mirror of
https://github.com/vcmi/vcmi.git
synced 2024-12-22 22:13:35 +02:00
1002 lines
28 KiB
C++
1002 lines
28 KiB
C++
/*
|
|
* CZonePlacer.cpp, part of VCMI engine
|
|
*
|
|
* Authors: listed in file AUTHORS in main folder
|
|
*
|
|
* License: GNU General Public License v2.0 or later
|
|
* Full text of license available in license.txt file, in main folder
|
|
*
|
|
*/
|
|
|
|
#include "StdInc.h"
|
|
#include "CZonePlacer.h"
|
|
|
|
#include "../CRandomGenerator.h"
|
|
#include "../CTownHandler.h"
|
|
#include "../TerrainHandler.h"
|
|
#include "../mapping/CMap.h"
|
|
#include "../mapping/CMapEditManager.h"
|
|
#include "CMapGenOptions.h"
|
|
#include "RmgMap.h"
|
|
#include "Zone.h"
|
|
#include "Functions.h"
|
|
#include "PenroseTiling.h"
|
|
|
|
VCMI_LIB_NAMESPACE_BEGIN
|
|
|
|
//#define ZONE_PLACEMENT_LOG true
|
|
|
|
class CRandomGenerator;
|
|
|
|
CZonePlacer::CZonePlacer(RmgMap & map)
|
|
: width(0), height(0), mapSize(0),
|
|
gravityConstant(1e-3f),
|
|
stiffnessConstant(3e-3f),
|
|
stifness(0),
|
|
stiffnessIncreaseFactor(1.03f),
|
|
bestTotalDistance(1e10),
|
|
bestTotalOverlap(1e10),
|
|
map(map)
|
|
{
|
|
}
|
|
|
|
int3 CZonePlacer::cords(const float3 & f) const
|
|
{
|
|
return int3(static_cast<si32>(std::max(0.f, (f.x * map.width()) - 1)), static_cast<si32>(std::max(0.f, (f.y * map.height() - 1))), f.z);
|
|
}
|
|
|
|
float CZonePlacer::getDistance (float distance) const
|
|
{
|
|
return (distance ? distance * distance : 1e-6f);
|
|
}
|
|
|
|
void CZonePlacer::findPathsBetweenZones()
|
|
{
|
|
auto zones = map.getZones();
|
|
|
|
std::set<std::shared_ptr<Zone>> zonesToCheck;
|
|
|
|
// Iterate through each pair of nodes in the graph
|
|
|
|
for (const auto& zone : zones)
|
|
{
|
|
int start = zone.first;
|
|
distancesBetweenZones[start][start] = 0; // Distance from a node to itself is 0
|
|
|
|
std::queue<int> q;
|
|
std::map<int, bool> visited;
|
|
visited[start] = true;
|
|
q.push(start);
|
|
|
|
// Perform Breadth-First Search from the starting node
|
|
while (!q.empty())
|
|
{
|
|
int current = q.front();
|
|
q.pop();
|
|
|
|
const auto& currentZone = zones.at(current);
|
|
const auto& connectedZoneIds = currentZone->getConnections();
|
|
|
|
for (auto & connection : connectedZoneIds)
|
|
{
|
|
if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE)
|
|
{
|
|
//Do not consider virtual connections for graph distance
|
|
continue;
|
|
}
|
|
auto neighbor = connection.getOtherZoneId(current);
|
|
if (!visited[neighbor])
|
|
{
|
|
visited[neighbor] = true;
|
|
q.push(neighbor);
|
|
distancesBetweenZones[start][neighbor] = distancesBetweenZones[start][current] + 1;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
void CZonePlacer::placeOnGrid(CRandomGenerator* rand)
|
|
{
|
|
auto zones = map.getZones();
|
|
assert(zones.size());
|
|
|
|
//Make sure there are at least as many grid fields as the number of zones
|
|
size_t gridSize = std::ceil(std::sqrt(zones.size()));
|
|
|
|
typedef boost::multi_array<std::shared_ptr<Zone>, 2> GridType;
|
|
GridType grid(boost::extents[gridSize][gridSize]);
|
|
|
|
TZoneVector zonesVector(zones.begin(), zones.end());
|
|
|
|
//Place first zone
|
|
|
|
auto firstZone = zonesVector[0].second;
|
|
size_t x = 0;
|
|
size_t y = 0;
|
|
|
|
auto getRandomEdge = [rand, gridSize](size_t& x, size_t& y)
|
|
{
|
|
switch (rand->nextInt() % 4)
|
|
{
|
|
case 0:
|
|
x = 0;
|
|
y = gridSize / 2;
|
|
break;
|
|
case 1:
|
|
x = gridSize - 1;
|
|
y = gridSize / 2;
|
|
break;
|
|
case 2:
|
|
x = gridSize / 2;
|
|
y = 0;
|
|
break;
|
|
case 3:
|
|
x = gridSize / 2;
|
|
y = gridSize - 1;
|
|
break;
|
|
}
|
|
};
|
|
