1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-01-12 02:28:11 +02:00
vcmi/lib/rmg/CZonePlacer.cpp
2024-07-30 05:07:05 +02:00

1028 lines
28 KiB
C++

/*
* CZonePlacer.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "CZonePlacer.h"
#include "../TerrainHandler.h"
#include "../entities/faction/CFaction.h"
#include "../entities/faction/CTownHandler.h"
#include "../mapping/CMap.h"
#include "../mapping/CMapEditManager.h"
#include "../VCMI_Lib.h"
#include "CMapGenOptions.h"
#include "RmgMap.h"
#include "Zone.h"
#include "Functions.h"
#include "PenroseTiling.h"
#include <vstd/RNG.h>
VCMI_LIB_NAMESPACE_BEGIN
//#define ZONE_PLACEMENT_LOG true
CZonePlacer::CZonePlacer(RmgMap & map)
: width(0), height(0), mapSize(0),
gravityConstant(1e-3f),
stiffnessConstant(3e-3f),
stifness(0),
stiffnessIncreaseFactor(1.03f),
bestTotalDistance(1e10),
bestTotalOverlap(1e10),
map(map)
{
}
int3 CZonePlacer::cords(const float3 & f) const
{
return int3(static_cast<si32>(std::max(0.f, (f.x * map.width()) - 1)), static_cast<si32>(std::max(0.f, (f.y * map.height() - 1))), f.z);
}
float CZonePlacer::getDistance (float distance) const
{
return (distance ? distance * distance : 1e-6f);
}
void CZonePlacer::findPathsBetweenZones()
{
auto zones = map.getZones();
std::set<std::shared_ptr<Zone>> zonesToCheck;
// Iterate through each pair of nodes in the graph
for (const auto& zone : zones)
{
int start = zone.first;
distancesBetweenZones[start][start] = 0; // Distance from a node to itself is 0
std::queue<int> q;
std::map<int, bool> visited;
visited[start] = true;
q.push(start);
// Perform Breadth-First Search from the starting node
while (!q.empty())
{
int current = q.front();
q.pop();
const auto& currentZone = zones.at(current);
const auto& connectedZoneIds = currentZone->getConnections();
for (auto & connection : connectedZoneIds)
{
switch (connection.getConnectionType())
{
//Do not consider virtual connections for graph distance
case rmg::EConnectionType::REPULSIVE:
case rmg::EConnectionType::FORCE_PORTAL:
continue;
}
auto neighbor = connection.getOtherZoneId(current);
if (current == neighbor)
{
//Do not consider self-connections
continue;
}
if (!visited[neighbor])
{
visited[neighbor] = true;
q.push(neighbor);
distancesBetweenZones[start][neighbor] = distancesBetweenZones[start][current] + 1;
}
}
}
}
}
void CZonePlacer::placeOnGrid(vstd::RNG* rand)
{
auto zones = map.getZones();
assert(zones.size());
//Make sure there are at least as many grid fields as the number of zones
size_t gridSize = std::ceil(std::sqrt(zones.size()));
typedef boost::multi_array<std::shared_ptr<Zone>, 2> GridType;
GridType grid(boost::extents[gridSize][gridSize]);
TZoneVector zonesVector(zones.begin(), zones.end());
//Place first zone
auto firstZone = zonesVector[0].second;
size_t x = 0;
size_t y = 0;
auto getRandomEdge = [rand, gridSize](size_t& x, size_t& y)
{
switch (rand->nextInt(0, 3) % 4)
{
case 0:
x = 0;
y = gridSize / 2;
break;
case 1:
x = gridSize - 1;
y = gridSize / 2;
break;
case 2:
x = gridSize / 2;
y = 0;
break;
case 3:
x = gridSize / 2;
y = gridSize - 1;
break;
}
};
switch (firstZone->getType())
{
case ETemplateZoneType::PLAYER_START:
case ETemplateZoneType::CPU_START:
if (firstZone->getConnectedZoneIds().size() > 2)
{
getRandomEdge(x, y);
}
else
{
//Random corner
if (rand->nextInt(0, 1) == 1)
{
x = 0;
}
else
{
x = gridSize - 1;
}
