#include "neuralNetwork.h" //using namespace std; #ifndef M_PI #define M_PI 3.14159265358979323846 #endif float norm(void)//add desired mean, multiply to get desired SD { static float kept = 0; static bool in = 0; if(!in) { float x = (rand()+1)/float(RAND_MAX+1); float f = sqrtf( - 2.0f * log(x) ); x = (rand()+1)/float(RAND_MAX+1); kept = f * cosf( 2.0f * M_PI * x ); in = true; return f * sinf( 2.0f * M_PI * x ); } else { in = false; return kept; } } /******************************************************************* * Constructors ********************************************************************/ neuralNetwork::neuralNetwork() : nInput(0), nHidden1(0), nHidden2(0), nOutput(0) { inputNeurons = new double[1] ; hiddenNeurons1 = new double[1] ; hiddenNeurons2 = new double[1] ; outputNeurons = new double[1] ; wInputHidden = new double*[1] ; wInputHidden[0] = new double[1]; wHidden2Hidden = new double*[1] ; wHidden2Hidden[0] = new (double[1]); wHiddenOutput = new double*[1] ; wHiddenOutput[0] = new double[1]; } neuralNetwork::neuralNetwork(const neuralNetwork& other): nInput(0), nHidden1(0), nHidden2(0), nOutput(0) { inputNeurons = new double[1] ; hiddenNeurons1 = new double[1] ; hiddenNeurons2 = new double[1] ; outputNeurons = new double[1] ; wInputHidden = new double*[1] ; wInputHidden[0] = new double[1]; wHidden2Hidden = new double*[1] ; wHidden2Hidden[0] = new (double[1]); wHiddenOutput = new double*[1] ; wHiddenOutput[0] = new double[1]; *this = other; } neuralNetwork::neuralNetwork(int nI, int nH1, int nH2, int nO) : nInput(nI), nHidden1(nH1), nHidden2(nH2), nOutput(nO) { //create neuron lists //-------------------------------------------------------------------------------------------------------- inputNeurons = new double[nInput + 1] ; for ( int i=0; i < nInput; i++ ) inputNeurons[i] = 0; //create input bias neuron inputNeurons[nInput] = -1; hiddenNeurons1 = new double[nHidden1 + 1] ; for ( int i=0; i < nHidden1; i++ ) hiddenNeurons1[i] = 0; //create hidden bias neuron hiddenNeurons1[nHidden1] = -1; hiddenNeurons2 = new double[nHidden2 + 1] ; for ( int i=0; i < nHidden2; i++ ) hiddenNeurons2[i] = 0; //create hidden bias neuron hiddenNeurons2[nHidden2] = -1; outputNeurons = new double[nOutput] ; for ( int i=0; i < nOutput; i++ ) outputNeurons[i] = 0; //create weight lists (include bias neuron weights) //-------------------------------------------------------------------------------------------------------- wInputHidden = new double*[nInput + 1] ; for ( int i=0; i <= nInput; i++ ) { wInputHidden[i] = new double[nHidden1]; for ( int j=0; j < nHidden1; j++ ) wInputHidden[i][j] = 0; } wHidden2Hidden = new double*[nHidden1 + 1] ; for ( int i=0; i <= nHidden1; i++ ) { wHidden2Hidden[i] = new (double[nHidden2]); for ( int j=0; j < nHidden2; j++ ) wHidden2Hidden[i][j] = 0; } wHiddenOutput = new double*[nHidden2 + 1] ; for ( int i=0; i <= nHidden2; i++ ) { wHiddenOutput[i] = new double[nOutput]; for ( int j=0; j < nOutput; j++ ) wHiddenOutput[i][j] = 0; } //initialize weights //-------------------------------------------------------------------------------------------------------- initializeWeights(); } void neuralNetwork::operator = (const neuralNetwork&cpy)//assumes same structure { if( nInput != cpy.nInput || nHidden1 != cpy.nHidden1 || nHidden2 != cpy.nHidden2 || nOutput != cpy.nOutput) { delete[] inputNeurons; delete[] hiddenNeurons1; delete[] hiddenNeurons2; delete[] outputNeurons; //delete weight storage for (int i=0; i <= nInput; i++) delete[] wInputHidden[i]; delete[] wInputHidden; for (int j=0; j <= nHidden2; j++) delete[] wHiddenOutput[j]; delete[] wHiddenOutput; for (int j=0; j <= nHidden1; j++) delete[] wHidden2Hidden[j]; delete[] wHidden2Hidden; nInput = cpy.nInput; nHidden1 = cpy.nHidden1; nHidden2 = cpy.nHidden2; nOutput = cpy.nOutput; inputNeurons = new double[nInput + 1] ; inputNeurons[nInput] = -1; hiddenNeurons1 = new double[nHidden1 + 1] ; hiddenNeurons1[nHidden1] = -1; hiddenNeurons2 = new double[nHidden2 + 1] ; hiddenNeurons2[nHidden2] = -1; outputNeurons = new double[nOutput] ; //create weight lists (include bias neuron weights) //-------------------------------------------------------------------------------------------------------- wInputHidden = new double*[nInput + 1] ; for ( int i=0; i <= nInput; i++ ) wInputHidden[i] = new double[nHidden1]; wHidden2Hidden = new double*[nHidden1 + 1] ; for ( int i=0; i <= nHidden1; i++ ) wHidden2Hidden[i] = new (double[nHidden2]); wHiddenOutput = new double*[nHidden2 + 1] ; for ( int i=0; i <= nHidden2; i++ ) wHiddenOutput[i] = new double[nOutput]; } for ( int i=0; i < nInput; i++ ) inputNeurons[i] = cpy.inputNeurons[i]; for ( int i=0; i < nHidden1; i++ ) hiddenNeurons1[i] = cpy.hiddenNeurons1[i]; for ( int i=0; i < nHidden2; i++ ) hiddenNeurons2[i] = cpy.hiddenNeurons2[i]; for ( int i=0; i < nOutput; i++ ) outputNeurons[i] = cpy.outputNeurons[i]; for ( int i=0; i <= nInput; i++ ) for ( int j=0; j < nHidden1; j++ ) wInputHidden[i][j] = cpy.wInputHidden[i][j]; for ( int i=0; i <= nHidden1; i++ ) for ( int j=0; j < nHidden2; j++ ) wHidden2Hidden[i][j] = cpy.wHidden2Hidden[i][j]; for ( int i=0; i <= nHidden2; i++ ) for ( int j=0; j < nOutput; j++ ) wHiddenOutput[i][j] = cpy.wHiddenOutput[i][j]; } /******************************************************************* * Destructor ********************************************************************/ neuralNetwork::~neuralNetwork() { //delete neurons delete[] inputNeurons; delete[] hiddenNeurons1; delete[] hiddenNeurons2; delete[] outputNeurons; //delete weight storage for (int i=0; i <= nInput; i++) delete[] wInputHidden[i]; delete[] wInputHidden; for (int j=0; j <= nHidden2; j++) delete[] wHiddenOutput[j]; delete[] wHiddenOutput; for (int j=0; j <= nHidden1; j++) delete[] wHidden2Hidden[j]; delete[] wHidden2Hidden; } double* neuralNetwork::feedForwardPattern(double *pattern) { feedForward(pattern); return outputNeurons; } void neuralNetwork::mate(const neuralNetwork&n1,const neuralNetwork&n2) { for(int i = 0; i <= nInput; i++) { for(int j = 0; j < nHidden1; j++) { if(rand()%2==0) wInputHidden[i][j] = n1.wInputHidden[i][j]; else wInputHidden[i][j] = n2.wInputHidden[i][j]; } } for(int i = 0; i <= nHidden1; i++) { for(int j = 0; j < nHidden2; j++) { if(rand()%2==0) wHidden2Hidden[i][j] =n1.wHidden2Hidden[i][j]; else wHidden2Hidden[i][j] =n2.wHidden2Hidden[i][j]; } } for(int i = 0; i <= nHidden2; i++) { for(int j = 0; j < nOutput; j++) { if(rand()%2==0) wHiddenOutput[i][j] =n1.wHiddenOutput[i][j]; else wHiddenOutput[i][j] =n2.wHiddenOutput[i][j]; } } } void neuralNetwork::tweakWeights(double howMuch) { //set range double rH = 1/sqrt( (double) nInput); double rO = 1/sqrt( (double) nHidden1); for(int i = 0; i <= nInput; i++) { for(int j = 0; j < nHidden1; j++) { wInputHidden[i][j] += howMuch*norm(); } } for(int i = 0; i <= nHidden1; i++) { for(int j = 0; j < nHidden2; j++) { wHidden2Hidden[i][j] += howMuch*norm(); } } for(int i = 0; i <= nHidden2; i++) { for(int j = 0; j < nOutput; j++) { wHiddenOutput[i][j] += howMuch* norm(); } } //initializeWeights(); } void neuralNetwork::initializeWeights() { //set range double rH = 2.0/sqrt( (double) nInput); double rO = 2.0/sqrt( (double) nHidden1); //set weights between input and hidden //-------------------------------------------------------------------------------------------------------- for(int