1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-01-06 00:24:11 +02:00
vcmi/lib/serializer/BinaryDeserializer.h
Ivan Savenko 48c92711f2 Fixed deserialization of new artifacts (and possibly some other objects)
Was broken in my previous PR, since pointer graph serialization was
enabled by default, leading to deserializationFix triggering on netpack
apply.

Cleaned up / clarified code
2024-07-29 18:19:15 +00:00

626 lines
15 KiB
C++

/*
* BinaryDeserializer.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include "CSerializer.h"
#include "CTypeList.h"
#include "ESerializationVersion.h"
#include "../mapObjects/CGHeroInstance.h"
VCMI_LIB_NAMESPACE_BEGIN
class DLL_LINKAGE CLoaderBase
{
protected:
IBinaryReader * reader;
public:
CLoaderBase(IBinaryReader * r): reader(r){};
inline void read(void * data, unsigned size, bool reverseEndianness)
{
auto bytePtr = reinterpret_cast<std::byte*>(data);
reader->read(bytePtr, size);
if(reverseEndianness)
std::reverse(bytePtr, bytePtr + size);
};
};
/// Main class for deserialization of classes from binary form
/// Effectively revesed version of BinarySerializer
class BinaryDeserializer : public CLoaderBase
{
template<typename Fake, typename T>
static bool loadIfStackInstance(T &data)
{
return false;
}
template<typename Fake>
bool loadIfStackInstance(const CStackInstance* &data)
{
CArmedInstance * armyPtr = nullptr;
ObjectInstanceID armyID;
SlotID slot;
load(armyID);
load(slot);
if (armyID == ObjectInstanceID::NONE)
return false;
if(reader->smartVectorMembersSerialization)
{
if(const auto *info = reader->getVectorizedTypeInfo<CArmedInstance, ObjectInstanceID>())
armyPtr = static_cast<CArmedInstance *>(reader->getVectorItemFromId<CArmedInstance, ObjectInstanceID>(*info, armyID));
}
if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER)
{
assert(armyPtr->hasStackAtSlot(slot));
data = armyPtr->stacks[slot];
}
else
{
auto * hero = dynamic_cast<CGHeroInstance *>(armyPtr);
assert(hero);
assert(hero->commander);
data = hero->commander;
}
return true;
}
template <typename T, typename Enable = void>
struct ClassObjectCreator
{
static T *invoke(IGameCallback *cb)
{
static_assert(!std::is_base_of_v<GameCallbackHolder, T>, "Cannot call new upon map objects!");
static_assert(!std::is_abstract_v<T>, "Cannot call new upon abstract classes!");
return new T();
}
};
template<typename T>
struct ClassObjectCreator<T, typename std::enable_if_t<std::is_abstract_v<T>>>
{
static T *invoke(IGameCallback *cb)
{
throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name()));
}
};
template<typename T>
struct ClassObjectCreator<T, typename std::enable_if_t<std::is_base_of_v<GameCallbackHolder, T> && !std::is_abstract_v<T>>>
{
static T *invoke(IGameCallback *cb)
{
static_assert(!std::is_abstract_v<T>, "Cannot call new upon abstract classes!");
return new T(cb);
}
};
STRONG_INLINE uint32_t readAndCheckLength()
{
uint32_t length;
load(length);
//NOTE: also used for h3m's embedded in campaigns, so it may be quite large in some cases (e.g. XXL maps with multiple objects)
if(length > 1000000)
{
logGlobal->warn("Warning: very big length: %d", length);
reader->reportState(logGlobal);
};
return length;
}
template <typename Type> class CPointerLoader;
class IPointerLoader
{
public:
virtual Serializeable * loadPtr(CLoaderBase &ar, IGameCallback * cb, uint32_t pid) const =0; //data is pointer to the ACTUAL POINTER
virtual ~IPointerLoader() = default;