|
|
switch (firstZone->getType())
|
|
{
|
|
case ETemplateZoneType::PLAYER_START:
|
|
case ETemplateZoneType::CPU_START:
|
|
if (firstZone->getConnectedZoneIds().size() > 2)
|
|
{
|
|
getRandomEdge(x, y);
|
|
}
|
|
else
|
|
{
|
|
//Random corner
|
|
if (rand->nextInt() % 2)
|
|
{
|
|
x = 0;
|
|
}
|
|
else
|
|
{
|
|
x = gridSize - 1;
|
|
}
|
|
if (rand->nextInt() % 2)
|
|
{
|
|
y = 0;
|
|
}
|
|
else
|
|
{
|
|
y = gridSize - 1;
|
|
}
|
|
}
|
|
break;
|
|
case ETemplateZoneType::TREASURE:
|
|
if (gridSize & 1) //odd
|
|
{
|
|
x = y = (gridSize / 2);
|
|
}
|
|
else
|
|
{
|
|
//One of 4 squares in the middle
|
|
x = (gridSize / 2) - 1 + rand->nextInt() % 2;
|
|
y = (gridSize / 2) - 1 + rand->nextInt() % 2;
|
|
}
|
|
break;
|
|
case ETemplateZoneType::JUNCTION:
|
|
getRandomEdge(x, y);
|
|
break;
|
|
}
|
|
grid[x][y] = firstZone;
|
|
|
|
//Ignore z placement for simplicity
|
|
|
|
for (size_t i = 1; i < zones.size(); i++)
|
|
{
|
|
auto zone = zonesVector[i].second;
|
|
auto connectedZoneIds = zone->getConnectedZoneIds();
|
|
|
|
float maxDistance = -1000.0;
|
|
int3 mostDistantPlace;
|
|
|
|
//Iterate over free positions
|
|
for (size_t freeX = 0; freeX < gridSize; ++freeX)
|
|
{
|
|
for (size_t freeY = 0; freeY < gridSize; ++freeY)
|
|
{
|
|
if (!grid[freeX][freeY])
|
|
{
|
|
//There is free space left here
|
|
int3 potentialPos(freeX, freeY, 0);
|
|
|
|
//Compute distance to every existing zone
|
|
|
|
float distance = 0;
|
|
for (size_t existingX = 0; existingX < gridSize; ++existingX)
|
|
{
|
|
for (size_t existingY = 0; existingY < gridSize; ++existingY)
|
|
{
|
|
auto existingZone = grid[existingX][existingY];
|
|
if (existingZone)
|
|
{
|
|
//There is already zone here
|
|
float localDistance = 0.0f;
|
|
|
|
auto graphDistance = distancesBetweenZones[zone->getId()][existingZone->getId()];
|
|
if (graphDistance > 1)
|
|
{
|
|
//No direct connection
|
|
localDistance = potentialPos.dist2d(int3(existingX, existingY, 0)) * graphDistance;
|
|
}
|
|
else
|
|
{
|
|
//Has direct connection - place as close as possible
|
|
localDistance = -potentialPos.dist2d(int3(existingX, existingY, 0));
|
|
}
|
|
|
|
localDistance *= scaleForceBetweenZones(zone, existingZone);
|
|
|
|
distance += localDistance;
|
|
}
|
|
}
|
|
}
|
|
if (distance > maxDistance)
|
|
{
|
|
maxDistance = distance;
|
|
mostDistantPlace = potentialPos;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
//Place in a free slot
|
|
grid[mostDistantPlace.x][mostDistantPlace.y] = zone;
|
|
}
|
|
|
|
//TODO: toggle with a flag
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Initial zone grid:");
|
|
for (size_t x = 0; x < gridSize; ++x)
|
|
{
|
|
std::string s;
|
|
for (size_t y = 0; y < gridSize; ++y)
|
|
{
|
|
if (grid[x][y])
|
|
{
|
|
s += (boost::format("%3d ") % grid[x][y]->getId()).str();
|
|
}
|
|
else
|
|
{
|
|
s += " -- ";
|
|
}
|
|
}
|
|
logGlobal->trace(s);
|
|
}
|
|
#endif
|
|
|
|
//Set initial position for zones - random position in square centered around (x, y)
|
|
for (size_t x = 0; x < gridSize; ++x)
|
|
{
|
|
for (size_t y = 0; y < gridSize; ++y)
|
|
{
|
|
auto zone = grid[x][y];
|
|
if (zone)
|
|
{
|
|
//i.e. for grid size 5 we get range (0.25 - 4.75)
|
|
auto targetX = rand->nextDouble(x + 0.25f, x + 0.75f);
|
|
vstd::abetween(targetX, 0.5, gridSize - 0.5);
|
|
auto targetY = rand->nextDouble(y + 0.25f, y + 0.75f);
|
|
vstd::abetween(targetY, 0.5, gridSize - 0.5);
|
|
|
|
zone->setCenter(float3(targetX / gridSize, targetY / gridSize, zone->getPos().z));
|
|
}
|
|
}
|
|
}
|
|
}
|
|
|
|
float CZonePlacer::scaleForceBetweenZones(const std::shared_ptr<Zone> zoneA, const std::shared_ptr<Zone> zoneB) const
