derivedType = getTypeInfo(inputPtr); if (!strcmp(baseType.name(), derivedType->name())) { return const_cast(reinterpret_cast(inputPtr)); } return boost::any_cast(castHelper<&IPointerCaster::castRawPtr>( const_cast(reinterpret_cast(inputPtr)), &baseType, derivedType)); } template boost::any castSharedToMostDerived(const std::shared_ptr inputPtr) const { auto &baseType = typeid(typename std::remove_cv::type); auto derivedType = getTypeInfo(inputPtr.get()); if (!strcmp(baseType.name(), derivedType->name())) return inputPtr; return castHelper<&IPointerCaster::castSharedPtr>(inputPtr, &baseType, derivedType); } void * castRaw(void *inputPtr, const std::type_info *from, const std::type_info *to) const { return boost::any_cast(castHelper<&IPointerCaster::castRawPtr>(inputPtr, from, to)); } boost::any castShared(boost::any inputPtr, const std::type_info *from, const std::type_info *to) const { return castHelper<&IPointerCaster::castSharedPtr>(inputPtr, from, to); } template const std::type_info * getTypeInfo(const T * t = nullptr) const { if(t) return &typeid(*t); else return &typeid(T); } }; extern DLL_LINKAGE CTypeList typeList; template struct VariantLoaderHelper { Source & source; std::vector> funcs; VariantLoaderHelper(Source & source): source(source) { mpl::for_each(std::ref(*this)); } template void operator()(Type) { funcs.push_back([&]() -> Variant { Type obj; source >> obj; return Variant(obj); }); } }; template struct SerializationLevel { typedef mpl::integral_c_tag tag; typedef typename mpl::eval_if< boost::is_same, mpl::int_, //else typename mpl::eval_if< boost::is_same >, mpl::int_, //else typename mpl::eval_if< boost::is_fundamental, mpl::int_, //else typename mpl::eval_if< boost::is_enum, mpl::int_, //else typename mpl::eval_if< boost::is_class, mpl::int_, //else typename mpl::eval_if< boost::is_array, mpl::int_, //else typename mpl::eval_if< boost::is_pointer, mpl::int_, //else typename mpl::eval_if< boost::is_enum, mpl::int_, //else mpl::int_ > > > > > > > >::type type; static const int value = SerializationLevel::type::value; }; template struct VectorisedObjectInfo { const std::vector > *vector; //pointer to the appropriate vector std::function idRetriever; //const IdType ObjType::*idPtr; //pointer to the field representing the position in the vector VectorisedObjectInfo(const std::vector< ConstTransitivePtr > *Vector, std::function IdGetter) :vector(Vector), idRetriever(IdGetter) { } }; template si32 idToNumber(const T &t, typename boost::enable_if >::type * dummy = 0) { return t; } template NT idToNumber(const BaseForID &t) { return t.getNum(); } /// Class which is responsible for storing and loading data. class DLL_LINKAGE CSerializer { public: typedef std::map TTypeVecMap; TTypeVecMap vectors; //entry must be a pointer to vector containing pointers to the objects of key type bool smartVectorMembersSerialization; bool sendStackInstanceByIds; CSerializer(); ~CSerializer(); virtual void reportState(CLogger * out){}; template void registerVectoredType(const std::vector *Vector, const std::function &idRetriever) { vectors[&typeid(T)] = VectorisedObjectInfo(Vector, idRetriever); } template void registerVectoredType(const std::vector > *Vector, const std::function &idRetriever) { vectors[&typeid(T)] = VectorisedObjectInfo(Vector, idRetriever); } template const VectorisedObjectInfo *getVectorisedTypeInfo() { const std::type_info *myType = nullptr; // // if(boost::is_base_of::value) //ugly workaround to support also types derived from CGObjectInstance -> if we encounter one, treat it aas CGObj.. // myType = &typeid(CGObjectInstance); // else myType = &typeid(T); TTypeVecMap::iterator i = vectors.find(myType); if(i == vectors.end()) return nullptr; else { assert(!i->second.empty()); assert(i->second.type() == typeid(VectorisedObjectInfo)); VectorisedObjectInfo *ret = &(boost::any_cast&>(i->second)); return ret; } } template T* getVectorItemFromId(const VectorisedObjectInfo &oInfo, U id) const { /* if(id < 0) return nullptr;*/ si32 idAsNumber = idToNumber(id); assert(oInfo.vector); assert(static_cast(oInfo.vector->size()) > idAsNumber); return const_cast((*oInfo.vector)[idAsNumber].get()); } template U getIdFromVectorItem(const VectorisedObjectInfo &oInfo, const T* obj) const { if(!obj) return U(-1); return oInfo.idRetriever(*obj); } void addStdVecItems(CGameState *gs, LibClasses *lib = VLC); }; class IBinaryWriter : public virtual CSerializer { public: virtual int write(const void * data, unsigned size) = 0; }; class DLL_LINKAGE CSaverBase { protected: IBinaryWriter * writer; public: CSaverBase(IBinaryWriter * w): writer(w){}; inline int write(const void * data, unsigned size) { return writer->write(data, size); }; }; class CBasicPointerSaver { public: virtual void savePtr(CSaverBase &ar, const void *data) const =0; virtual ~CBasicPointerSaver(){} }; template //metafunction returning CGObjectInstance if T is its derivate or T elsewise struct VectorisedTypeFor { typedef typename //if mpl::eval_if, mpl::identity, //else if mpl::eval_if, mpl::identity, //else mpl::identity > >::type type; }; template struct VectorizedIDType { typedef typename //if mpl::eval_if, mpl::identity, //else if mpl::eval_if, mpl::identity, //else if mpl::eval_if, mpl::identity, //else if mpl::eval_if, mpl::identity, //else if mpl::eval_if, mpl::identity, //else if mpl::eval_if, mpl::identity, //else mpl::identity > > > > > >::type type; }; template struct VariantVisitorSaver : boost::static_visitor<> { Handler &h; VariantVisitorSaver(Handler &H):h(H) { } template void operator()(const T &t) { h << t; } }; template struct SaveIfStackInstance { static bool invoke(Ser &s, const T &data) { return false; } }; template struct SaveIfStackInstance { static bool invoke(Ser &s, const CStackInstance* const &data) { assert(data->armyObj); SlotID slot; if(data->getNodeType() == CBonusSystemNode::COMMANDER) slot = SlotID::COMMANDER_SLOT_PLACEHOLDER; else slot = data->armyObj->findStack(data); assert(slot != SlotID()); s << data->armyObj << slot; return true; } }; template struct LoadIfStackInstance { static bool invoke(Ser &s, T &data) { return false; } }; template struct LoadIfStackInstance { static bool invoke(Ser &s, CStackInstance* &data) { CArmedInstance *armedObj; SlotID slot; s >> armedObj >> slot; if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER) { assert(armedObj->hasStackAtSlot(slot)); data = armedObj->stacks[slot]; } else { auto hero = dynamic_cast(armedObj); assert(hero); assert(hero->commander); data = hero->commander; } return true; } }; /// The class which manages saving objects. class DLL_LINKAGE COSer : public CSaverBase { public: struct SaveBoolean { static void invoke(COSer &s, const bool &data) { s.saveBoolean(data); } }; struct SaveBooleanVector { static void invoke(COSer &s, const std::vector &data) { s.saveBooleanVector(data); } }; template struct SavePrimitive { static void invoke(COSer &s, const T &data) { s.savePrimitive(data); } }; template struct SaveSerializable { static void invoke(COSer &s, const T &data) { s.saveSerializable(data); } }; template struct SaveEnum { static void invoke(COSer &s, const T &data) { s.saveEnum(data); } }; template struct SavePointer { static void invoke(COSer &s, const T &data) { s.savePointer(data); } }; template struct SaveArray { static void invoke(COSer &s, const T &data) { s.saveArray(data); } }; template struct SaveWrong { static void invoke(COSer &s, const T &data) { throw std::runtime_error("Wrong save serialization call!"); } }; template class CPointerSaver : public CBasicPointerSaver { public: void savePtr(CSaverBase &ar, const void *data) const override { COSer &s = static_cast(ar); const T *ptr = static_cast(data); //T is most derived known type, it's time to call actual serialize const_cast(ptr)->serialize(s,version); } }; bool saving; std::map savers; // typeID => CPointerSaver std::map savedPointers; bool smartPointerSerialization; COSer(IBinaryWriter * w): CSaverBase(w) { saving=true; smartPointerSerialization = true; } ~COSer() { std::map::iterator iter; for(iter = savers.begin(); iter != savers.end(); iter++) delete