template<typename Type> static IPointerLoader *getApplier(const Type * t = nullptr)
{
return new CPointerLoader<Type>();
}
};
template <typename Type>
class CPointerLoader : public IPointerLoader
{
public:
Serializeable * loadPtr(CLoaderBase &ar, IGameCallback * cb, uint32_t pid) const override //data is pointer to the ACTUAL POINTER
{
auto & s = static_cast<BinaryDeserializer &>(ar);
//create new object under pointer
Type * ptr = ClassObjectCreator<Type>::invoke(cb); //does new npT or throws for abstract classes
s.ptrAllocated(ptr, pid);
ptr->serialize(s);
return static_cast<Serializeable*>(ptr);
}
};
CApplier<IPointerLoader> applier;
int write(const void * data, unsigned size);
public:
using Version = ESerializationVersion;
bool reverseEndianness; //if source has different endianness than us, we reverse bytes
Version version;
std::vector<std::string> loadedStrings;
std::map<uint32_t, Serializeable*> loadedPointers;
std::map<const Serializeable*, std::shared_ptr<Serializeable>> loadedSharedPointers;
IGameCallback * cb = nullptr;
static constexpr bool trackSerializedPointers = true;
static constexpr bool saving = false;
bool loadingGamestate = false;
bool hasFeature(Version what) const
{
return version >= what;
};
DLL_LINKAGE BinaryDeserializer(IBinaryReader * r);
template<class T>
BinaryDeserializer & operator&(T & t)
{
this->load(t);
return * this;
}
int64_t loadEncodedInteger()
{
uint64_t valueUnsigned = 0;
uint_fast8_t offset = 0;
for (;;)
{
uint8_t byteValue;
load(byteValue);
if ((byteValue & 0x80) != 0)
{
valueUnsigned |= (byteValue & 0x7f) << offset;
offset += 7;
}
else
{
valueUnsigned |= (byteValue & 0x3f) << offset;
bool isNegative = (byteValue & 0x40) != 0;
if (isNegative)
return -static_cast<int64_t>(valueUnsigned);
else
return valueUnsigned;
}
}
}
template < class T, typename std::enable_if_t < std::is_floating_point_v<T>, int > = 0 >
void load(T &data)
{
this->read(static_cast<void *>(&data), sizeof(data), reverseEndianness);
}
template < class T, typename std::enable_if_t < std::is_integral_v<T> && !std::is_same_v<T, bool>, int > = 0 >
void load(T &data)
{
if constexpr (sizeof(T) == 1)
{
this->read(static_cast<void *>(&data), sizeof(data), reverseEndianness);
}
else
{
static_assert(!std::is_same_v<uint64_t, T>, "Serialization of unsigned 64-bit value may not work in some cases");
if (hasFeature(Version::COMPACT_INTEGER_SERIALIZATION))
data = loadEncodedInteger();
else
this->read(static_cast<void *>(&data), sizeof(data), reverseEndianness);
}
}
template < typename T, typename std::enable_if_t < is_serializeable<BinaryDeserializer, T>::value, int > = 0 >
void load(T &data)
{
////that const cast is evil because it allows to implicitly overwrite const objects when deserializing
typedef typename std::remove_const_t<T> nonConstT;
auto & hlp = const_cast<nonConstT &>(data);
hlp.serialize(*this);
}
template < typename T, typename std::enable_if_t < std::is_array_v<T>, int > = 0 >
void load(T &data)
{
uint32_t size = std::size(data);
for(uint32_t i = 0; i < size; i++)
load(data[i]);
}
void load(Version &data)
{
this->read(static_cast<void *>(&data), sizeof(data), reverseEndianness);
}
template < typename T, typename std::enable_if_t < std::is_enum_v<T>, int > = 0 >
void load(T &data)
{
int32_t read;
load( read );
data = static_cast<T>(read);
}
template < typename T, typename std::enable_if_t < std::is_same_v<T, bool>, int > = 0 >
void load(T &data)
{
uint8_t read;
load( read );
data = static_cast<bool>(read);