|
|
{
|
|
if (zoneA->getOwner() && zoneB->getOwner()) //Players participate in game
|
|
{
|
|
int firstPlayer = zoneA->getOwner().value();
|
|
int secondPlayer = zoneB->getOwner().value();
|
|
|
|
//Players with lower indexes (especially 1 and 2) will be placed further apart
|
|
|
|
return (1.0f + (2.0f / (firstPlayer * secondPlayer)));
|
|
}
|
|
else
|
|
{
|
|
return 1;
|
|
}
|
|
}
|
|
|
|
void CZonePlacer::placeZones(CRandomGenerator * rand)
|
|
{
|
|
logGlobal->info("Starting zone placement");
|
|
|
|
width = map.getMapGenOptions().getWidth();
|
|
height = map.getMapGenOptions().getHeight();
|
|
|
|
auto zones = map.getZones();
|
|
vstd::erase_if(zones, [](const std::pair<TRmgTemplateZoneId, std::shared_ptr<Zone>> & pr)
|
|
{
|
|
return pr.second->getType() == ETemplateZoneType::WATER;
|
|
});
|
|
bool underground = map.getMapGenOptions().getHasTwoLevels();
|
|
|
|
findPathsBetweenZones();
|
|
placeOnGrid(rand);
|
|
|
|
/*
|
|
Fruchterman-Reingold algorithm
|
|
|
|
Let's assume we try to fit N circular zones with radius = size on a map
|
|
Connected zones attract, intersecting zones and map boundaries push back
|
|
*/
|
|
|
|
TZoneVector zonesVector(zones.begin(), zones.end());
|
|
assert (zonesVector.size());
|
|
|
|
RandomGeneratorUtil::randomShuffle(zonesVector, *rand);
|
|
|
|
//0. set zone sizes and surface / underground level
|
|
prepareZones(zones, zonesVector, underground, rand);
|
|
|
|
std::map<std::shared_ptr<Zone>, float3> bestSolution;
|
|
|
|
TForceVector forces;
|
|
TForceVector totalForces; // both attraction and pushback, overcomplicated?
|
|
TDistanceVector distances;
|
|
TDistanceVector overlaps;
|
|
|
|
auto evaluateSolution = [this, zones, &distances, &overlaps, &bestSolution]() -> bool
|
|
{
|
|
bool improvement = false;
|
|
|
|
float totalDistance = 0;
|
|
float totalOverlap = 0;
|
|
for (const auto& zone : distances) //find most misplaced zone
|
|
{
|
|
totalDistance += zone.second;
|
|
float overlap = overlaps[zone.first];
|
|
totalOverlap += overlap;
|
|
}
|
|
|
|
//check fitness function
|
|
if ((totalDistance + 1) * (totalOverlap + 1) < (bestTotalDistance + 1) * (bestTotalOverlap + 1))
|
|
{
|
|
//multiplication is better for auto-scaling, but stops working if one factor is 0
|
|
improvement = true;
|
|
}
|
|
|
|
//Save best solution
|
|
if (improvement)
|
|
{
|
|
bestTotalDistance = totalDistance;
|
|
bestTotalOverlap = totalOverlap;
|
|
|
|
for (const auto& zone : zones)
|
|
bestSolution[zone.second] = zone.second->getCenter();
|
|
}
|
|
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s", totalDistance, totalOverlap , improvement);
|
|
#endif
|
|
|
|
return improvement;
|
|
};
|
|
|
|
//Start with low stiffness. Bigger graphs need more time and more flexibility
|
|
for (stifness = stiffnessConstant / zones.size(); stifness <= stiffnessConstant;)
|
|
{
|
|
//1. attract connected zones
|
|
attractConnectedZones(zones, forces, distances);
|
|
for(const auto & zone : forces)
|
|
{
|
|
zone.first->setCenter (zone.first->getCenter() + zone.second);
|
|
totalForces[zone.first] = zone.second; //override
|
|
}
|
|
|
|
//2. separate overlapping zones
|
|
separateOverlappingZones(zones, forces, overlaps);
|
|
for(const auto & zone : forces)
|
|
{
|
|
zone.first->setCenter (zone.first->getCenter() + zone.second);
|
|
totalForces[zone.first] += zone.second; //accumulate
|
|
}
|
|
|
|
bool improved = evaluateSolution();
|
|
|
|
if (!improved)
|
|
{
|
|
//3. now perform drastic movement of zone that is completely not linked
|
|
//TODO: Don't do this is fitness was improved
|
|