iter->second; } template void addSaver(const T * t = nullptr) { auto ID = typeList.getTypeID(t); if(!savers.count(ID)) savers[ID] = new CPointerSaver; } template void registerType(const Base * b = nullptr, const Derived * d = nullptr) { typeList.registerType(b, d); addSaver(b); addSaver(d); } template COSer & operator<<(const T &t) { this->save(t); return * this; } template COSer & operator&(const T & t) { return * this << t; } template void savePrimitive(const T &data) { this->write(&data,sizeof(data)); } template void savePointer(const T &data) { //write if pointer is not nullptr ui8 hlp = (data!=nullptr); *this << hlp; //if pointer is nullptr then we don't need anything more... if(!hlp) return; if(writer->smartVectorMembersSerialization) { typedef typename boost::remove_const::type>::type TObjectType; typedef typename VectorisedTypeFor::type VType; typedef typename VectorizedIDType::type IDType; if(const auto *info = writer->getVectorisedTypeInfo()) { IDType id = writer->getIdFromVectorItem(*info, data); *this << id; if(id != IDType(-1)) //vector id is enough return; } } if(writer->sendStackInstanceByIds) { const bool gotSaved = SaveIfStackInstance::invoke(*this, data); if(gotSaved) return; } if(smartPointerSerialization) { // We might have an object that has multiple inheritance and store it via the non-first base pointer. // Therefore, all pointers need to be normalized to the actual object address. auto actualPointer = typeList.castToMostDerived(data); std::map::iterator i = savedPointers.find(actualPointer); if(i != savedPointers.end()) { //this pointer has been already serialized - write only it's id *this << i->second; return; } //give id to this pointer ui32 pid = (ui32)savedPointers.size(); savedPointers[actualPointer] = pid; *this << pid; } //write type identifier ui16 tid = typeList.getTypeID(data); *this << tid; this->savePointerHlp(tid, data); } //that part of ptr serialization was extracted to allow customization of its behavior in derived classes template void savePointerHlp(ui16 tid, const T &data) { if(!tid) *this << *data; //if type is unregistered simply write all data in a standard way else savers[tid]->savePtr(*this, typeList.castToMostDerived(data)); //call serializer specific for our real type } template void saveArray(const T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i=0; i < size; i++) *this << data[i]; } template void save(const T &data) { typedef //if typename mpl::eval_if< mpl::equal_to,mpl::int_ >, mpl::identity, //else if typename mpl::eval_if< mpl::equal_to,mpl::int_ >, mpl::identity, //else if typename mpl::eval_if< mpl::equal_to,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else mpl::identity > > > > > > > >::type typex; typex::invoke(* this, data); } template void saveSerializable(const T &data) { const_cast(data).serialize(*this,version); } template void saveSerializable(const std::shared_ptr &data) { T *internalPtr = data.get(); *this << internalPtr; } template void saveSerializable(const std::unique_ptr &data) { T *internalPtr = data.get(); *this << internalPtr; } template void saveSerializable(const std::vector &data) { ui32 length = data.size(); *this << length; for(ui32 i=0;i void saveSerializable(const std::array &data) { for(ui32 i=0; i < N; i++) *this << data[i]; } template void saveSerializable(const std::set &data) { std::set &d = const_cast &>(data); ui32 length = d.size(); *this << length; for(typename std::set::iterator i=d.begin();i!=d.end();i++) *this << *i; } template void saveSerializable(const std::unordered_set &data) { std::unordered_set &d = const_cast &>(data); ui32 length = d.size(); *this << length; for(typename std::unordered_set::iterator i=d.begin();i!=d.end();i++) *this << *i; } template void saveSerializable(const std::list &data) { std::list &d = const_cast &>(data); ui32 length = d.size(); *this << length; for(typename std::list::iterator i=d.begin();i!