}
template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
void load(std::vector<T> &data)
{
uint32_t length = readAndCheckLength();
data.resize(length);
for(uint32_t i=0;i<length;i++)
load( data[i]);
}
template <typename T, typename std::enable_if_t < !std::is_same_v<T, bool >, int > = 0>
void load(std::deque<T> & data)
{
uint32_t length = readAndCheckLength();
data.resize(length);
for(uint32_t i = 0; i < length; i++)
load(data[i]);
}
template < typename T, typename std::enable_if_t < std::is_pointer_v<T>, int > = 0 >
void load(T &data)
{
bool isNull;
load( isNull );
if(isNull)
{
data = nullptr;
return;
}
loadPointerImpl(data);
}
template < typename T, typename std::enable_if_t < std::is_base_of_v<Entity, std::remove_pointer_t<T>>, int > = 0 >
void loadPointerImpl(T &data)
{
using DataType = std::remove_pointer_t<T>;
typename DataType::IdentifierType index;
load(index);
auto * constEntity = index.toEntity(VLC);
auto * constData = dynamic_cast<const DataType *>(constEntity);
data = const_cast<DataType *>(constData);
}
template < typename T, typename std::enable_if_t < !std::is_base_of_v<Entity, std::remove_pointer_t<T>>, int > = 0 >
void loadPointerImpl(T &data)
{
if(reader->smartVectorMembersSerialization)
{
typedef typename std::remove_const_t<typename std::remove_pointer_t<T>> TObjectType; //eg: const CGHeroInstance * => CGHeroInstance
typedef typename VectorizedTypeFor<TObjectType>::type VType; //eg: CGHeroInstance -> CGobjectInstance
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = reader->getVectorizedTypeInfo<VType, IDType>())
{
IDType id;
load(id);
if(id != IDType(-1))
{
data = static_cast<T>(reader->getVectorItemFromId<VType, IDType>(*info, id));
return;
}
}
}
if(reader->sendStackInstanceByIds)
{
bool gotLoaded = loadIfStackInstance<void>(data);
if(gotLoaded)
return;
}
uint32_t pid = 0xffffffff; //pointer id (or maybe rather pointee id)
if(trackSerializedPointers)
{
load( pid ); //get the id
auto i = loadedPointers.find(pid); //lookup
if(i != loadedPointers.end())
{
// We already got this pointer
// Cast it in case we are loading it to a non-first base pointer
data = dynamic_cast<T>(i->second);
return;
}
}
//get type id
uint16_t tid;
load( tid );
if(!tid)
{
typedef typename std::remove_pointer_t<T> npT;
typedef typename std::remove_const_t<npT> ncpT;
data = ClassObjectCreator<ncpT>::invoke(cb);
ptrAllocated(data, pid);
load(*data);
}
else
{
auto * app = applier.getApplier(tid);
if(app == nullptr)
{
logGlobal->error("load %d %d - no loader exists", tid, pid);
data = nullptr;
return;
}
data = dynamic_cast<T>(app->loadPtr(*this, cb, pid));
}
}
template <typename T>
void ptrAllocated(T *ptr, uint32_t pid)
{
if(trackSerializedPointers && pid != 0xffffffff)
loadedPointers[pid] = const_cast<Serializeable*>(dynamic_cast<const Serializeable*>(ptr)); //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt
}
template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
applier.registerType(b, d);
}
template <typename T>
void load(std::shared_ptr<T> &data)
{
typedef typename std::remove_const_t<T> NonConstT;
NonConstT *internalPtr;
load(internalPtr);
const auto * internalPtrDerived = static_cast<Serializeable*>(internalPtr);
if(internalPtr)
{
auto itr = loadedSharedPointers.find(internalPtrDerived);
if(itr != loadedSharedPointers.end())
{
// This pointers is already loaded. The "data" needs to be pointed to it,
// so their shared state is actually shared.
