1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-01-16 02:47:36 +02:00
vcmi/lib/mapping/CMapEditManager.h
AlexVinS ae2c72ca52 Implemented road transitions.
* untested
* still unused
2015-04-03 05:46:16 +03:00

390 lines
12 KiB
C++

/*
* CMapEditManager.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include "../CRandomGenerator.h"
#include "CMap.h"
class CGObjectInstance;
class CTerrainViewPatternConfig;
struct TerrainViewPattern;
/// Represents a map rectangle.
struct DLL_LINKAGE MapRect
{
MapRect();
MapRect(int3 pos, si32 width, si32 height);
si32 x, y, z;
si32 width, height;
si32 left() const;
si32 right() const;
si32 top() const;
si32 bottom() const;
int3 topLeft() const; /// Top left corner of this rect.
int3 topRight() const; /// Top right corner of this rect.
int3 bottomLeft() const; /// Bottom left corner of this rect.
int3 bottomRight() const; /// Bottom right corner of this rect.
/// Returns a MapRect of the intersection of this rectangle and the given one.
MapRect operator&(const MapRect & rect) const;
template<typename Func>
void forEach(Func f) const
{
for(int j = y; j < bottom(); ++j)
{
for(int i = x; i < right(); ++i)
{
f(int3(i, j, z));
}
}
}
};
/// Generic selection class to select any type
template<typename T>
class DLL_LINKAGE CMapSelection
{
public:
explicit CMapSelection(CMap * map) : map(map) { }
virtual ~CMapSelection() { };
void select(const T & item)
{
selectedItems.insert(item);
}
void deselect(const T & item)
{
selectedItems.erase(item);
}
std::set<T> getSelectedItems()
{
return selectedItems;
}
CMap * getMap() { return map; }
virtual void selectRange(const MapRect & rect) { }
virtual void deselectRange(const MapRect & rect) { }
virtual void selectAll() { }
virtual void clearSelection() { }
private:
std::set<T> selectedItems;
CMap * map;
};
/// Selection class to select terrain.
class DLL_LINKAGE CTerrainSelection : public CMapSelection<int3>
{
public:
explicit CTerrainSelection(CMap * map);
void selectRange(const MapRect & rect) override;
void deselectRange(const MapRect & rect) override;
void selectAll() override;
void clearSelection() override;
void setSelection(std::vector<int3> & vec);
};
/// Selection class to select objects.
class DLL_LINKAGE CObjectSelection: public CMapSelection<CGObjectInstance *>
{
public:
explicit CObjectSelection(CMap * map);
};
/// The abstract base class CMapOperation defines an operation that can be executed, undone and redone.
class DLL_LINKAGE CMapOperation : public boost::noncopyable
{
public:
explicit CMapOperation(CMap * map);
virtual ~CMapOperation() { };
virtual void execute() = 0;
virtual void undo() = 0;
virtual void redo() = 0;
virtual std::string getLabel() const = 0; /// Returns a display-able name of the operation.
protected:
MapRect extendTileAround(const int3 & centerPos) const;
MapRect extendTileAroundSafely(const int3 & centerPos) const; /// doesn't exceed map size
static const int FLIP_PATTERN_HORIZONTAL = 1;
static const int FLIP_PATTERN_VERTICAL = 2;
static const int FLIP_PATTERN_BOTH = 3;
CMap * map;
};
/// The CMapUndoManager provides the functionality to save operations and undo/redo them.
class DLL_LINKAGE CMapUndoManager : boost::noncopyable
{
public:
CMapUndoManager();
void undo();
void redo();
void clearAll();
/// The undo redo limit is a number which says how many undo/redo items can be saved. The default
/// value is 10. If the value is 0, no undo/redo history will be maintained.
int getUndoRedoLimit() const;
void setUndoRedoLimit(int value);
const CMapOperation * peekRedo() const;
const CMapOperation * peekUndo() const;
void addOperation(unique_ptr<CMapOperation> && operation); /// Client code does not need to call this method.
