/* * CMapEditManager.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "CMapEditManager.h" #include "../JsonNode.h" #include "../filesystem/Filesystem.h" #include "../mapObjects/CObjectClassesHandler.h" #include "../mapObjects/CGHeroInstance.h" #include "../VCMI_Lib.h" #include "CDrawRoadsOperation.h" #include "../mapping/CMap.h" MapRect::MapRect() : x(0), y(0), z(0), width(0), height(0) { } MapRect::MapRect(int3 pos, si32 width, si32 height) : x(pos.x), y(pos.y), z(pos.z), width(width), height(height) { } MapRect MapRect::operator&(const MapRect & rect) const { bool intersect = right() > rect.left() && rect.right() > left() && bottom() > rect.top() && rect.bottom() > top() && z == rect.z; if(intersect) { MapRect ret; ret.x = std::max(left(), rect.left()); ret.y = std::max(top(), rect.top()); ret.z = rect.z; ret.width = std::min(right(), rect.right()) - ret.x; ret.height = std::min(bottom(), rect.bottom()) - ret.y; return ret; } else { return MapRect(); } } si32 MapRect::left() const { return x; } si32 MapRect::right() const { return x + width; } si32 MapRect::top() const { return y; } si32 MapRect::bottom() const { return y + height; } int3 MapRect::topLeft() const { return int3(x, y, z); } int3 MapRect::topRight() const { return int3(right(), y, z); } int3 MapRect::bottomLeft() const { return int3(x, bottom(), z); } int3 MapRect::bottomRight() const { return int3(right(), bottom(), z); } CTerrainSelection::CTerrainSelection(CMap * map) : CMapSelection(map) { } void CTerrainSelection::selectRange(const MapRect & rect) { rect.forEach([this](const int3 pos) { this->select(pos); }); } void CTerrainSelection::deselectRange(const MapRect & rect) { rect.forEach([this](const int3 pos) { this->deselect(pos); }); } void CTerrainSelection::setSelection(std::vector & vec) { for (auto pos : vec) this->select(pos); } void CTerrainSelection::selectAll() { selectRange(MapRect(int3(0, 0, 0), getMap()->width, getMap()->height)); selectRange(MapRect(int3(0, 0, 1), getMap()->width, getMap()->height)); } void CTerrainSelection::clearSelection() { deselectRange(MapRect(int3(0, 0, 0), getMap()->width, getMap()->height)); deselectRange(MapRect(int3(0, 0, 1), getMap()->width, getMap()->height)); } CObjectSelection::CObjectSelection(CMap * map) : CMapSelection(map) { } CMapOperation::CMapOperation(CMap * map) : map(map) { } std::string CMapOperation::getLabel() const { return ""; } MapRect CMapOperation::extendTileAround(const int3 & centerPos) const { return MapRect(int3(centerPos.x - 1, centerPos.y - 1, centerPos.z), 3, 3); } MapRect CMapOperation::extendTileAroundSafely(const int3 & centerPos) const { return extendTileAround(centerPos) & MapRect(int3(0, 0, centerPos.z), map->width, map->height); } CMapUndoManager::CMapUndoManager() : undoRedoLimit(10) { } void CMapUndoManager::undo() { doOperation(undoStack, redoStack, true); } void CMapUndoManager::redo() { doOperation(redoStack, undoStack, false); } void CMapUndoManager::clearAll() { undoStack.clear(); redoStack.clear(); } int CMapUndoManager::getUndoRedoLimit() const { return undoRedoLimit; } void CMapUndoManager::setUndoRedoLimit(int value) { assert(value >= 0); undoStack.resize(std::min(undoStack.size(), static_cast(value))); redoStack.resize(std::min(redoStack.size(), static_cast(value))); } const CMapOperation * CMapUndoManager::peekRedo() const { return peek(redoStack); } const CMapOperation * CMapUndoManager::peekUndo() const { return peek(undoStack); } void CMapUndoManager::addOperation(std::unique_ptr && operation) { undoStack.push_front(std::move(operation)); if(undoStack.size() > undoRedoLimit) undoStack.pop_back(); redoStack.clear(); } void CMapUndoManager::doOperation(TStack & fromStack, TStack & toStack, bool doUndo) { if(fromStack.empty()) return; auto & operation = fromStack.front(); if(doUndo) { operation->undo(); } else { operation->redo(); } toStack.push_front(std::move(operation)); fromStack.pop_front(); } const CMapOperation * CMapUndoManager::peek(const TStack & stack) const { if(stack.empty()) return nullptr; return stack.front().get(); } CMapEditManager::CMapEditManager(CMap * map) : map(map), terrainSel(map), objectSel(map) { } CMap * CMapEditManager::getMap() { return map; } void CMapEditManager::clearTerrain(CRandomGenerator * gen) { execute(make_unique(map, gen ? gen : &(this->gen))); } void CMapEditManager::drawTerrain(Terrain terType, CRandomGenerator * gen) { execute(make_unique(map, terrainSel, terType, gen ? gen : &(this->gen))); terrainSel.clearSelection(); } void CMapEditManager::drawRoad(const std::string & roadType, CRandomGenerator* gen) { execute(make_unique(map, terrainSel, roadType, gen ? gen : &(this->gen))); terrainSel.clearSelection(); } void CMapEditManager::insertObject(CGObjectInstance * obj) { execute(make_unique(map, obj)); } void CMapEditManager::execute(std::unique_ptr && operation) { operation->execute(); undoManager.addOperation(std::move(operation)); } CTerrainSelection & CMapEditManager::getTerrainSelection() { return terrainSel; } CObjectSelection & CMapEditManager::getObjectSelection() { return objectSel; } CMapUndoManager & CMapEditManager::getUndoManager() { return undoManager; } CComposedOperation::CComposedOperation(CMap * map) : CMapOperation(map) { } void CComposedOperation::execute() { for(auto & operation : operations) { operation->execute(); } } void CComposedOperation::undo() { for(auto & operation : operations) { operation->undo(); } } void CComposedOperation::redo() { for(auto & operation : operations) { operation->redo(); } } void CComposedOperation::addOperation(std::unique_ptr && operation) { operations.push_back(std::move(operation)); } const std::string TerrainViewPattern::FLIP_MODE_DIFF_IMAGES = "D"; const std::string TerrainViewPattern::RULE_DIRT = "D"; const std::string TerrainViewPattern::RULE_SAND = "S"; const std::string TerrainViewPattern::RULE_TRANSITION = "T"; const std::string TerrainViewPattern::RULE_NATIVE = "N"; const std::string TerrainViewPattern::RULE_NATIVE_STRONG = "N!"; const std::string TerrainViewPattern::RULE_ANY = "?"; TerrainViewPattern::TerrainViewPattern() : diffImages(false), rotationTypesCount(0), minPoints(0) { maxPoints = std::numeric_limits::max(); } TerrainViewPattern::WeightedRule::WeightedRule(std::string &Name) : points(0), name(Name) { standardRule = (TerrainViewPattern::RULE_ANY == Name || TerrainViewPattern::RULE_DIRT == Name || TerrainViewPattern::RULE_NATIVE == Name || TerrainViewPattern::RULE_SAND == Name || TerrainViewPattern::RULE_TRANSITION == Name || TerrainViewPattern::RULE_NATIVE_STRONG == Name); anyRule = (Name == TerrainViewPattern::RULE_ANY); dirtRule = (Name == TerrainViewPattern::RULE_DIRT); sandRule = (Name == TerrainViewPattern::RULE_SAND); transitionRule = (Name == TerrainViewPattern::RULE_TRANSITION); nativeStrongRule = (Name == TerrainViewPattern::RULE_NATIVE_STRONG); nativeRule = (Name == TerrainViewPattern::RULE_NATIVE); } void TerrainViewPattern::WeightedRule::setNative() { nativeRule = true; standardRule = true; //TODO: would look better as a bitfield dirtRule = sandRule = transitionRule = nativeStrongRule = anyRule = false; //no idea what they mean, but look mutually exclusive } CTerrainViewPatternConfig::CTerrainViewPatternConfig() { const JsonNode config(ResourceID("config/terrainViewPatterns.json")); static const std::string patternTypes[] = { "terrainView", "terrainType" }; for(int i = 0; i < ARRAY_COUNT(patternTypes); ++i) { const auto & patternsVec = config[patternTypes[i]].Vector(); for(const