/* * CZonePlacer.cpp, part of VCMI engine * * Authors: listed in file AUTHORS in main folder * * License: GNU General Public License v2.0 or later * Full text of license available in license.txt file, in main folder * */ #include "StdInc.h" #include "../CRandomGenerator.h" #include "CZonePlacer.h" #include "CRmgTemplateZone.h" #include "CZoneGraphGenerator.h" class CRandomGenerator; CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone) { } CZonePlacer::CZonePlacer(CMapGenerator * Gen) : gen(Gen) { } CZonePlacer::~CZonePlacer() { } int3 CZonePlacer::cords (const float3 f) const { return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z); } void CZonePlacer::placeZones(const CMapGenOptions * mapGenOptions, CRandomGenerator * rand) { //gravity-based algorithm float gravityConstant = 1e-2; float zoneScale = 0.5f; //zones starts small and then inflate const float inflateModifier = 1.02; logGlobal->infoStream() << "Starting zone placement"; int width = mapGenOptions->getWidth(); int height = mapGenOptions->getHeight(); auto zones = gen->getZones(); bool underground = mapGenOptions->getHasTwoLevels(); /* let's assume we try to fit N circular zones with radius = size on a map formula: sum((prescaler*n)^2)*pi = WH prescaler = sqrt((WH)/(sum(n^2)*pi)) */ std::vector> zonesVector (zones.begin(), zones.end()); assert (zonesVector.size()); RandomGeneratorUtil::randomShuffle(zonesVector, *rand); TRmgTemplateZoneId firstZone = zones.begin()->first; //we want lowest ID here bool undergroundFlag = false; std::vector totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map for (auto zone : zonesVector) { //even distribution for surface / underground zones. Surface zones always have priority. int level = 0; if (underground) //only then consider underground zones { if (zone.first == firstZone) { level = 0; } else { level = undergroundFlag; undergroundFlag = !undergroundFlag; //toggle underground on/off } } totalSize[level] += (zone.second->getSize() * zone.second->getSize()); zone.second->setCenter (float3(rand->nextDouble(0.2, 0.8), rand->nextDouble(0.2, 0.8), level)); //start away from borders } //prescale zones std::vector prescaler = { 0, 0 }; for (int i = 0; i < 2; i++) prescaler[i] = sqrt((width * height) / (totalSize[i] * 3.14f)); float mapSize = sqrt (width * height); for (auto zone : zones) { zone.second->setSize (zone.second->getSize() * prescaler[zone.second->getCenter().z]); } //gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back auto getDistance = [](float distance) -> float { return (distance ? distance * distance : 1e-6); }; std::map forces; std::map distances; while (zoneScale < 1) //until zones reach their desired size and fill the map tightly { for (auto zone : zones) { float3 forceVector(0,0,0); float3 pos = zone.second->getCenter(); float totalDistance = 0; //attract connected zones for (auto con : zone.second->getConnections()) { auto otherZone = zones[con]; float3 otherZoneCenter = otherZone->getCenter(); float distance = pos.dist2d (otherZoneCenter); float minDistance = (zone.second->getSize() + otherZone->getSize())/mapSize * zoneScale; //scale down to (0,1) coordinates if (distance > minDistance) { //WARNING: compiler used to 'optimize' that line so it never actually worked forceVector += (((otherZoneCenter - pos)*(pos.z != otherZoneCenter.z ? (distance - minDistance) : 1)/ getDistance(distance))); //positive value totalDistance += distance; } } distances[zone.second] = totalDistance; //separate overlaping zones for (auto otherZone : zones) { float3 otherZoneCenter = otherZone.second->getCenter(); //zones on different levels don't push away if (zone == otherZone || pos.z != otherZoneCenter.z) continue; float distance = pos.dist2d (otherZoneCenter); float minDistance = (zone.second->getSize() + otherZone.second->getSize())/mapSize * zoneScale; if (distance < minDistance) { forceVector -= (((otherZoneCenter - pos)*(minDistance - distance)) / getDistance(distance)); //negative value } } //move zones away from boundaries //do not scale boundary distance - zones tend to get squashed float size = zone.second->getSize() / mapSize; auto pushAwayFromBoundary = [&forceVector, pos, &getDistance](float x, float y) { float3 boundary = float3 (x, y, pos.z); float distance = pos.dist2d(boundary); forceVector -= (boundary - pos) / getDistance(distance); //negative value }; if (pos.x < size) { pushAwayFromBoundary(0, pos.y); } if (pos.x > 1-size) { pushAwayFromBoundary(1, pos.y); } if (pos.y < size) { pushAwayFromBoundary(pos.x, 0); } if (pos.y > 1-size) { pushAwayFromBoundary(pos.x, 1); } forceVector.z = 0; //operator - doesn't preserve z coordinate :/ forces[zone.second] = forceVector * gravityConstant; } //update positions for (auto zone : forces) { zone.first->setCenter (zone.first->getCenter() + zone.second); } //now perform drastic movement of zone that is completely not linked float maxRatio = 0; CRmgTemplateZone * distantZone = nullptr; float totalDistance = 0; for (auto zone : distances) //find most misplaced zone { totalDistance += zone.second; float ratio = zone.second / forces[zone.first].mag(); //if distance to actual movement is long, the zone is misplaced if (ratio > maxRatio) { maxRatio = ratio; distantZone = zone.first; } } logGlobal->traceStream() << boost::format("Total distance between zones in this iteration: %2.2f, Worst distance/movement ratio: %3.2f") % totalDistance % maxRatio; if (maxRatio > 100) //TODO: scale? { //find most distant zone that should be attracted and move inside it CRmgTemplateZone * targetZone = nullptr; float maxDistance = 0; float3 ourCenter = distantZone->getCenter(); for (auto con : distantZone->getConnections()) { auto otherZone = zones[con]; float distance = otherZone->getCenter().dist2dSQ(ourCenter); if (distance > maxDistance) { maxDistance = distance; targetZone = otherZone; } } float3 vec = targetZone->getCenter() - ourCenter; float newDistanceBetweenZones = (std::max (distantZone->getSize(),targetZone->getSize())) * zoneScale / mapSize; logGlobal->traceStream() << boost::format("Trying to move zone %d %s towards %d %s. Old distance %f") % distantZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxDistance; logGlobal->traceStream() << boost::format("direction is %s") % vec(); distantZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(distantZone->getCenter()); } zoneScale *= inflateModifier; //increase size of zones so they } for (auto zone : zones) //finalize zone positions { zone.second->setPos(cords(zone.second->getCenter())); logGlobal->infoStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos(); } } float CZonePlacer::metric (const int3 &A, const int3 &B) const { /* Matlab code dx = abs(A(1) - B(1)); %distance must be symmetric dy = abs(A(2) - B(2)); d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ... 0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy; */ float dx = abs(A.x - B.x) * scaleX; float dy = abs(A.y - B.y) * scaleY; //Horner scheme return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618)); } void CZonePlacer::assignZones(const CMapGenOptions * mapGenOptions) { logGlobal->infoStream() << "Starting zone colouring"; auto width = mapGenOptions->getWidth(); auto height = mapGenOptions->getHeight(); //scale to Medium map to ensure smooth results scaleX = 72.f / width; scaleY = 72.f / height; auto zones = gen->getZones(); typedef std::pair Dpair; std::vector distances; distances.reserve(zones.size()); auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool { return lhs.second < rhs.second; }; int levels = gen->map->twoLevel ? 2 : 1; for (int i=0; igetPos().z == k) distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos()))); else distances.push_back (std::make_pair(zone.second, std::numeric_limits::max())); } boost::sort (distances, compareByDistance); distances.front().first->addTile(pos); //closest tile belongs to zone } } } //set position to center of mass for (auto zone : zones) { int3 total(0,0,0); auto tiles = zone.second->getTileInfo(); for (auto tile : tiles) { total += tile; } int size = tiles.size(); assert (size); zone.second->setPos (int3(total.x/size, total.y/size, total.z/size)); //TODO: similiar for islands if (zone.second->getPos().z) { zone.second->discardDistantTiles(gen, zone.second->getSize() + 1); //make sure that terrain inside zone is not a rock //FIXME: reorder actions? zone.second->paintZoneTerrain (gen, ETerrainType::SUBTERRANEAN); } } logGlobal->infoStream() << "Finished zone colouring"; }