data = std::static_pointer_cast<T>(itr->second);
}
else
{
auto hlp = std::shared_ptr<NonConstT>(internalPtr);
data = hlp;
loadedSharedPointers[internalPtrDerived] = std::static_pointer_cast<Serializeable>(hlp);
}
}
else
data.reset();
}
void load(std::monostate & data)
{
// no-op
}
template <typename T>
void load(std::shared_ptr<const T> & data)
{
std::shared_ptr<T> nonConstData;
load(nonConstData);
data = nonConstData;
}
template <typename T>
void load(std::unique_ptr<T> &data)
{
T *internalPtr;
load( internalPtr );
data.reset(internalPtr);
}
template <typename T, size_t N>
void load(std::array<T, N> &data)
{
for(uint32_t i = 0; i < N; i++)
load( data[i] );
}
template <typename T>
void load(std::set<T> &data)
{
uint32_t length = readAndCheckLength();
data.clear();
T ins;
for(uint32_t i=0;i<length;i++)
{
load( ins );
data.insert(ins);
}
}
template <typename T, typename U>
void load(std::unordered_set<T, U> &data)
{
uint32_t length = readAndCheckLength();
data.clear();
T ins;
for(uint32_t i=0;i<length;i++)
{
load(ins);
data.insert(ins);
}
}
template <typename T>
void load(std::list<T> &data)
{
uint32_t length = readAndCheckLength();
data.clear();
T ins;
for(uint32_t i=0;i<length;i++)
{
load(ins);
data.push_back(ins);
}
}
template <typename T1, typename T2>
void load(std::pair<T1,T2> &data)
{
load(data.first);
load(data.second);
}
template <typename T1, typename T2>
void load(std::unordered_map<T1,T2> &data)
{
uint32_t length = readAndCheckLength();
data.clear();
T1 key;
for(uint32_t i=0;i<length;i++)
{
load(key);
load(data[key]);
}
}
template <typename T1, typename T2>
void load(std::map<T1,T2> &data)
{
uint32_t length = readAndCheckLength();
data.clear();
T1 key;
for(uint32_t i=0;i<length;i++)
{
load(key);
load(data[key]);
}
}
void load(std::string &data)
{
if (hasFeature(Version::COMPACT_STRING_SERIALIZATION))
{
int32_t length;
load(length);
if (length < 0)
{
int32_t stringID = -length - 1; // -1, -2 ... -> 0, 1 ...
data = loadedStrings[stringID];
}
if (length == 0)
{
data = {};
}
if (length > 0)
{
data.resize(length);
this->read(static_cast<void *>(data.data()), length, false);
loadedStrings.push_back(data);
}
}
else
{
uint32_t length = readAndCheckLength();
data.resize(length);
this->read(static_cast<void *>(data.data()), length, false);
}
}
template<typename... TN>
void load(std::variant<TN...> & data)
{
int32_t which;
load( which );
assert(which < sizeof...(TN));
// Create array of variants that contains all default-constructed alternatives
const std::variant<TN...> table[] = { TN{ }... };
// use appropriate alternative for result
data = table[which];
// perform actual load via std::visit dispatch
std::visit([&](auto& o) { load(o); }, data);
}
template<typename T>
void load(std::optional<T> & data)
{
uint8_t present;
load( present );
if(present)
{
//TODO: replace with emplace once we start request Boost 1.56+, see PR360
T t;
load(t);
data = std::make_optional(std::move(t));
}
else
{
data = std::optional<T>();
}
}
template <typename T>
void load(boost::multi_array<T, 3> & data)
{
uint32_t length = readAndCheckLength();
uint32_t x;
uint32_t y;
uint32_t z;
load(x);
load(y);
load(z);
data.resize(boost::extents[x][y][z]);
assert(length == data.num_elements()); //x*y*z should be equal to number of elements
for(uint32_t i = 0; i < length; i++)
load(data.data()[i]);
}
template <std::size_t T>
void load(std::bitset<T> &data)
{
static_assert(T <= 64);
if constexpr (T <= 16)
{
uint16_t read;
load(read);
data = read;
}
else if constexpr (T <= 32)
{
uint32_t read;
load(read);
data = read;
}
else if constexpr (T <= 64)
{
uint64_t read;
load(read);
data = read;
}
}
};
VCMI_LIB_NAMESPACE_END