moveOneZone(zones, totalForces, distances, overlaps);
|
|
|
|
improved |= evaluateSolution();
|
|
}
|
|
|
|
if (!improved)
|
|
{
|
|
//Only cool down if we didn't see any improvement
|
|
stifness *= stiffnessIncreaseFactor;
|
|
}
|
|
|
|
}
|
|
|
|
logGlobal->trace("Best fitness reached: total distance %2.4f, total overlap %2.4f", bestTotalDistance, bestTotalOverlap);
|
|
for(const auto & zone : zones) //finalize zone positions
|
|
{
|
|
zone.second->setPos (cords (bestSolution[zone.second]));
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Placed zone %d at relative position %s and coordinates %s", zone.first, zone.second->getCenter().toString(), zone.second->getPos().toString());
|
|
#endif
|
|
}
|
|
}
|
|
|
|
void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, CRandomGenerator * rand)
|
|
{
|
|
std::vector<float> totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map
|
|
|
|
int zonesOnLevel[2] = { 0, 0 };
|
|
|
|
//even distribution for surface / underground zones. Surface zones always have priority.
|
|
|
|
TZoneVector zonesToPlace;
|
|
std::map<TRmgTemplateZoneId, int> levels;
|
|
|
|
//first pass - determine fixed surface for zones
|
|
for(const auto & zone : zonesVector)
|
|
{
|
|
if (!underground) //this step is ignored
|
|
zonesToPlace.push_back(zone);
|
|
else //place players depending on their factions
|
|
{
|
|
if(std::optional<int> owner = zone.second->getOwner())
|
|
{
|
|
auto player = PlayerColor(*owner - 1);
|
|
auto playerSettings = map.getMapGenOptions().getPlayersSettings();
|
|
FactionID faction = FactionID::RANDOM;
|
|
if (playerSettings.size() > player)
|
|
{
|
|
faction = std::next(playerSettings.begin(), player)->second.getStartingTown();
|
|
}
|
|
else
|
|
{
|
|
logGlobal->trace("Player %d (starting zone %d) does not participate in game", player.getNum(), zone.first);
|
|
}
|
|
|
|
if (faction == FactionID::RANDOM) //TODO: check this after a town has already been randomized
|
|
zonesToPlace.push_back(zone);
|
|
else
|
|
{
|
|
auto & tt = (*VLC->townh)[faction]->nativeTerrain;
|
|
if(tt == ETerrainId::NONE)
|
|
{
|
|
//any / random
|
|
zonesToPlace.push_back(zone);
|
|
}
|
|
else
|
|
{
|
|
const auto & terrainType = VLC->terrainTypeHandler->getById(tt);
|
|
if(terrainType->isUnderground() && !terrainType->isSurface())
|
|
{
|
|
//underground only
|
|
zonesOnLevel[1]++;
|
|
levels[zone.first] = 1;
|
|
}
|
|
else
|
|
{
|
|
//surface
|
|
zonesOnLevel[0]++;
|
|
levels[zone.first] = 0;
|
|
}
|
|
}
|
|
}
|
|
}
|
|
else //no starting zone or no underground altogether
|
|
{
|
|
zonesToPlace.push_back(zone);
|
|
}
|
|
}
|
|
}
|
|
for(const auto & zone : zonesToPlace)
|
|
{
|
|
if (underground) //only then consider underground zones
|
|
{
|
|
int level = 0;
|
|
if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones
|
|
level = 1;
|
|
else
|
|
level = 0;
|
|
|
|
levels[zone.first] = level;
|
|
zonesOnLevel[level]++;
|
|
}
|
|
else
|
|
levels[zone.first] = 0;
|
|
}
|
|
|
|
for(const auto & zone : zonesVector)
|
|
{
|
|
int level = levels[zone.first];
|
|
totalSize[level] += (zone.second->getSize() * zone.second->getSize());
|
|
float3 center = zone.second->getCenter();
|
|
center.z = level;
|
|
zone.second->setCenter(center);
|
|
}
|
|
|
|
/*
|
|
prescale zones
|
|
|
|
formula: sum((prescaler*n)^2)*pi = WH
|
|
|
|
prescaler = sqrt((WH)/(sum(n^2)*pi))
|
|
*/
|
|
|
|
std::vector<float> prescaler = { 0, 0 };
|
|
for (int i = 0; i < 2; i++)
|
|
prescaler[i] = std::sqrt((width * height) / (totalSize[i] * PI_CONSTANT));
|
|
mapSize = static_cast<float>(sqrt(width * height));
|
|
for(const auto & zone : zones)
|
|
{
|
|
