/* * BinaryDeserializer.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #pragma once #include "CSerializer.h" #include "CTypeList.h" #include "ESerializationVersion.h" #include "../mapObjects/CGHeroInstance.h" VCMI_LIB_NAMESPACE_BEGIN class DLL_LINKAGE CLoaderBase { protected: IBinaryReader * reader; public: CLoaderBase(IBinaryReader * r): reader(r){}; inline void read(void * data, unsigned size, bool reverseEndianness) { auto bytePtr = reinterpret_cast(data); reader->read(bytePtr, size); if(reverseEndianness) std::reverse(bytePtr, bytePtr + size); }; }; /// Main class for deserialization of classes from binary form /// Effectively revesed version of BinarySerializer class BinaryDeserializer : public CLoaderBase { template struct LoadIfStackInstance { static bool invoke(Ser &s, T &data) { return false; } }; template struct LoadIfStackInstance { static bool invoke(Ser &s, CStackInstance* &data) { CArmedInstance *armedObj; SlotID slot; s.load(armedObj); s.load(slot); if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER) { assert(armedObj->hasStackAtSlot(slot)); data = armedObj->stacks[slot]; } else { auto * hero = dynamic_cast(armedObj); assert(hero); assert(hero->commander); data = hero->commander; } return true; } }; template struct ClassObjectCreator { static T *invoke(IGameCallback *cb) { static_assert(!std::is_base_of_v, "Cannot call new upon map objects!"); static_assert(!std::is_abstract_v, "Cannot call new upon abstract classes!"); return new T(); } }; template struct ClassObjectCreator>> { static T *invoke(IGameCallback *cb) { throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name())); } }; template struct ClassObjectCreator && !std::is_abstract_v>> { static T *invoke(IGameCallback *cb) { static_assert(!std::is_abstract_v, "Cannot call new upon abstract classes!"); return new T(cb); } }; STRONG_INLINE uint32_t readAndCheckLength() { uint32_t length; load(length); //NOTE: also used for h3m's embedded in campaigns, so it may be quite large in some cases (e.g. XXL maps with multiple objects) if(length > 1000000) { logGlobal->warn("Warning: very big length: %d", length); reader->reportState(logGlobal); }; return length; } template class CPointerLoader; class IPointerLoader { public: virtual Serializeable * loadPtr(CLoaderBase &ar, IGameCallback * cb, uint32_t pid) const =0; //data is pointer to the ACTUAL POINTER virtual ~IPointerLoader() = default; template static IPointerLoader *getApplier(const Type * t = nullptr) { return new CPointerLoader(); } }; template class CPointerLoader : public IPointerLoader { public: Serializeable * loadPtr(CLoaderBase &ar, IGameCallback * cb, uint32_t pid) const override //data is pointer to the ACTUAL POINTER { auto & s = static_cast(ar); //create new object under pointer Type * ptr = ClassObjectCreator::invoke(cb); //does new npT or throws for abstract classes s.ptrAllocated(ptr, pid); ptr->serialize(s); return static_cast(ptr); } }; CApplier applier; int write(const void * data, unsigned size); public: using Version = ESerializationVersion; bool reverseEndianness; //if source has different endianness than us, we reverse bytes Version version; std::vector loadedStrings; std::map loadedPointers; std::map> loadedSharedPointers; IGameCallback * cb = nullptr; bool smartPointerSerialization; bool saving; bool hasFeature(Version what) const { return version >= what; }; DLL_LINKAGE BinaryDeserializer(IBinaryReader * r); template BinaryDeserializer & operator&(T & t) { this->load(t); return * this; } int64_t loadEncodedInteger() { uint64_t valueUnsigned = 0; uint_fast8_t offset = 0; for (;;) { uint8_t byteValue; load(byteValue); if ((byteValue & 0x80) != 0) { valueUnsigned |= (byteValue & 0x7f) << offset; offset += 7; } else { valueUnsigned |= (byteValue & 