#pragma once #include #include #include "../../lib/int3.h" /* * Geometries.h, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #ifdef max #undef max #endif #ifdef min #undef min #endif // A point with x/y coordinate, used mostly for graphic rendering struct Point { int x, y; //constructors Point() { x = y = 0; }; Point(int X, int Y) :x(X),y(Y) {}; Point(const int3 &a) :x(a.x),y(a.y) {} Point(const SDL_MouseMotionEvent &a) :x(a.x),y(a.y) {} template Point operator+(const T &b) const { return Point(x+b.x,y+b.y); } template Point operator/(const T &div) const { return Point(x/div, y/div); } template Point operator*(const T &mul) const { return Point(x*mul, y*mul); } template Point& operator+=(const T &b) { x += b.x; y += b.y; return *this; } template Point operator-(const T &b) const { return Point(x - b.x, y - b.y); } template Point& operator-=(const T &b) { x -= b.x; y -= b.y; return *this; } bool operator<(const Point &b) const //product order { return x < b.x && y < b.y; } template Point& operator=(const T &t) { x = t.x; y = t.y; return *this; } template bool operator==(const T &t) const { return x == t.x && y == t.y; } template bool operator!=(const T &t) const { return !(*this == t); } }; /// Rectangle class, which have a position and a size struct Rect : public SDL_Rect { Rect()//default c-tor { x = y = w = h = -1; } Rect(int X, int Y, int W, int H) //c-tor { x = X; y = Y; w = W; h = H; } Rect(const Point & position, const Point & size) //c-tor { x = position.x; y = position.y; w = size.x; h = size.y; } Rect(const SDL_Rect & r) //c-tor { x = r.x; y = r.y; w = r.w; h = r.h; } explicit Rect(const SDL_Surface * const &surf) { x = y = 0; w = surf->w; h = surf->h; } Rect centerIn(const Rect &r); static Rect createCentered(int w, int h); static Rect around(const Rect &r, int width = 1); //creates rect around another bool isIn(int qx, int qy) const //determines if given point lies inside rect { if (qx > x && qxy && qy Rect operator-(const T &t) { return Rect(x - t.x, y - t.y, w, h); } Rect operator&(const Rect &p) const //rect intersection { bool intersect = true; if(p.topLeft().y < y && p.bottomLeft().y < y) //rect p is above *this { intersect = false; } else if(p.topLeft().y > y+h && p.bottomLeft().y > y+h) //rect p is below *this { intersect = false; } else if(p.topLeft().x > x+w && p.topRight().x > x+w) //rect p is on the right hand side of this { intersect = false; } else if(p.topLeft().x < x && p.topRight().x < x) //rect p is on the left hand side of this { intersect = false; } if(intersect) { Rect ret; ret.x = std::max(this->x, p.x); ret.y = std::max(this->y, p.y); Point bR; //bottomRight point of returned rect bR.x = std::min(this->w+this->x, p.w+p.x); bR.y = std::min(this->h+this->y, p.h+p.y); ret.w = bR.x - ret.x; ret.h = bR.y - ret.y; return ret; } else { return Rect(); } } Rect operator|(const Rect &p) const //union of two rects { Rect ret; ret.x = std::min(p.x, this->x); ret.y = std::min(p.y, this->y); int x2 = std::max(p.x+p.w, this->x+this->w); int y2 = std::max(p.y+p.h, this->y+this->h); ret.w = x2 -ret.x; ret.h = y2 -ret.y; return ret; } };