zone.second->setSize(static_cast<int>(zone.second->getSize() * prescaler[zone.second->getCenter().z]));
|
|
}
|
|
}
|
|
|
|
void CZonePlacer::attractConnectedZones(TZoneMap & zones, TForceVector & forces, TDistanceVector & distances) const
|
|
{
|
|
for(const auto & zone : zones)
|
|
{
|
|
float3 forceVector(0, 0, 0);
|
|
float3 pos = zone.second->getCenter();
|
|
float totalDistance = 0;
|
|
|
|
for (const auto & connection : zone.second->getConnections())
|
|
{
|
|
if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
auto otherZone = zones[connection.getOtherZoneId(zone.second->getId())];
|
|
float3 otherZoneCenter = otherZone->getCenter();
|
|
auto distance = static_cast<float>(pos.dist2d(otherZoneCenter));
|
|
|
|
forceVector += (otherZoneCenter - pos) * distance * gravityConstant * scaleForceBetweenZones(zone.second, otherZone); //positive value
|
|
|
|
//Attract zone centers always
|
|
|
|
float minDistance = 0;
|
|
|
|
if (pos.z != otherZoneCenter.z)
|
|
minDistance = 0; //zones on different levels can overlap completely
|
|
else
|
|
minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates
|
|
|
|
if (distance > minDistance)
|
|
totalDistance += (distance - minDistance);
|
|
}
|
|
distances[zone.second] = totalDistance;
|
|
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
|
|
forces[zone.second] = forceVector;
|
|
}
|
|
}
|
|
|
|
void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps)
|
|
{
|
|
for(const auto & zone : zones)
|
|
{
|
|
float3 forceVector(0, 0, 0);
|
|
float3 pos = zone.second->getCenter();
|
|
|
|
float overlap = 0;
|
|
//separate overlapping zones
|
|
for(const auto & otherZone : zones)
|
|
{
|
|
float3 otherZoneCenter = otherZone.second->getCenter();
|
|
//zones on different levels don't push away
|
|
if (zone == otherZone || pos.z != otherZoneCenter.z)
|
|
continue;
|
|
|
|
auto distance = static_cast<float>(pos.dist2d(otherZoneCenter));
|
|
float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize;
|
|
if (distance < minDistance)
|
|
{
|
|
float3 localForce = (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stifness;
|
|
//negative value
|
|
localForce *= scaleForceBetweenZones(zone.second, otherZone.second);
|
|
forceVector -= localForce * (distancesBetweenZones[zone.second->getId()][otherZone.second->getId()] / 2.0f);
|
|
overlap += (minDistance - distance); //overlapping of small zones hurts us more
|
|
}
|
|
}
|
|
|
|
//move zones away from boundaries
|
|
//do not scale boundary distance - zones tend to get squashed
|
|
float size = zone.second->getSize() / mapSize;
|
|
|
|
auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y)
|
|
{
|
|
float3 boundary = float3(x, y, pos.z);
|
|
auto distance = static_cast<float>(pos.dist2d(boundary));
|
|
overlap += std::max<float>(0, distance - size); //check if we're closer to map boundary than value of zone size
|
|
forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stifness; //negative value
|
|
};
|
|
if (pos.x < size)
|
|
{
|
|
pushAwayFromBoundary(0, pos.y);
|
|
}
|
|
if (pos.x > 1 - size)
|
|
{
|
|
pushAwayFromBoundary(1, pos.y);
|
|
}
|
|
if (pos.y < size)
|
|
{
|
|
pushAwayFromBoundary(pos.x, 0);
|
|
}
|
|
if (pos.y > 1 - size)
|
|
{
|
|
pushAwayFromBoundary(pos.x, 1);
|
|
}
|
|
|
|
//Always move repulsive zones away, no matter their distance
|
|
//TODO: Consider z plane?
|
|
for (auto& connection : zone.second->getConnections())
|
|
{
|
|
if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE)
|
|
{
|
|
auto & otherZone = zones[connection.getOtherZoneId(zone.second->getId())];
|
|
float3 otherZoneCenter = otherZone->getCenter();
|
|
|
|
//TODO: Roll into lambda?