private:
typedef std::list<unique_ptr<CMapOperation> > TStack;
void doOperation(TStack & fromStack, TStack & toStack, bool doUndo);
const CMapOperation * peek(const TStack & stack) const;
TStack undoStack;
TStack redoStack;
int undoRedoLimit;
};
/// The map edit manager provides functionality for drawing terrain and placing
/// objects on the map.
class DLL_LINKAGE CMapEditManager : boost::noncopyable
{
public:
CMapEditManager(CMap * map);
CMap * getMap();
/// Clears the terrain. The free level is filled with water and the underground level with rock.
void clearTerrain(CRandomGenerator * gen = nullptr);
/// Draws terrain at the current terrain selection. The selection will be cleared automatically.
void drawTerrain(ETerrainType terType, CRandomGenerator * gen = nullptr);
/// Draws roads at the current terrain selection. The selection will be cleared automatically.
void drawRoad(ERoadType::ERoadType roadType, CRandomGenerator * gen = nullptr);
void insertObject(CGObjectInstance * obj, const int3 & pos);
CTerrainSelection & getTerrainSelection();
CObjectSelection & getObjectSelection();
CMapUndoManager & getUndoManager();
private:
void execute(unique_ptr<CMapOperation> && operation);
CMap * map;
CMapUndoManager undoManager;
CRandomGenerator gen;
CTerrainSelection terrainSel;
CObjectSelection objectSel;
};
/* ---------------------------------------------------------------------------- */
/* Implementation/Detail classes, Private API */
/* ---------------------------------------------------------------------------- */
/// The CComposedOperation is an operation which consists of several operations.
class CComposedOperation : public CMapOperation
{
public:
CComposedOperation(CMap * map);
void execute() override;
void undo() override;
void redo() override;
void addOperation(unique_ptr<CMapOperation> && operation);
private:
std::list<unique_ptr<CMapOperation> > operations;
};
namespace ETerrainGroup
{
enum ETerrainGroup
{
NORMAL,
DIRT,
SAND,
WATER,
ROCK
};
}
/// The terrain view pattern describes a specific composition of terrain tiles
/// in a 3x3 matrix and notes which terrain view frame numbers can be used.
struct DLL_LINKAGE TerrainViewPattern
{
struct WeightedRule
{
WeightedRule();
/// Gets true if this rule is a standard rule which means that it has a value of one of the RULE_* constants.
bool isStandardRule() const;
/// The name of the rule. Can be any value of the RULE_* constants or a ID of a another pattern.
std::string name;
/// Optional. A rule can have points. Patterns may have a minimum count of points to reach to be successful.
int points;
};
static const int PATTERN_DATA_SIZE = 9;
/// Constant for the flip mode different images. Pattern will be flipped and different images will be used(mapping area is divided into 4 parts)
static const std::string FLIP_MODE_DIFF_IMAGES;
/// Constant for the rule dirt, meaning a dirty border is required.
static const std::string RULE_DIRT;
/// Constant for the rule sand, meaning a sandy border is required.
static const std::string RULE_SAND;
/// Constant for the rule transition, meaning a dirty OR sandy border is required.
static const std::string RULE_TRANSITION;
/// Constant for the rule native, meaning a native border is required.
static const std::string RULE_NATIVE;
/// Constant for the rule native strong, meaning a native type is required.
static const std::string RULE_NATIVE_STRONG;
/// Constant for the rule any, meaning a native type, dirty OR sandy border is required.
static const std::string RULE_ANY;
TerrainViewPattern();
/// The pattern data can be visualized as a 3x3 matrix:
/// [ ][ ][ ]
/// [ ][ ][ ]
/// [ ][ ][ ]
///
/// The box in the center belongs always to the native terrain type and
/// is the point of origin. Depending on the terrain type different rules
/// can be used. Their meaning differs also from type to type.
///
/// std::vector -> several rules can be used in one cell
std::array<std::vector<WeightedRule>, PATTERN_DATA_SIZE> data;
/// The identifier of the pattern, if it's referenced from a another pattern.
std::string id;
/// This describes the mapping between this pattern and the corresponding range of frames
/// which should be used for the ter view.