=d.end();i++) *this << *i; } void saveSerializable(const std::string &data) { *this << ui32(data.length()); this->write(data.c_str(),data.size()); } template void saveSerializable(const std::pair &data) { *this << data.first << data.second; } template void saveSerializable(const std::map &data) { *this << ui32(data.size()); for(typename std::map::const_iterator i=data.begin();i!=data.end();i++) *this << i->first << i->second; } template void saveSerializable(const std::multimap &data) { *this << ui32(data.size()); for(typename std::map::const_iterator i = data.begin(); i != data.end(); i++) *this << i->first << i->second; } template void saveSerializable(const boost::variant &data) { si32 which = data.which(); *this << which; VariantVisitorSaver visitor(*this); boost::apply_visitor(visitor, data); } template void saveSerializable(const boost::optional &data) { if(data) { *this << (ui8)1; *this << *data; } else { *this << (ui8)0; } } template void saveEnum(const E &data) { si32 writ = static_cast(data); *this << writ; } void saveBoolean(const bool & data) { ui8 writ = static_cast(data); *this << writ; } void saveBooleanVector(const std::vector & data) { std::vector convData; std::copy(data.begin(), data.end(), std::back_inserter(convData)); saveSerializable(convData); } }; class IBinaryReader : public virtual CSerializer { public: virtual int read(void * data, unsigned size) = 0; }; class DLL_LINKAGE CLoaderBase { protected: IBinaryReader * reader; public: CLoaderBase(IBinaryReader * r): reader(r){}; inline int read(void * data, unsigned size) { return reader->read(data, size); }; }; class CBasicPointerLoader { public: virtual const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER virtual ~CBasicPointerLoader(){} }; template struct ClassObjectCreator { static T *invoke() { static_assert(!std::is_abstract::value, "Cannot call new upon abstract classes!"); return new T(); } }; template struct ClassObjectCreator::value>::type> { static T *invoke() { throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name())); } }; /// The class which manages loading of objects. class DLL_LINKAGE CISer : public CLoaderBase { public: struct LoadBoolean { static void invoke(CISer &s, bool &data) { s.loadBoolean(data); } }; struct LoadBooleanVector { static void invoke(CISer &s, std::vector &data) { s.loadBooleanVector(data); } }; template struct LoadEnum { static void invoke(CISer &s, T &data) { s.loadEnum(data); } }; template struct LoadPrimitive { static void invoke(CISer &s, T &data) { s.loadPrimitive(data); } }; template struct LoadPointer { static void invoke(CISer &s, T &data) { s.loadPointer(data); } }; template struct LoadArray { static void invoke(CISer &s, T &data) { s.loadArray(data); } }; template struct LoadSerializable { static void invoke(CISer &s, T &data) { s.loadSerializable(data); } }; template struct LoadWrong { static void invoke(CISer &s, const T &data) { throw std::runtime_error("Wrong load serialization call!"); } }; template class CPointerLoader : public CBasicPointerLoader { public: const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const override //data is pointer to the ACTUAL POINTER { CISer &s = static_cast(ar); T *&ptr = *static_cast(data); //create new object under pointer typedef typename boost::remove_pointer::type npT; ptr = ClassObjectCreator::invoke(); //does new npT or throws for abstract classes s.ptrAllocated(ptr, pid); //T is most derived known type, it's time to call actual serialize ptr->serialize(s,s.fileVersion); return &typeid(T); } }; bool saving; std::map loaders; // typeID => CPointerSaver si32 fileVersion; bool reverseEndianess; //if source has different endianness than us, we reverse bytes std::map loadedPointers; std::map loadedPointersTypes; std::map loadedSharedPointers; bool smartPointerSerialization; CISer(IBinaryReader * r): CLoaderBase(r) { saving = false; fileVersion = 0; smartPointerSerialization = true; reverseEndianess = false; } ~CISer() { std::map::iterator iter; for(iter = loaders.begin(); iter != loaders.end(); iter++) delete iter->second; } template void addLoader(const T * t = nullptr) { auto ID = typeList.getTypeID(t); if(!loaders.count(ID)) loaders[ID] = new