|
|
auto distance = static_cast<float>(pos.dist2d(otherZoneCenter));
|
|
float minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize;
|
|
float3 localForce = (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stifness;
|
|
localForce *= (distancesBetweenZones[zone.second->getId()][otherZone->getId()]);
|
|
forceVector -= localForce * scaleForceBetweenZones(zone.second, otherZone);
|
|
}
|
|
}
|
|
|
|
overlaps[zone.second] = overlap;
|
|
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
|
|
forces[zone.second] = forceVector;
|
|
}
|
|
}
|
|
|
|
void CZonePlacer::moveOneZone(TZoneMap& zones, TForceVector& totalForces, TDistanceVector& distances, TDistanceVector& overlaps)
|
|
{
|
|
//The more zones, the greater total distance expected
|
|
//Also, higher stiffness make expected movement lower
|
|
const int maxDistanceMovementRatio = zones.size() * zones.size() * (stiffnessConstant / stifness);
|
|
|
|
typedef std::pair<float, std::shared_ptr<Zone>> Misplacement;
|
|
std::vector<Misplacement> misplacedZones;
|
|
|
|
float totalDistance = 0;
|
|
float totalOverlap = 0;
|
|
for (const auto& zone : distances) //find most misplaced zone
|
|
{
|
|
if (vstd::contains(lastSwappedZones, zone.first->getId()))
|
|
{
|
|
continue;
|
|
}
|
|
totalDistance += zone.second;
|
|
float overlap = overlaps[zone.first];
|
|
totalOverlap += overlap;
|
|
//if distance to actual movement is long, the zone is misplaced
|
|
float ratio = (zone.second + overlap) / static_cast<float>(totalForces[zone.first].mag());
|
|
if (ratio > maxDistanceMovementRatio)
|
|
{
|
|
misplacedZones.emplace_back(std::make_pair(ratio, zone.first));
|
|
}
|
|
}
|
|
|
|
if (misplacedZones.empty())
|
|
return;
|
|
|
|
boost::sort(misplacedZones, [](const Misplacement& lhs, Misplacement& rhs)
|
|
{
|
|
return lhs.first > rhs.first; //Largest dispalcement first
|
|
});
|
|
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Worst misplacement/movement ratio: %3.2f", misplacedZones.front().first);
|
|
#endif
|
|
|
|
if (misplacedZones.size() >= 2)
|
|
{
|
|
//Swap 2 misplaced zones
|
|
|
|
auto firstZone = misplacedZones.front().second;
|
|
std::shared_ptr<Zone> secondZone;
|
|
std::set<TRmgTemplateZoneId> connectedZones;
|
|
for (const auto& connection : firstZone->getConnections())
|
|
{
|
|
//FIXME: Should we also exclude fictive connections?
|
|
if (connection.getConnectionType() != rmg::EConnectionType::REPULSIVE)
|
|
{
|
|
connectedZones.insert(connection.getOtherZoneId(firstZone->getId()));
|
|
}
|
|
}
|
|
|
|
auto level = firstZone->getCenter().z;
|
|
for (size_t i = 1; i < misplacedZones.size(); i++)
|
|
{
|
|
//Only swap zones on the same level
|
|
//Don't swap zones that should be connected (Jebus)
|
|
|
|
if (misplacedZones[i].second->getCenter().z == level &&
|
|
!vstd::contains(connectedZones, misplacedZones[i].second->getId()))
|
|
{
|
|
secondZone = misplacedZones[i].second;
|
|
break;
|
|
}
|
|
}
|
|
if (secondZone)
|
|
{
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Swapping two misplaced zones %d and %d", firstZone->getId(), secondZone->getId());
|
|
#endif
|
|
|
|
auto firstCenter = firstZone->getCenter();
|
|
auto secondCenter = secondZone->getCenter();
|
|
firstZone->setCenter(secondCenter);
|
|
secondZone->setCenter(firstCenter);
|
|
|
|
lastSwappedZones.insert(firstZone->getId());
|
|
lastSwappedZones.insert(secondZone->getId());
|
|
return;
|
|
}
|
|
}
|
|
lastSwappedZones.clear(); //If we didn't swap zones in this iteration, we can do it in the next
|
|
|
|
//find most distant zone that should be attracted and move inside it
|
|
std::shared_ptr<Zone> targetZone;
|
|
auto misplacedZone = misplacedZones.front().second;
|
|
float3 ourCenter = misplacedZone->getCenter();
|
|
|
|
if ((totalDistance / (bestTotalDistance + 1)) > (totalOverlap / (bestTotalOverlap + 1)))
