/* * CMapEditManager.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #pragma once #include "../CRandomGenerator.h" #include "../int3.h" #include "../GameConstants.h" #include "Terrain.h" class CGObjectInstance; class CTerrainViewPatternConfig; struct TerrainViewPattern; class CMap; /// Represents a map rectangle. struct DLL_LINKAGE MapRect { MapRect(); MapRect(int3 pos, si32 width, si32 height); si32 x, y, z; si32 width, height; si32 left() const; si32 right() const; si32 top() const; si32 bottom() const; int3 topLeft() const; /// Top left corner of this rect. int3 topRight() const; /// Top right corner of this rect. int3 bottomLeft() const; /// Bottom left corner of this rect. int3 bottomRight() const; /// Bottom right corner of this rect. /// Returns a MapRect of the intersection of this rectangle and the given one. MapRect operator&(const MapRect & rect) const; template void forEach(Func f) const { for(int j = y; j < bottom(); ++j) { for(int i = x; i < right(); ++i) { f(int3(i, j, z)); } } } }; /// Generic selection class to select any type template class DLL_LINKAGE CMapSelection { public: explicit CMapSelection(CMap * map) : map(map) { } virtual ~CMapSelection() { }; void select(const T & item) { selectedItems.insert(item); } void deselect(const T & item) { selectedItems.erase(item); } std::set getSelectedItems() { return selectedItems; } CMap * getMap() { return map; } virtual void selectRange(const MapRect & rect) { } virtual void deselectRange(const MapRect & rect) { } virtual void selectAll() { } virtual void clearSelection() { } private: std::set selectedItems; CMap * map; }; /// Selection class to select terrain. class DLL_LINKAGE CTerrainSelection : public CMapSelection { public: explicit CTerrainSelection(CMap * map); void selectRange(const MapRect & rect) override; void deselectRange(const MapRect & rect) override; void selectAll() override; void clearSelection() override; void setSelection(const std::vector & vec); }; /// Selection class to select objects. class DLL_LINKAGE CObjectSelection: public CMapSelection { public: explicit CObjectSelection(CMap * map); }; /// The abstract base class CMapOperation defines an operation that can be executed, undone and redone. class DLL_LINKAGE CMapOperation : public boost::noncopyable { public: explicit CMapOperation(CMap * map); virtual ~CMapOperation() { }; virtual void execute() = 0; virtual void undo() = 0; virtual void redo() = 0; virtual std::string getLabel() const = 0; /// Returns a display-able name of the operation. static const int FLIP_PATTERN_HORIZONTAL = 1; static const int FLIP_PATTERN_VERTICAL = 2; static const int FLIP_PATTERN_BOTH = 3; protected: MapRect extendTileAround(const int3 & centerPos) const; MapRect extendTileAroundSafely(const int3 & centerPos) const; /// doesn't exceed map size CMap * map; }; /// The CMapUndoManager provides the functionality to save operations and undo/redo them. class DLL_LINKAGE CMapUndoManager : boost::noncopyable { public: CMapUndoManager(); void undo(); void redo(); void clearAll(); /// The undo redo limit is a number which says how many undo/redo items can be saved. The default /// value is 10. If the value is 0, no undo/redo history will be maintained. int getUndoRedoLimit() const; void setUndoRedoLimit(int value); const CMapOperation * peekRedo() const; const CMapOperation * peekUndo() const; void addOperation(std::unique_ptr && operation); /// Client code does not need to call this method. private: typedef std::list > TStack; void doOperation(TStack & fromStack, TStack & toStack, bool doUndo); const CMapOperation * peek(const TStack & stack) const; TStack undoStack; TStack redoStack; int undoRedoLimit; }; /// The map edit manager provides functionality for drawing terrain and placing /// objects on the map. class DLL_LINKAGE CMapEditManager : boost::noncopyable { public: CMapEditManager(CMap * map); CMap * getMap(); /// Clears the terrain. The free level is filled with water and the underground level with rock. void clearTerrain(CRandomGenerator * gen = nullptr); /// Draws terrain at the current terrain selection. The selection will be cleared automatically. void drawTerrain(Terrain terType, CRandomGenerator * gen = nullptr); /// Draws roads at the current terrain selection. The selection will be cleared automatically. void drawRoad(const std::string & roadType, CRandomGenerator * gen = nullptr); /// Draws rivers at the current terrain selection. The selection will be cleared automatically. void drawRiver(const std::string & riverType, CRandomGenerator * gen = nullptr); void insertObject(CGObjectInstance * obj); CTerrainSelection & getTerrainSelection(); CObjectSelection & getObjectSelection(); CMapUndoManager & getUndoManager(); private: void execute(std::unique_ptr && operation); CMap * map; CMapUndoManager undoManager; CRandomGenerator gen; CTerrainSelection terrainSel; CObjectSelection objectSel; }; /* ---------------------------------------------------------------------------- */ /* Implementation/Detail classes, Private API */ /* ---------------------------------------------------------------------------- */ /// The CComposedOperation is an operation which consists of several operations. class CComposedOperation : public CMapOperation { public: CComposedOperation(CMap * map); void execute() override; void undo() override; void redo() override; void addOperation(std::unique_ptr && operation); private: std::list > operations; }; /// The terrain view pattern describes a specific composition of terrain tiles /// in a 3x3 matrix and notes which terrain view frame numbers can be used. struct DLL_LINKAGE TerrainViewPattern { struct WeightedRule { WeightedRule(std::string &Name); /// Gets true if this rule is a standard rule which means that it has a value of one of the RULE_* constants. inline bool isStandardRule() const { return standardRule; } inline bool isAnyRule() const { return anyRule; } inline bool isDirtRule() const { return dirtRule; } inline bool isSandRule() const { return sandRule; } inline bool isTransition() const { return transitionRule; } inline bool isNativeStrong() const { return nativeStrongRule; } inline bool isNativeRule() const { return nativeRule; } void setNative(); /// The name of the rule. Can be any value of the RULE_* constants or a ID of a another pattern. //FIXME: remove string variable altogether, use only in constructor std::string name; /// Optional. A rule can have points. Patterns may have a minimum count of points to reach to be successful. int points; private: bool standardRule; bool anyRule; bool dirtRule; bool sandRule; bool transitionRule; bool nativeStrongRule; bool nativeRule; WeightedRule(); //only allow string constructor }; static const int PATTERN_DATA_SIZE = 9; /// Constant for the flip mode different images. Pattern will be flipped and different images will be used(mapping area is divided into 4 parts) static const std::string FLIP_MODE_DIFF_IMAGES; /// Constant for the rule dirt, meaning a dirty border is required. static const std::string RULE_DIRT; /// Constant for the rule sand, meaning a sandy border is required. static const std::string RULE_SAND; /// Constant for the rule transition, meaning a dirty OR sandy border is required. static const std::string RULE_TRANSITION; /// Constant for the rule native, meaning a native border is required. static const std::string RULE_NATIVE; /// Constant for the rule native strong, meaning a native type is required. static const std::string RULE_NATIVE_STRONG; /// Constant for the rule any, meaning a native type, dirty OR sandy border is required. static const std::string RULE_ANY; TerrainViewPattern(); /// The pattern data can be visualized as a 3x3 matrix: /// [ ][ ][ ] /// [ ][ ][ ] /// [ ][ ][ ] /// /// The box in the center belongs always to the native terrain type and /// is the point of origin. Depending on the terrain type different rules /// can be used. Their meaning differs also from type to type. /// /// std::vector -> several rules can be used in one cell std::array, PATTERN_DATA_SIZE> data; /// The identifier of the pattern, if it's referenced from a another pattern. std::string id; /// This describes the mapping between this pattern and the corresponding range of frames /// which should be used for the ter view. /// /// std::vector -> size=1: typical, size=2: if this pattern should map to two different types of borders /// std::pair -> 1st value: lower range, 2nd value: upper range std::vector > mapping; /// If diffImages is true, different images/frames are used to place a rotated terrain view. If it's false /// the same frame will be used and rotated. bool diffImages; /// The rotationTypesCount is only used if diffImages is true and holds the number how many rotation types(horizontal, etc...) /// are supported. int rotationTypesCount; /// The minimum and maximum points to reach to validate the pattern successfully. int minPoints, maxPoints; }; /// The terrain view pattern config loads pattern data from the filesystem. class DLL_LINKAGE CTerrainViewPatternConfig : public boost::noncopyable { public: typedef std::vector TVPVector; CTerrainViewPatternConfig(); ~CTerrainViewPatternConfig(); const std::vector & getTerrainViewPatterns(const Terrain & terrain) const; boost::optional getTerrainViewPatternById(std::string patternId, const std::string & id) const; boost::optional getTerrainViewPatternsById(const Terrain & terrain, const std::string & id) const; const TVPVector * getTerrainTypePatternById(const std::string & id) const; void flipPattern(TerrainViewPattern & pattern, int flip) const; private: std::map > terrainViewPatterns; std::map terrainTypePatterns; }; /// The CDrawTerrainOperation class draws a terrain area on the map. class CDrawTerrainOperation : public CMapOperation { public: CDrawTerrainOperation(CMap * map, const CTerrainSelection & terrainSel, Terrain terType, CRandomGenerator * gen); void execute() override; void undo() override; void redo() override; std::string getLabel() const override; private: struct ValidationResult { ValidationResult(bool result, const std::string & transitionReplacement = ""); bool result; /// The replacement of a T rule, either D or S. std::string transitionReplacement; int flip; }; struct InvalidTiles { std::set foreignTiles, nativeTiles; bool centerPosValid; InvalidTiles() : centerPosValid(false) { } }; void updateTerrainTypes(); void invalidateTerrainViews(const int3 & centerPos); InvalidTiles getInvalidTiles(const int3 & centerPos) const; void updateTerrainViews(); /// Validates the terrain view of the given position and with the given pattern. The first method wraps the /// second method to validate the terrain view with the given pattern in all four flip directions(horizontal, vertical). ValidationResult validateTerrainView(const int3 & pos, const std::vector * pattern, int recDepth = 0) const; ValidationResult validateTerrainViewInner(const int3 & pos, const TerrainViewPattern & pattern, int recDepth = 0) const; CTerrainSelection terrainSel; Terrain terType; CRandomGenerator * gen; std::set invalidatedTerViews; }; class DLL_LINKAGE CTerrainViewPatternUtils { public: static void printDebuggingInfoAboutTile(const CMap * map, int3 pos); }; /// The CClearTerrainOperation clears+initializes the terrain. class CClearTerrainOperation : public CComposedOperation { public: CClearTerrainOperation(CMap * map, CRandomGenerator * gen); std::string getLabel() const override; private: }; /// The CInsertObjectOperation class inserts an object to the map. class CInsertObjectOperation : public CMapOperation { public: CInsertObjectOperation(CMap * map, CGObjectInstance * obj); void execute() override; void undo() override; void redo() override; std::string getLabel() const override; private: CGObjectInstance * obj; };