auto & ptrnNode : patternsVec) { TerrainViewPattern pattern; // Read pattern data const JsonVector & data = ptrnNode["data"].Vector(); assert(data.size() == 9); for(int j = 0; j < data.size(); ++j) { std::string cell = data[j].String(); boost::algorithm::erase_all(cell, " "); std::vector rules; boost::split(rules, cell, boost::is_any_of(",")); for(std::string ruleStr : rules) { std::vector ruleParts; boost::split(ruleParts, ruleStr, boost::is_any_of("-")); TerrainViewPattern::WeightedRule rule(ruleParts[0]); assert(!rule.name.empty()); if(ruleParts.size() > 1) { rule.points = boost::lexical_cast(ruleParts[1]); } pattern.data[j].push_back(rule); } } // Read various properties pattern.id = ptrnNode["id"].String(); assert(!pattern.id.empty()); pattern.minPoints = static_cast(ptrnNode["minPoints"].Float()); pattern.maxPoints = static_cast(ptrnNode["maxPoints"].Float()); if(pattern.maxPoints == 0) pattern.maxPoints = std::numeric_limits::max(); // Read mapping if(i == 0) { const auto & mappingStruct = ptrnNode["mapping"].Struct(); for(const auto & mappingPair : mappingStruct) { TerrainViewPattern terGroupPattern = pattern; auto mappingStr = mappingPair.second.String(); boost::algorithm::erase_all(mappingStr, " "); auto colonIndex = mappingStr.find_first_of(":"); const auto & flipMode = mappingStr.substr(0, colonIndex); terGroupPattern.diffImages = TerrainViewPattern::FLIP_MODE_DIFF_IMAGES == &(flipMode[flipMode.length() - 1]); if(terGroupPattern.diffImages) { terGroupPattern.rotationTypesCount = boost::lexical_cast(flipMode.substr(0, flipMode.length() - 1)); assert(terGroupPattern.rotationTypesCount == 2 || terGroupPattern.rotationTypesCount == 4); } mappingStr = mappingStr.substr(colonIndex + 1); std::vector mappings; boost::split(mappings, mappingStr, boost::is_any_of(",")); for(std::string mapping : mappings) { std::vector range; boost::split(range, mapping, boost::is_any_of("-")); terGroupPattern.mapping.push_back(std::make_pair(boost::lexical_cast(range[0]), boost::lexical_cast(range.size() > 1 ? range[1] : range[0]))); } // Add pattern to the patterns map const auto & terGroup = getTerrainGroup(mappingPair.first); std::vector terrainViewPatternFlips; terrainViewPatternFlips.push_back(terGroupPattern); for (int i = 1; i < 4; ++i) { //auto p = terGroupPattern; flipPattern(terGroupPattern, i); //FIXME: we flip in place - doesn't make much sense now, but used to work terrainViewPatternFlips.push_back(terGroupPattern); } terrainViewPatterns[terGroup].push_back(terrainViewPatternFlips); } } else if(i == 1) { terrainTypePatterns[pattern.id].push_back(pattern); for (int i = 1; i < 4; ++i) { //auto p = pattern; flipPattern(pattern, i); ///FIXME: we flip in place - doesn't make much sense now terrainTypePatterns[pattern.id].push_back(pattern); } } } } } CTerrainViewPatternConfig::~CTerrainViewPatternConfig() { } ETerrainGroup::ETerrainGroup CTerrainViewPatternConfig::getTerrainGroup(const std::string & terGroup) const { static const std::map terGroups = { {"normal", ETerrainGroup::NORMAL}, {"dirt", ETerrainGroup::DIRT}, {"sand", ETerrainGroup::SAND}, {"water", ETerrainGroup::WATER}, {"rock", ETerrainGroup::ROCK}, }; auto it = terGroups.find(terGroup); if(it == terGroups.end()) throw std::runtime_error(boost::str(boost::format("Terrain group '%s' does not exist.") % terGroup)); return it->second; } const std::vector & CTerrainViewPatternConfig::getTerrainViewPatternsForGroup(ETerrainGroup::ETerrainGroup terGroup) const { return terrainViewPatterns.find(terGroup)->second; } boost::optional CTerrainViewPatternConfig::getTerrainViewPatternById(ETerrainGroup::ETerrainGroup terGroup, const std::string & id) const { const std::vector & groupPatterns = getTerrainViewPatternsForGroup(terGroup); for (const TVPVector & patternFlips : groupPatterns) { const TerrainViewPattern & pattern = patternFlips.front(); if(id == pattern.id) { return boost::optional(pattern); } } return boost::optional(); } boost::optional CTerrainViewPatternConfig::getTerrainViewPatternsById(ETerrainGroup::ETerrainGroup terGroup, const std::string & id) const { const std::vector & groupPatterns = getTerrainViewPatternsForGroup(terGroup); for (const TVPVector & patternFlips : groupPatterns) { const TerrainViewPattern & pattern = patternFlips.front(); if (id == pattern.id) { return boost::optional(patternFlips); } } return boost::optional(); } const CTerrainViewPatternConfig::TVPVector * CTerrainViewPatternConfig::getTerrainTypePatternById(const std::string & id) const { auto it = terrainTypePatterns.find(id); assert(it != terrainTypePatterns.end()); return &(it->second); } void CTerrainViewPatternConfig::flipPattern(TerrainViewPattern & pattern, int flip) const { //flip in place to avoid expensive constructor. Seriously. if (flip == 0) { return; } //always flip horizontal for (int i = 0; i < 3; ++i) { int y = i * 3; std::swap(pattern.data[y], pattern.data[y + 2]); } //flip vertical only at 2nd step if (flip == CMapOperation::FLIP_PATTERN_VERTICAL) { for (int i = 0; i < 3; ++i) { std::swap(pattern.data[i], pattern.data[6 + i]); } } } CDrawTerrainOperation::CDrawTerrainOperation(CMap * map, const CTerrainSelection & terrainSel, Terrain terType, CRandomGenerator * gen) : CMapOperation(map), terrainSel(terrainSel), terType(terType), gen(gen) { } void CDrawTerrainOperation::execute() { for(const auto & pos : terrainSel.getSelectedItems()) { auto & tile = map->getTile(pos); tile.terType = terType; invalidateTerrainViews(pos); } updateTerrainTypes(); updateTerrainViews(); } void CDrawTerrainOperation::undo() { //TODO } void CDrawTerrainOperation::redo() { //TODO } std::string CDrawTerrainOperation::getLabel() const { return "Draw Terrain"; } void CDrawTerrainOperation::updateTerrainTypes() { auto positions = terrainSel.getSelectedItems(); while(!positions.empty()) { const auto & centerPos = *(positions.begin()); auto centerTile = map->getTile(centerPos); //logGlobal->debug("Set terrain tile at pos '%s' to type '%s'", centerPos, centerTile.terType); auto tiles = getInvalidTiles(centerPos); auto updateTerrainType = [&](const int3 & pos) { map->getTile(pos).terType = centerTile.terType; positions.insert(pos); invalidateTerrainViews(pos); //logGlobal->debug("Set additional terrain tile at pos '%s' to type '%s'", pos, centerTile.terType); }; // Fill foreign invalid tiles for(const auto & tile : tiles.foreignTiles) { updateTerrainType(tile); } tiles = getInvalidTiles(centerPos); if(tiles.nativeTiles.find(centerPos) != tiles.nativeTiles.end()) { // Blow up auto rect = extendTileAroundSafely(centerPos); std::set suitableTiles; int invalidForeignTilesCnt = std::numeric_limits::max(), invalidNativeTilesCnt = 0; bool centerPosValid = false; rect.forEach([&](const int3 & posToTest) { auto & terrainTile = map->getTile(posToTest); if(centerTile.terType != terrainTile.terType) { auto formerTerType = terrainTile.terType; terrainTile.terType = centerTile.terType; auto testTile = getInvalidTiles(posToTest); int nativeTilesCntNorm = testTile.nativeTiles.empty() ? std::numeric_limits::max() : (int)testTile.nativeTiles.size(); bool putSuitableTile = false; bool addToSuitableTiles = false; if(testTile.centerPosValid) { if (!centerPosValid) { centerPosValid = true; putSuitableTile = true; } else { if(testTile.foreignTiles.size() < invalidForeignTilesCnt) { putSuitableTile = true; } else { addToSuitableTiles = true; } } } else if (!centerPosValid) { if((nativeTilesCntNorm > invalidNativeTilesCnt) || (nativeTilesCntNorm == invalidNativeTilesCnt && testTile.foreignTiles.size() < invalidForeignTilesCnt)) { putSuitableTile = true; } else if(nativeTilesCntNorm == invalidNativeTilesCnt && testTile.foreignTiles.size() == invalidForeignTilesCnt) { addToSuitableTiles = true; } } if (putSuitableTile) { //if(!suitableTiles.empty()) //{ // logGlobal->debug("Clear suitables tiles."); //} invalidNativeTilesCnt = nativeTilesCntNorm; invalidForeignTilesCnt = static_cast(testTile.foreignTiles.size()); suitableTiles.clear(); addToSuitableTiles = true; } if (addToSuitableTiles) { suitableTiles.insert(posToTest); } terrainTile.terType = formerTerType; } }); if(suitableTiles.size() == 1) { updateTerrainType(*suitableTiles.begin()); } else { static const int3 directions[] = { int3(0, -1, 0), int3(-1, 0, 0), int3(0, 1, 0), int3(1, 0, 0), int3(-1, -1, 0), int3(-1, 1, 0), int3(1, 1, 0), int3(1, -1, 0)}; for(auto & direction : directions) { auto it = suitableTiles.find(centerPos + direction); if(it != suitableTiles.end()) { updateTerrainType(*it); break; } } } } else { // add invalid native tiles which are not in the positions list for(const auto & nativeTile : tiles.nativeTiles) { if(positions.find(nativeTile) == positions.end()) { positions.insert(nativeTile); } } positions.erase(centerPos); } } } void CDrawTerrainOperation::updateTerrainViews() { for(const auto & pos : invalidatedTerViews) { const auto & patterns = VLC->terviewh->getTerrainViewPatternsForGroup(getTerrainGroup(map->getTile(pos).terType)); // Detect a pattern which fits best int bestPattern = -1; ValidationResult valRslt(false); for(int k = 0; k < patterns.size(); ++k) { const auto & pattern = patterns[k]; //(ETerrainGroup::ETerrainGroup terGroup, const std::string & id) valRslt = validateTerrainView(pos, &pattern); if(valRslt.result) { bestPattern = k; break; } } //assert(bestPattern != -1); if(bestPattern == -1) { // This shouldn't be the case logGlobal->warn("No pattern detected at pos '%s'.", pos.toString()); CTerrainViewPatternUtils::printDebuggingInfoAboutTile(map, pos); continue; } // Get mapping const TerrainViewPattern & pattern = patterns[bestPattern][valRslt.flip]; std::pair mapping; if(valRslt.transitionReplacement.empty()) { mapping = pattern.mapping[0]; } else { mapping = valRslt.transitionReplacement == TerrainViewPattern::RULE_DIRT ? pattern.mapping[0] : pattern.mapping[1]; } // Set terrain view auto & tile = map->getTile(pos); if(!pattern.diffImages) { tile.terView = gen->nextInt(mapping.first, mapping.second); tile.extTileFlags = valRslt.flip; } else { const int framesPerRot = (mapping.second - mapping.first + 1) / pattern.rotationTypesCount; int flip = (pattern.rotationTypesCount == 2 && valRslt.flip == 2) ? 1 : valRslt.flip; int firstFrame = mapping.first + flip * framesPerRot; tile.terView = gen->nextInt(firstFrame, firstFrame + framesPerRot - 1); tile.extTileFlags = 0; } } } ETerrainGroup::ETerrainGroup CDrawTerrainOperation::getTerrainGroup(Terrain terType) const { if(terType == Terrain("dirt")) return ETerrainGroup::DIRT; if(terType == Terrain("sand")) return ETerrainGroup::SAND; if(terType.isWater()) return ETerrainGroup::WATER; if(!terType.isPassable()) return ETerrainGroup::ROCK; return ETerrainGroup::NORMAL; } CDrawTerrainOperation::ValidationResult CDrawTerrainOperation::validateTerrainView(const int3 & pos, const std::vector * pattern, int recDepth) const { for(int flip = 0; flip < 4; ++flip) { auto valRslt = validateTerrainViewInner(pos, pattern->at(flip), recDepth); if(valRslt.result) { valRslt.flip = flip; return valRslt; } } return ValidationResult(false); } CDrawTerrainOperation::ValidationResult CDrawTerrainOperation::validateTerrainViewInner(const int3 & pos, const TerrainViewPattern & pattern, int recDepth) const { auto centerTerType = map->getTile(pos).terType; auto centerTerGroup = getTerrainGroup(centerTerType); int totalPoints = 0; std::string transitionReplacement; for(int i = 0; i < 9; ++i) { // The center, middle cell can be skipped if(i == 4) { continue; } // Get terrain group of the current cell int cx = pos.x + (i % 3) - 1; int cy = pos.y + (i / 3) - 1; int3 currentPos(cx, cy, pos.z); bool isAlien = false; Terrain terType; if(!map->isInTheMap(currentPos)) { // position is not in the map, so take the ter type from the neighbor tile bool widthTooHigh = currentPos.x >= map->width; bool widthTooLess = currentPos.x < 0; bool heightTooHigh = currentPos.y >= map->height; bool heightTooLess = currentPos.y < 0; if ((widthTooHigh && heightTooHigh) || (widthTooHigh && heightTooLess) || (widthTooLess && heightTooHigh) || (widthTooLess && heightTooLess)) { terType = centerTerType; } else if(widthTooHigh) { terType = map->getTile(int3(currentPos.x - 1, currentPos.y, currentPos.z)).terType; } else if(heightTooHigh) { terType = map->getTile(int3(currentPos.x, currentPos.y - 1, currentPos.z)).terType; } else if (widthTooLess) { terType = map->getTile(int3(currentPos.x + 1, currentPos.y, currentPos.z)).terType; } else if (heightTooLess) { terType = map->getTile(int3(currentPos.x, currentPos.y + 1, currentPos.z)).terType; } } else { terType = map->getTile(currentPos).terType; if(terType != centerTerType) { isAlien = true; } } // Validate all rules per cell int topPoints = -1; for(auto & elem : pattern.data[i]) { TerrainViewPattern::WeightedRule rule = elem; if(!rule.isStandardRule()) { if(recDepth == 0 && map->isInTheMap(currentPos)) { if(terType == centerTerType) { const auto & group = getTerrainGroup(centerTerType); const auto & patternForRule = VLC->terviewh->getTerrainViewPatternsById(group, rule.name); if(auto p = patternForRule) { auto rslt = validateTerrainView(currentPos, &(*p), 1); if(rslt.result) topPoints = std::max(topPoints, rule.points); } } continue; } else { rule.setNative(); } } auto applyValidationRslt = [&](bool rslt) { if(rslt) { topPoints = std::max(topPoints, rule.points); } }; // Validate cell with the ruleset of the pattern bool nativeTestOk, nativeTestStrongOk; nativeTestOk = nativeTestStrongOk = (rule.isNativeStrong() || rule.isNativeRule()) && !isAlien; if(centerTerGroup == ETerrainGroup::NORMAL) { bool dirtTestOk = (rule.isDirtRule() || rule.isTransition()) && isAlien && !isSandType(terType); bool sandTestOk = (rule.isSandRule() || rule.isTransition()) && isSandType(terType); if (transitionReplacement.empty() && rule.isTransition() && (dirtTestOk || sandTestOk)) { transitionReplacement = dirtTestOk ? TerrainViewPattern::RULE_DIRT : TerrainViewPattern::RULE_SAND; } if (rule.isTransition()) { applyValidationRslt((dirtTestOk && transitionReplacement != TerrainViewPattern::RULE_SAND) || (sandTestOk && transitionReplacement != TerrainViewPattern::RULE_DIRT)); } else { applyValidationRslt(rule.isAnyRule() || dirtTestOk || sandTestOk || nativeTestOk); } } else if(centerTerGroup == ETerrainGroup::DIRT) { nativeTestOk = rule.isNativeRule() && !isSandType(terType); bool sandTestOk = (rule.isSandRule() || rule.isTransition()) && isSandType(terType); applyValidationRslt(rule.isAnyRule() || sandTestOk || nativeTestOk || nativeTestStrongOk); } else if(centerTerGroup == ETerrainGroup::SAND) { applyValidationRslt(true); } else if(centerTerGroup == ETerrainGroup::WATER || centerTerGroup == ETerrainGroup::ROCK) { bool sandTestOk = (rule.isSandRule() || rule.isTransition()) && isAlien; applyValidationRslt(rule.isAnyRule() || sandTestOk || nativeTestOk); } } if(topPoints == -1) { return ValidationResult(false); } else { totalPoints += topPoints; } } if(totalPoints >= pattern.minPoints && totalPoints <= pattern.maxPoints) { return