i = 0; i <= nInput; i++) { for(int j = 0; j < nHidden1; j++) { //set weights to random values wInputHidden[i][j] = norm()* rH; } } for(int i = 0; i <= nHidden1; i++) { for(int j = 0; j < nHidden2; j++) { //set weights to random values wHidden2Hidden[i][j] = norm()* rO; } } //set weights between hidden and output //-------------------------------------------------------------------------------------------------------- for(int i = 0; i <= nHidden2; i++) { for(int j = 0; j < nOutput; j++) { //set weights to random values wHiddenOutput[i][j] = norm()* rO; } } } /******************************************************************* * Activation Function ********************************************************************/ inline double neuralNetwork::activationFunction( double x ) { //sigmoid function return 1/(1+exp(-x)); } /******************************************************************* * Feed Forward Operation ********************************************************************/ void neuralNetwork::feedForward(double* pattern) { //set input neurons to input values for(int i = 0; i < nInput; i++) inputNeurons[i] = pattern[i]; //Calculate Hidden Layer values - include bias neuron //-------------------------------------------------------------------------------------------------------- for(int j=0; j < nHidden1; j++) { //clear value hiddenNeurons1[j] = 0; //get weighted sum of pattern and bias neuron for( int i=0; i <= nInput; i++ ) hiddenNeurons1[j] += inputNeurons[i] * wInputHidden[i][j]; //set to result of sigmoid hiddenNeurons1[j] = activationFunction( hiddenNeurons1[j] ); } for(int j=0; j < nHidden2; j++) { //clear value hiddenNeurons2[j] = 0; //get weighted sum of pattern and bias neuron for( int i=0; i <= nHidden1; i++ ) hiddenNeurons2[j] += hiddenNeurons1[i] * wHidden2Hidden[i][j]; //set to result of sigmoid hiddenNeurons2[j] = activationFunction( hiddenNeurons2[j] ); } //Calculating Output Layer values - include bias neuron //-------------------------------------------------------------------------------------------------------- for(int k=0; k < nOutput; k++) { //clear value outputNeurons[k] = 0; //get weighted sum of pattern and bias neuron for( int j=0; j <= nHidden2; j++ ) outputNeurons[k] += hiddenNeurons2[j] * wHiddenOutput[j][k]; //set to result of sigmoid //outputNeurons[k] = activationFunction( outputNeurons[k] ); } } void neuralNetwork::backpropigate(double* pattern, double OLR, double H2LR, double H1LR ) { //inputError = new double[nInput + 1] ; double * hiddenError1 = new double[nHidden1 + 1] ; double * hiddenError2 = new double[nHidden2 + 1] ; double * outputError = new double[nOutput] ; memset(hiddenError1,0,sizeof(double)*nHidden1); memset(hiddenError2,0,sizeof(double)*nHidden2); for(int i = 0; i < nOutput; i++) { outputError[i] = (pattern[i]-outputNeurons[i]);//*(outputNeurons[i]*(1-outputNeurons[i])); for(int ii = 0; ii <= nHidden2;ii++) hiddenError2[ii]+=outputError[i]*wHiddenOutput[ii][i]; for(int ii = 0; ii <= nHidden2;ii++) wHiddenOutput[ii][i]+=OLR*hiddenNeurons2[ii]*outputError[i]; } for(int i = 0; i < nHidden2; i++) { hiddenError2[i] *= (hiddenNeurons2[i]*(1-hiddenNeurons2[i])); for(int ii = 0; ii <= nHidden1;ii++) hiddenError1[ii]+=hiddenError2[i]*wHidden2Hidden[ii][i]; for(int ii = 0; ii <= nHidden1;ii++) wHidden2Hidden[ii][i]+=H2LR*hiddenNeurons1[ii]*hiddenError2[i]; } for(int i = 0; i < nHidden1; i++) { hiddenError1[i] *= (hiddenNeurons1[i]*(1-hiddenNeurons1[i])); for(int ii = 0; ii <= nInput;ii++) wInputHidden[ii][i]+=H1LR*inputNeurons[ii]*hiddenError1[i]; } delete [] hiddenError1; delete [] hiddenError2; delete [] outputError; }