CPointerLoader; } template void registerType(const Base * b = nullptr, const Derived * d = nullptr) { typeList.registerType(b, d); addLoader(b); addLoader(d); } template CISer & operator>>(T &t) { this->load(t); return * this; } template CISer & operator&(T & t) { return * this >> t; } int write(const void * data, unsigned size); template void load(T &data) { typedef //if typename mpl::eval_if< mpl::equal_to,mpl::int_ >, mpl::identity, //else if typename mpl::eval_if< mpl::equal_to,mpl::int_ >, mpl::identity, //else if typename mpl::eval_if< mpl::equal_to,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else if typename mpl::eval_if,mpl::int_ >, mpl::identity >, //else mpl::identity > > > > > > > >::type typex; typex::invoke(* this, data); } template void loadPrimitive(T &data) { if(0) //for testing #989 { this->read(&data,sizeof(data)); } else { unsigned length = sizeof(data); char* dataPtr = (char*)&data; this->read(dataPtr,length); if(reverseEndianess) std::reverse(dataPtr, dataPtr + length); } } template void loadSerializableBySerializeCall(T &data) { ////that const cast is evil because it allows to implicitly overwrite const objects when deserializing typedef typename boost::remove_const::type nonConstT; nonConstT &hlp = const_cast(data); hlp.serialize(*this,fileVersion); //data.serialize(*this,myVersion); } template void loadSerializable(T &data) { loadSerializableBySerializeCall(data); } template void loadArray(T &data) { ui32 size = ARRAY_COUNT(data); for(ui32 i = 0; i < size; i++) *this >> data[i]; } template void loadPointer(T &data) { ui8 hlp; *this >> hlp; if(!hlp) { data = nullptr; return; } if(reader->smartVectorMembersSerialization) { typedef typename boost::remove_const::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance typedef typename VectorisedTypeFor::type VType; //eg: CGHeroInstance -> CGobjectInstance typedef typename VectorizedIDType::type IDType; if(const auto *info = reader->getVectorisedTypeInfo()) { IDType id; *this >> id; if(id != IDType(-1)) { data = static_cast(reader->getVectorItemFromId(*info, id)); return; } } } if(reader->sendStackInstanceByIds) { bool gotLoaded = LoadIfStackInstance::invoke(* this, data); if(gotLoaded) return; } ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id) if(smartPointerSerialization) { *this >> pid; //get the id std::map::iterator i = loadedPointers.find(pid); //lookup if(i != loadedPointers.end()) { // We already got this pointer // Cast it in case we are loading it to a non-first base pointer assert(loadedPointersTypes.count(pid)); data = reinterpret_cast(typeList.castRaw(i->second, loadedPointersTypes.at(pid), &typeid(typename boost::remove_const::type>::type))); return; } } //get type id ui16 tid; *this >> tid; this->loadPointerHlp(tid, data, pid); } //that part of ptr deserialization was extracted to allow customization of its behavior in derived classes template void loadPointerHlp( ui16 tid, T & data, ui32 pid ) { if(!tid) { typedef typename boost::remove_pointer::type npT; typedef typename boost::remove_const::type ncpT; data = ClassObjectCreator::invoke(); ptrAllocated(data, pid); *this >> *data; } else { auto typeInfo = loaders[tid]->loadPtr(*this,&data, pid); data = reinterpret_cast(typeList.castRaw((void*)data, typeInfo, &typeid(typename boost::remove_const::type>::type))); } } template void ptrAllocated(const T *ptr, ui32 pid) { if(smartPointerSerialization && pid != 0xffffffff) { loadedPointersTypes[pid] = &typeid(T); loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt } } #define READ_CHECK_U32(x) \ ui32 length; \ *this >> length; \ if(length > 500000) \ { \ logGlobal->warnStream() << "Warning: very big length: " << length;\ reader->reportState(logGlobal); \ }; template void loadSerializable(std::shared_ptr &data) { typedef typename boost::remove_const::type NonConstT; NonConstT *internalPtr; *this >> internalPtr; void *internalPtrDerived = typeList.castToMostDerived(internalPtr); if(internalPtr) { auto itr = loadedSharedPointers.find(internalPtrDerived); if(itr != loadedSharedPointers.end()) { // This pointers is already loaded. The "data" needs to be pointed to it, // so their shared state is actually shared. try { auto actualType = typeList.getTypeInfo(internalPtr); auto typeWeNeedToReturn = typeList.getTypeInfo(); if(*actualType == *typeWeNeedToReturn) { // No casting needed, just unpack already stored std::shared_ptr and return it data = boost::any_cast>(itr->second); } else { // We need to perform series of casts auto ret = typeList.castShared(itr->second, actualType, typeWeNeedToReturn); data = boost::any_cast>(ret); } } catch(std::exception &e) { logGlobal->errorStream() << e.what(); logGlobal->errorStream() << boost::format("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME") % itr->second.type().name() % typeid(std::shared_ptr).name(); //TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa) assert(0); } } else { auto hlp = std::shared_ptr(internalPtr); data = hlp; //possibly adds const loadedSharedPointers[internalPtrDerived] = typeList.castSharedToMostDerived(hlp); } } else data.reset(); } template void loadSerializable(std::unique_ptr &data) { T *internalPtr; *this >> internalPtr; data.reset(internalPtr); } template void loadSerializable(std::vector &data) { READ_CHECK_U32(length); data.resize(length); for(ui32 i=0;i> data[i]; } template void loadSerializable(std::array &data) { for(ui32 i = 0; i < N; i++) *this >> data[i]; } template void loadSerializable(std::set &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i> ins; data.insert(ins); } } template void loadSerializable(std::unordered_set &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i> ins; data.insert(ins); } } template void loadSerializable(std::list &data) { READ_CHECK_U32(length); data.clear(); T ins; for(ui32 i=0;i> ins; data.push_back(ins); } } template void loadSerializable(std::pair &data) { *this >> data.first >> data.second; } template void loadSerializable(std::map &data) { READ_CHECK_U32(length); data.clear(); T1 key; T2 value; for(ui32 i=0;i> key >> value; data.insert(std::pair(std::move(key), std::move(value))); } } template void loadSerializable(std::multimap &data) { READ_CHECK_U32(length); data.clear(); T1 key; T2 value; for(ui32 i = 0; i < length; i++) { *this >> key >> value; data.insert(std::pair(std::move(key), std::move(value))); } } void loadSerializable(std::string &data) { READ_CHECK_U32(length); data.resize(length); this->read((void*)data.c_str(),length); } template void loadSerializable(boost::variant &data) { typedef boost::variant TVariant; VariantLoaderHelper loader(*this); si32 which; *this >> which; assert(which < loader.funcs.size()); data = loader.funcs.at(which)(); } template void loadSerializable(boost::optional & data) { ui8 present; *this >> present; if(present) { T t; *this >> t; data = t; } else { data = boost::optional(); } } // void loadSerializable(CStackInstance *&s) // { // if(sendStackInstanceByIds) // { // CArmedInstance *armed; // SlotID slot; // *this >> armed >> slot; // assert(armed->hasStackAtSlot(slot)); // s = armed->stacks[slot]; // } // else // loadSerializableBySerializeCall(s); // } template void loadEnum(E &data) { si32 read; *this >> read; data = static_cast(read); } void loadBoolean(bool &data) { ui8 read; *this >> read; data = static_cast(read); } void loadBooleanVector(std::vector & data) { std::vector convData; loadSerializable(convData); convData.resize(data.size()); range::copy(convData, data.begin()); } }; class DLL_LINKAGE CSaveFile :public IBinaryWriter { public: COSer serializer; boost::filesystem::path fName; std::unique_ptr sfile; CSaveFile(const boost::filesystem::path &fname); //throws! ~CSaveFile(); int write(const void * data, unsigned size) override; void openNextFile(const boost::filesystem::path &fname); //throws! void clear(); void reportState(CLogger * out) override; void putMagicBytes(const std::string &text); template CSaveFile & operator<<(const T &t) { serializer << t; return * this; } }; class DLL_LINKAGE CLoadFile : public IBinaryReader { public: CISer serializer; boost::filesystem::path