ValidationResult(true, transitionReplacement); } else { return ValidationResult(false); } } bool CDrawTerrainOperation::isSandType(Terrain terType) const { if(terType.isWater() || terType == Terrain("sand") || !terType.isPassable()) return true; return false; } void CDrawTerrainOperation::invalidateTerrainViews(const int3 & centerPos) { auto rect = extendTileAroundSafely(centerPos); rect.forEach([&](const int3 & pos) { invalidatedTerViews.insert(pos); }); } CDrawTerrainOperation::InvalidTiles CDrawTerrainOperation::getInvalidTiles(const int3 & centerPos) const { //TODO: this is very expensive function for RMG, needs optimization InvalidTiles tiles; auto centerTerType = map->getTile(centerPos).terType; auto rect = extendTileAround(centerPos); rect.forEach([&](const int3 & pos) { if(map->isInTheMap(pos)) { auto ptrConfig = VLC->terviewh; auto terType = map->getTile(pos).terType; auto valid = validateTerrainView(pos, ptrConfig->getTerrainTypePatternById("n1")).result; // Special validity check for rock & water if(valid && (terType.isWater() || !terType.isPassable())) { static const std::string patternIds[] = { "s1", "s2" }; for(auto & patternId : patternIds) { valid = !validateTerrainView(pos, ptrConfig->getTerrainTypePatternById(patternId)).result; if(!valid) break; } } // Additional validity check for non rock OR water else if(!valid && (terType.isLand() && terType.isPassable())) { static const std::string patternIds[] = { "n2", "n3" }; for(auto & patternId : patternIds) { valid = validateTerrainView(pos, ptrConfig->getTerrainTypePatternById(patternId)).result; if(valid) break; } } if(!valid) { if(terType == centerTerType) tiles.nativeTiles.insert(pos); else tiles.foreignTiles.insert(pos); } else if(centerPos == pos) { tiles.centerPosValid = true; } } }); return tiles; } CDrawTerrainOperation::ValidationResult::ValidationResult(bool result, const std::string & transitionReplacement) : result(result), transitionReplacement(transitionReplacement), flip(0) { } void CTerrainViewPatternUtils::printDebuggingInfoAboutTile(const CMap * map, int3 pos) { logGlobal->debug("Printing detailed info about nearby map tiles of pos '%s'", pos.toString()); for(int y = pos.y - 2; y <= pos.y + 2; ++y) { std::string line; const int PADDED_LENGTH = 10; for(int x = pos.x - 2; x <= pos.x + 2; ++x) { auto debugPos = int3(x, y, pos.z); if(map->isInTheMap(debugPos)) { auto debugTile = map->getTile(debugPos); std::string terType = static_cast(debugTile.terType).substr(0, 6); line += terType; line.insert(line.end(), PADDED_LENGTH - terType.size(), ' '); } else { line += "X"; line.insert(line.end(), PADDED_LENGTH - 1, ' '); } } logGlobal->debug(line); } } CClearTerrainOperation::CClearTerrainOperation(CMap * map, CRandomGenerator * gen) : CComposedOperation(map) { CTerrainSelection terrainSel(map); terrainSel.selectRange(MapRect(int3(0, 0, 0), map->width, map->height)); addOperation(make_unique(map, terrainSel, Terrain("water"), gen)); if(map->twoLevel) { terrainSel.clearSelection(); terrainSel.selectRange(MapRect(int3(0, 0, 1), map->width, map->height)); addOperation(make_unique(map, terrainSel, Terrain("rock"), gen)); } } std::string CClearTerrainOperation::getLabel() const { return "Clear Terrain"; } CInsertObjectOperation::CInsertObjectOperation(CMap * map, CGObjectInstance * obj) : CMapOperation(map), obj(obj) { } void CInsertObjectOperation::execute() { obj->id = ObjectInstanceID((si32)map->objects.size()); boost::format fmt("%s_%d"); fmt % obj->typeName % obj->id.getNum(); obj->instanceName = fmt.str(); map->addNewObject(obj); } void CInsertObjectOperation::undo() { //TODO } void CInsertObjectOperation::redo() { execute(); } std::string CInsertObjectOperation::getLabel() const { return "Insert Object"; }