|
|
{
|
|
//Move one zone towards most distant zone to reduce distance
|
|
|
|
float maxDistance = 0;
|
|
for (auto con : misplacedZone->getConnections())
|
|
{
|
|
if (con.getConnectionType() == rmg::EConnectionType::REPULSIVE)
|
|
{
|
|
continue;
|
|
}
|
|
|
|
auto otherZone = zones[con.getOtherZoneId(misplacedZone->getId())];
|
|
float distance = static_cast<float>(otherZone->getCenter().dist2dSQ(ourCenter));
|
|
if (distance > maxDistance)
|
|
{
|
|
maxDistance = distance;
|
|
targetZone = otherZone;
|
|
}
|
|
}
|
|
if (targetZone)
|
|
{
|
|
float3 vec = targetZone->getCenter() - ourCenter;
|
|
float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize;
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Trying to move zone %d %s towards %d %s. Direction is %s", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), vec.toString());
|
|
#endif
|
|
|
|
misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size
|
|
}
|
|
}
|
|
else
|
|
{
|
|
//Move misplaced zone away from overlapping zone
|
|
|
|
float maxOverlap = 0;
|
|
for(const auto & otherZone : zones)
|
|
{
|
|
float3 otherZoneCenter = otherZone.second->getCenter();
|
|
|
|
if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z)
|
|
continue;
|
|
|
|
auto distance = static_cast<float>(otherZoneCenter.dist2dSQ(ourCenter));
|
|
if (distance > maxOverlap)
|
|
{
|
|
maxOverlap = distance;
|
|
targetZone = otherZone.second;
|
|
}
|
|
}
|
|
if (targetZone)
|
|
{
|
|
float3 vec = ourCenter - targetZone->getCenter();
|
|
float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize;
|
|
#ifdef ZONE_PLACEMENT_LOG
|
|
logGlobal->trace("Trying to move zone %d %s away from %d %s. Direction is %s", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), vec.toString());
|
|
#endif
|
|
|
|
misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated
|
|
}
|
|
}
|
|
//Don't swap that zone in next iteration
|
|
lastSwappedZones.insert(misplacedZone->getId());
|
|
}
|
|
|
|
float CZonePlacer::metric (const int3 &A, const int3 &B) const
|
|
{
|
|
return A.dist2dSQ(B);
|
|
|
|
}
|
|
|
|
void CZonePlacer::assignZones(CRandomGenerator * rand)
|
|
{
|
|
logGlobal->info("Starting zone colouring");
|
|
|
|
auto width = map.getMapGenOptions().getWidth();
|
|
auto height = map.getMapGenOptions().getHeight();
|
|
|
|
|
|
auto zones = map.getZones();
|
|
vstd::erase_if(zones, [](const std::pair<TRmgTemplateZoneId, std::shared_ptr<Zone>> & pr)
|
|
{
|
|
return pr.second->getType() == ETemplateZoneType::WATER;
|
|
});
|
|
|
|
using Dpair = std::pair<std::shared_ptr<Zone>, float>;
|
|
std::vector <Dpair> distances;
|
|
distances.reserve(zones.size());
|
|
|
|
//now place zones correctly and assign tiles to each zone
|
|
|
|
auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
|
|
{
|
|
//bigger zones have smaller distance
|
|
return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize();
|
|
};
|
|
|
|
auto simpleCompareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
|
|
{
|
|
//bigger zones have smaller distance
|
|
return lhs.second < rhs.second;
|
|
};
|
|
|
|
auto moveZoneToCenterOfMass = [width, height](const std::shared_ptr<Zone> & zone) -> void
|
|
{
|
|
int3 total(0, 0, 0);
|
|
auto tiles = zone->area()->getTiles();
|
|
for(const auto & tile : tiles)
|
|
{
|
|
total += tile;
|
|
}
|
|
int size = static_cast<int>(tiles.size());
|
|
assert(size);
|
|
auto newPos = int3(total.x / size, total.y / size, total.z / size);
|
|
zone->setPos(newPos);
|
|
zone->setCenter(float3(float(newPos.x) / width, float(newPos.y) / height, newPos.z));
|
|
};
|
|
|
|
int levels = map.levels();
|
|
|
|
// Find current center of mass for each zone. Move zone to that center to balance zones sizes
|
|
std::vector<RmgMap::Zones> zonesOnLevel;