fName; std::unique_ptr sfile; CLoadFile(const boost::filesystem::path & fname, int minimalVersion = version); //throws! ~CLoadFile(); int read(void * data, unsigned size) override; //throws! void openNextFile(const boost::filesystem::path & fname, int minimalVersion); //throws! void clear(); void reportState(CLogger * out) override; void checkMagicBytes(const std::string & text); template CLoadFile & operator>>(T &t) { serializer >> t; return * this; } }; class DLL_LINKAGE CLoadIntegrityValidator : public IBinaryReader { public: CISer serializer; std::unique_ptr primaryFile, controlFile; bool foundDesync; CLoadIntegrityValidator(const boost::filesystem::path &primaryFileName, const boost::filesystem::path &controlFileName, int minimalVersion = version); //throws! int read( void * data, unsigned size) override; //throws! void checkMagicBytes(const std::string &text); std::unique_ptr decay(); //returns primary file. CLoadIntegrityValidator stops being usable anymore }; typedef boost::asio::basic_stream_socket < boost::asio::ip::tcp , boost::asio::stream_socket_service > TSocket; typedef boost::asio::basic_socket_acceptor > TAcceptor; class DLL_LINKAGE CConnection : public IBinaryReader, public IBinaryWriter { //CGameState *gs; CConnection(void); void init(); void reportState(CLogger * out) override; public: CISer iser; COSer oser; boost::mutex *rmx, *wmx; // read/write mutexes TSocket * socket; bool logging; bool connected; bool myEndianess, contactEndianess; //true if little endian, if endianness is different we'll have to revert received multi-byte vars boost::asio::io_service *io_service; std::string name; //who uses this connection int connectionID; boost::thread *handler; bool receivedStop, sendStop; CConnection(std::string host, std::string port, std::string Name); CConnection(TAcceptor * acceptor, boost::asio::io_service *Io_service, std::string Name); CConnection(TSocket * Socket, std::string Name); //use immediately after accepting connection into socket int write(const void * data, unsigned size) override; int read(void * data, unsigned size) override; void close(); bool isOpen() const; template CConnection &operator&(const T&); virtual ~CConnection(void); CPack *retreivePack(); //gets from server next pack (allocates it with new) void sendPackToServer(const CPack &pack, PlayerColor player, ui32 requestID); void disableStackSendingByID(); void enableStackSendingByID(); void disableSmartPointerSerialization(); void enableSmartPointerSerializatoin(); void disableSmartVectorMemberSerialization(); void enableSmartVectorMemberSerializatoin(); void prepareForSendingHeroes(); //disables sending vectorised, enables smart pointer serialization, clears saved/loaded ptr cache void enterPregameConnectionMode(); template CConnection & operator>>(T &t) { iser >> t; return * this; } template CConnection & operator<<(const T &t) { oser << t; return * this; } }; DLL_LINKAGE std::ostream &operator<<(std::ostream &str, const CConnection &cpc); // Serializer that stores objects in the dynamic buffer. Allows performing deep object copies. class DLL_LINKAGE CMemorySerializer : public IBinaryReader, public IBinaryWriter { std::vector buffer; size_t readPos; //index of the next byte to be read public: CISer iser; COSer oser; int read(void * data, unsigned size) override; //throws! int write(const void * data, unsigned size) override; CMemorySerializer(); template static std::unique_ptr deepCopy(const T &data) { CMemorySerializer mem; mem.oser << &data; std::unique_ptr ret; mem.iser >> ret; return ret; } }; template class CApplier { public: std::map apps; ~CApplier() { typename std::map::iterator iter; for(iter = apps.begin(); iter != apps.end(); iter++) delete iter->second; } template void addApplier(ui16 ID) { if(!apps.count(ID)) { RegisteredType * rtype = nullptr; apps[ID] = T::getApplier(rtype); } } template void registerType(const Base * b = nullptr, const Derived * d = nullptr) { typeList.registerType(b, d); addApplier(typeList.getTypeID(b)); addApplier(typeList.getTypeID(d)); } };