0x3f) << offset; bool isNegative = (byteValue & 0x40) != 0; if (isNegative) return -static_cast(valueUnsigned); else return valueUnsigned; } } } template < class T, typename std::enable_if_t < std::is_floating_point_v, int > = 0 > void load(T &data) { this->read(static_cast(&data), sizeof(data), reverseEndianness); } template < class T, typename std::enable_if_t < std::is_integral_v && !std::is_same_v, int > = 0 > void load(T &data) { if constexpr (sizeof(T) == 1) { this->read(static_cast(&data), sizeof(data), reverseEndianness); } else { static_assert(!std::is_same_v, "Serialization of unsigned 64-bit value may not work in some cases"); if (hasFeature(Version::COMPACT_INTEGER_SERIALIZATION)) data = loadEncodedInteger(); else this->read(static_cast(&data), sizeof(data), reverseEndianness); } } template < typename T, typename std::enable_if_t < is_serializeable::value, int > = 0 > void load(T &data) { ////that const cast is evil because it allows to implicitly overwrite const objects when deserializing typedef typename std::remove_const_t nonConstT; auto & hlp = const_cast(data); hlp.serialize(*this); } template < typename T, typename std::enable_if_t < std::is_array_v, int > = 0 > void load(T &data) { uint32_t size = std::size(data); for(uint32_t i = 0; i < size; i++) load(data[i]); } void load(Version &data) { this->read(static_cast(&data), sizeof(data), reverseEndianness); } template < typename T, typename std::enable_if_t < std::is_enum_v, int > = 0 > void load(T &data) { int32_t read; load( read ); data = static_cast(read); } template < typename T, typename std::enable_if_t < std::is_same_v, int > = 0 > void load(T &data) { uint8_t read; load( read ); data = static_cast(read); } template , int > = 0> void load(std::vector &data) { uint32_t length = readAndCheckLength(); data.resize(length); for(uint32_t i=0;i, int > = 0> void load(std::deque & data) { uint32_t length = readAndCheckLength(); data.resize(length); for(uint32_t i = 0; i < length; i++) load(data[i]); } template < typename T, typename std::enable_if_t < std::is_pointer_v, int > = 0 > void load(T &data) { bool isNull; load( isNull ); if(isNull) { data = nullptr; return; } loadPointerImpl(data); } template < typename T, typename std::enable_if_t < std::is_base_of_v>, int > = 0 > void loadPointerImpl(T &data) { using DataType = std::remove_pointer_t; typename DataType::IdentifierType index; load(index); auto * constEntity = index.toEntity(VLC); auto * constData = dynamic_cast(constEntity); data = const_cast(constData); } template < typename T, typename std::enable_if_t < !std::is_base_of_v>, int > = 0 > void loadPointerImpl(T &data) { if(reader->smartVectorMembersSerialization) { typedef typename std::remove_const_t> TObjectType; //eg: const CGHeroInstance * => CGHeroInstance typedef typename VectorizedTypeFor::type VType; //eg: CGHeroInstance -> CGobjectInstance typedef typename VectorizedIDType::type IDType; if(const auto *info = reader->getVectorizedTypeInfo()) { IDType id; load(id); if(id != IDType(-1)) { data = static_cast(reader->getVectorItemFromId(*info, id)); return; } } } if(reader->sendStackInstanceByIds) { bool gotLoaded = LoadIfStackInstance::invoke(* this, data); if(gotLoaded) return; } uint32_t pid = 0xffffffff; //pointer id (or maybe rather pointee id) if(smartPointerSerialization) { load( pid ); //get the id auto i = loadedPointers.find(pid); //lookup if(i != loadedPointers.end()) { // We already got this pointer // Cast it in case we are loading it to a non-first base pointer data = dynamic_cast(i->second); return; } } //get type id uint16_t tid; load( tid ); if(!tid) { typedef typename std::remove_pointer_t npT; typedef typename std::remove_const_t ncpT; data = ClassObjectCreator::invoke(cb); ptrAllocated(data, pid); load(*data); } else { auto * app = applier.getApplier(tid); if(app == nullptr) { logGlobal->error("load %d %d - no loader exists", tid, pid); data = nullptr; return; } data = dynamic_cast(app->loadPtr(*this, cb, pid)); } } template void ptrAllocated(T *ptr, uint32_t pid) { if(smartPointerSerialization && pid != 0xffffffff) loadedPointers[pid] = const_cast(dynamic_cast(ptr)); //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt } template void registerType(const Base * b = nullptr, const Derived * d = nullptr) { applier.registerType(b, d); } template void load(std::shared_ptr &data) { typedef typename std::remove_const_t NonConstT; NonConstT *internalPtr; load(internalPtr); const auto * internalPtrDerived = static_cast(internalPtr); if(internalPtr) { auto itr = loadedSharedPointers.find(internalPtrDerived); if(itr != loadedSharedPointers.end()) { // This pointers is already loaded. The "data" needs to be pointed to it, // so their shared state is actually shared. data = std::static_pointer_cast(itr->second); } else { auto hlp = std::shared_ptr(internalPtr); data = hlp; loadedSharedPointers[internalPtrDerived] = std::static_pointer_cast(hlp); } } else data.reset(); } void load(std::monostate & data) { // no-op } template void load(std::shared_ptr & data) { std::shared_ptr nonConstData; load(nonConstData); data = nonConstData; } template void load(std::unique_ptr &data) { T *internalPtr; load( internalPtr ); data.reset(internalPtr); } template void load(std::array &data) { for(uint32_t i = 0; i < N; i++) load( data[i] ); } template void load(std::set &data) { uint32_t length = readAndCheckLength(); data.clear(); T ins; for(uint32_t i=0;i void load(std::unordered_set &data) { uint32_t length = readAndCheckLength(); data.clear(); T ins; for(uint32_t i=0;i void load(std::list &data) { uint32_t length = readAndCheckLength(); data.clear(); T ins; for(uint32_t i=0;i void load(std::pair &data) { load(data.first); load(data.second); } template void load(std::unordered_map &data) { uint32_t length = readAndCheckLength(); data.clear(); T1 key; for(uint32_t i=0;i void load(std::map &data) { uint32_t length = readAndCheckLength(); data.clear(); T1 key; for(uint32_t i=0;i 0, 1 ... data = loadedStrings[stringID]; } if (length == 0) { data = {}; } if (length > 0) { data.resize(length); this->read(static_cast(data.data()), length, false); loadedStrings.push_back(data); } } else { uint32_t length = readAndCheckLength(); data.resize(length); this->read(static_cast(data.data()), length, false); } } template void load(std::variant & data) { int32_t which; load( which ); assert(which < sizeof...(TN)); // Create array of variants that contains all default-constructed alternatives const std::variant table[] = { TN{ }... }; // use appropriate alternative for result data = table[which]; // perform actual load via std::visit dispatch std::visit([&](auto& o) { load(o); }, data); } template void load(std::optional & data) { uint8_t present; load( present ); if(present) { //TODO: replace with emplace once we start request Boost 1.56+, see PR360 T t; load(t); data = std::make_optional(std::move(t)); } else { data = std::optional(); } } template void load(boost::multi_array & data) { uint32_t length = readAndCheckLength(); uint32_t x; uint32_t y; uint32_t z; load(x); load(y); load(z); data.resize(boost::extents[x][y][z]); assert(length == data.num_elements()); //x*y*z should be equal to number of elements for(uint32_t i = 0; i < length; i++) load(data.data()[i]); } template void load(std::bitset &data) { static_assert(T <= 64); if constexpr (T <= 16) { uint16_t read; load(read); data = read; } else if constexpr (T <= 32) { uint32_t read; load(read); data = read; } else if constexpr (T <= 64) { uint64_t read; load(read); data = read; } } }; VCMI_LIB_NAMESPACE_END