///
/// std::vector -> size=1: typical, size=2: if this pattern should map to two different types of borders
/// std::pair -> 1st value: lower range, 2nd value: upper range
std::vector<std::pair<int, int> > mapping;
/// If diffImages is true, different images/frames are used to place a rotated terrain view. If it's false
/// the same frame will be used and rotated.
bool diffImages;
/// The rotationTypesCount is only used if diffImages is true and holds the number how many rotation types(horizontal, etc...)
/// are supported.
int rotationTypesCount;
/// The minimum and maximum points to reach to validate the pattern successfully.
int minPoints, maxPoints;
};
/// The terrain view pattern config loads pattern data from the filesystem.
class DLL_LINKAGE CTerrainViewPatternConfig : public boost::noncopyable
{
public:
CTerrainViewPatternConfig();
~CTerrainViewPatternConfig();
const std::vector<TerrainViewPattern> & getTerrainViewPatternsForGroup(ETerrainGroup::ETerrainGroup terGroup) const;
boost::optional<const TerrainViewPattern &> getTerrainViewPatternById(ETerrainGroup::ETerrainGroup terGroup, const std::string & id) const;
const TerrainViewPattern & getTerrainTypePatternById(const std::string & id) const;
ETerrainGroup::ETerrainGroup getTerrainGroup(const std::string & terGroup) const;
private:
std::map<ETerrainGroup::ETerrainGroup, std::vector<TerrainViewPattern> > terrainViewPatterns;
std::map<std::string, TerrainViewPattern> terrainTypePatterns;
};
/// The CDrawTerrainOperation class draws a terrain area on the map.
class CDrawTerrainOperation : public CMapOperation
{
public:
CDrawTerrainOperation(CMap * map, const CTerrainSelection & terrainSel, ETerrainType terType, CRandomGenerator * gen);
void execute() override;
void undo() override;
void redo() override;
std::string getLabel() const override;
private:
struct ValidationResult
{
ValidationResult(bool result, const std::string & transitionReplacement = "");
bool result;
/// The replacement of a T rule, either D or S.
std::string transitionReplacement;
int flip;
};
struct InvalidTiles
{
std::set<int3> foreignTiles, nativeTiles;
bool centerPosValid;
InvalidTiles() : centerPosValid(false) { }
};
void updateTerrainTypes();
void invalidateTerrainViews(const int3 & centerPos);
InvalidTiles getInvalidTiles(const int3 & centerPos) const;
void updateTerrainViews();
ETerrainGroup::ETerrainGroup getTerrainGroup(ETerrainType terType) const;
/// Validates the terrain view of the given position and with the given pattern. The first method wraps the
/// second method to validate the terrain view with the given pattern in all four flip directions(horizontal, vertical).
ValidationResult validateTerrainView(const int3 & pos, const TerrainViewPattern & pattern, int recDepth = 0) const;
ValidationResult validateTerrainViewInner(const int3 & pos, const TerrainViewPattern & pattern, int recDepth = 0) const;
/// Tests whether the given terrain type is a sand type. Sand types are: Water, Sand and Rock
bool isSandType(ETerrainType terType) const;
void flipPattern(TerrainViewPattern & pattern, int flip) const;
CTerrainSelection terrainSel;
ETerrainType terType;
CRandomGenerator * gen;
std::set<int3> invalidatedTerViews;
};
class DLL_LINKAGE CTerrainViewPatternUtils
{
public:
static void printDebuggingInfoAboutTile(const CMap * map, int3 pos);
};
/// The CClearTerrainOperation clears+initializes the terrain.
class CClearTerrainOperation : public CComposedOperation
{
public:
CClearTerrainOperation(CMap * map, CRandomGenerator * gen);
std::string getLabel() const override;
private:
};
/// The CInsertObjectOperation class inserts an object to the map.
class CInsertObjectOperation : public CMapOperation
{
public:
CInsertObjectOperation(CMap * map, CGObjectInstance * obj, const int3 & pos);
void execute() override;
void undo() override;
void redo() override;
std::string getLabel() const override;
private:
int3 pos;
CGObjectInstance * obj;
};