|
|
for(int level = 0; level < levels; level++)
|
|
{
|
|
zonesOnLevel.push_back(map.getZonesOnLevel(level));
|
|
}
|
|
|
|
int3 pos;
|
|
|
|
for(pos.z = 0; pos.z < levels; pos.z++)
|
|
{
|
|
for(pos.x = 0; pos.x < width; pos.x++)
|
|
{
|
|
for(pos.y = 0; pos.y < height; pos.y++)
|
|
{
|
|
distances.clear();
|
|
for(const auto & zone : zonesOnLevel[pos.z])
|
|
{
|
|
distances.emplace_back(zone.second, static_cast<float>(pos.dist2dSQ(zone.second->getPos())));
|
|
}
|
|
boost::min_element(distances, compareByDistance)->first->area()->add(pos); //closest tile belongs to zone
|
|
}
|
|
}
|
|
}
|
|
|
|
for(const auto & zone : zones)
|
|
{
|
|
if(zone.second->area()->empty())
|
|
throw rmgException("Empty zone is generated, probably RMG template is inappropriate for map size");
|
|
|
|
moveZoneToCenterOfMass(zone.second);
|
|
}
|
|
|
|
for(const auto & zone : zones)
|
|
zone.second->clearTiles(); //now populate them again
|
|
|
|
PenroseTiling penrose;
|
|
for (int level = 0; level < levels; level++)
|
|
{
|
|
//Create different tiling for each level
|
|
|
|
auto vertices = penrose.generatePenroseTiling(zonesOnLevel[level].size(), rand);
|
|
|
|
// Assign zones to closest Penrose vertex
|
|
std::map<std::shared_ptr<Zone>, std::set<int3>> vertexMapping;
|
|
|
|
for (const auto & vertex : vertices)
|
|
{
|
|
distances.clear();
|
|
for(const auto & zone : zonesOnLevel[level])
|
|
{
|
|
distances.emplace_back(zone.second, zone.second->getCenter().dist2dSQ(float3(vertex.x(), vertex.y(), level)));
|
|
}
|
|
auto closestZone = boost::min_element(distances, compareByDistance)->first;
|
|
|
|
vertexMapping[closestZone].insert(int3(vertex.x() * width, vertex.y() * height, level)); //Closest vertex belongs to zone
|
|
}
|
|
|
|
//Assign actual tiles to each zone
|
|
pos.z = level;
|
|
for (pos.x = 0; pos.x < width; pos.x++)
|
|
{
|
|
for (pos.y = 0; pos.y < height; pos.y++)
|
|
{
|
|
distances.clear();
|
|
for(const auto & zoneVertex : vertexMapping)
|
|
{
|
|
auto zone = zoneVertex.first;
|
|
for (const auto & vertex : zoneVertex.second)
|
|
{
|
|
distances.emplace_back(zone, metric(pos, vertex));
|
|
}
|
|
}
|
|
|
|
//Tile closest to vertex belongs to zone
|
|
auto closestZone = boost::min_element(distances, simpleCompareByDistance)->first;
|
|
closestZone->area()->add(pos);
|
|
map.setZoneID(pos, closestZone->getId());
|
|
}
|
|
}
|
|
|
|
for(const auto & zone : zonesOnLevel[level])
|
|
{
|
|
if(zone.second->area()->empty())
|
|
{
|
|
// FIXME: Some vertices are duplicated, but it's not a source of problem
|
|
logGlobal->error("Zone %d at %s is empty, dumping Penrose tiling", zone.second->getId(), zone.second->getCenter().toString());
|
|
for (const auto & vertex : vertices)
|
|
{
|
|
logGlobal->warn("Penrose Vertex: %s", vertex.toString());
|
|
}
|
|
throw rmgException("Empty zone after Penrose tiling");
|
|
}
|
|
}
|
|
}
|
|
|
|
//set position (town position) to center of mass of irregular zone
|
|
for(const auto & zone : zones)
|
|
{
|
|
moveZoneToCenterOfMass(zone.second);
|
|
|
|
//TODO: similiar for islands
|
|
#define CREATE_FULL_UNDERGROUND true //consider linking this with water amount
|
|
if (zone.second->isUnderground())
|
|
{
|
|
if (!CREATE_FULL_UNDERGROUND)
|
|
{
|
|
auto discardTiles = collectDistantTiles(*zone.second, zone.second->getSize() + 1.f);
|
|
for(const auto & t : discardTiles)
|
|
zone.second->area()->erase(t);
|
|
}
|
|
|
|
//make sure that terrain inside zone is not a rock
|
|
|
|
auto v = zone.second->area()->getTilesVector();
|
|
map.getMapProxy()->drawTerrain(*rand, v, ETerrainId::SUBTERRANEAN);
|
|
}
|
|
}
|
|
logGlobal->info("Finished zone colouring");
|
|
}
|
|
|
|
const TDistanceMap& CZonePlacer::getDistanceMap()
|
|
{
|
|
return distancesBetweenZones;
|
|
}
|
|
|
|
VCMI_LIB_NAMESPACE_END
|