if (rand->nextInt(0, 1) == 1)
{
y = 0;
}
else
{
y = gridSize - 1;
}
}
break;
case ETemplateZoneType::TREASURE:
if (gridSize & 1) //odd
{
x = y = (gridSize / 2);
}
else
{
//One of 4 squares in the middle
x = (gridSize / 2) - 1 + rand->nextInt(0, 1);
y = (gridSize / 2) - 1 + rand->nextInt(0, 1);
}
break;
case ETemplateZoneType::JUNCTION:
getRandomEdge(x, y);
break;
}
grid[x][y] = firstZone;
//Ignore z placement for simplicity
for (size_t i = 1; i < zones.size(); i++)
{
auto zone = zonesVector[i].second;
auto connectedZoneIds = zone->getConnectedZoneIds();
float maxDistance = -1000.0;
int3 mostDistantPlace;
//Iterate over free positions
for (size_t freeX = 0; freeX < gridSize; ++freeX)
{
for (size_t freeY = 0; freeY < gridSize; ++freeY)
{
if (!grid[freeX][freeY])
{
//There is free space left here
int3 potentialPos(freeX, freeY, 0);
//Compute distance to every existing zone
float distance = 0;
for (size_t existingX = 0; existingX < gridSize; ++existingX)
{
for (size_t existingY = 0; existingY < gridSize; ++existingY)
{
auto existingZone = grid[existingX][existingY];
if (existingZone)
{
//There is already zone here
float localDistance = 0.0f;
auto graphDistance = distancesBetweenZones[zone->getId()][existingZone->getId()];
if (graphDistance > 1)
{
//No direct connection
localDistance = potentialPos.dist2d(int3(existingX, existingY, 0)) * graphDistance;
}
else
{
//Has direct connection - place as close as possible
localDistance = -potentialPos.dist2d(int3(existingX, existingY, 0));
}
localDistance *= scaleForceBetweenZones(zone, existingZone);
distance += localDistance;
}
}
}
if (distance > maxDistance)
{
maxDistance = distance;
mostDistantPlace = potentialPos;
}
}
}
}
//Place in a free slot
grid[mostDistantPlace.x][mostDistantPlace.y] = zone;
}
//TODO: toggle with a flag
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Initial zone grid:");
for (size_t x = 0; x < gridSize; ++x)
{
std::string s;
for (size_t y = 0; y < gridSize; ++y)
{
if (grid[x][y])
{
s += (boost::format("%3d ") % grid[x][y]->getId()).str();
}
else
{
s += " -- ";
}
}
logGlobal->trace(s);
}
#endif
//Set initial position for zones - random position in square centered around (x, y)
for (size_t x = 0; x < gridSize; ++x)
{
for (size_t y = 0; y < gridSize; ++y)
{
auto zone = grid[x][y];
if (zone)
{
//i.e. for grid size 5 we get range (0.25 - 4.75)
auto targetX = rand->nextDouble(x + 0.25f, x + 0.75f);
vstd::abetween(targetX, 0.5, gridSize - 0.5);
auto targetY = rand->nextDouble(y + 0.25f, y + 0.75f);
vstd::abetween(targetY, 0.5, gridSize - 0.5);
zone->setCenter(float3(targetX / gridSize, targetY / gridSize, zone->getPos().z));
}
}
}
}
float CZonePlacer::scaleForceBetweenZones(const std::shared_ptr<Zone> zoneA, const std::shared_ptr<Zone> zoneB) const
{
if (zoneA->getOwner() && zoneB->getOwner()) //Players participate in game
{
int firstPlayer = zoneA->getOwner().value();
int secondPlayer = zoneB->getOwner().value();
//Players with lower indexes (especially 1 and 2) will be placed further apart
return (1.0f + (2.0f / (firstPlayer * secondPlayer)));
}
else
{
return 1;
}
}
void CZonePlacer::placeZones(vstd::RNG * rand)
{
logGlobal->info("Starting zone placement");
width = map.getMapGenOptions().getWidth();
height = map.getMapGenOptions().getHeight();
auto zones = map.getZones();
vstd::erase_if(zones, [](const std::pair<TRmgTemplateZoneId, std::shared_ptr<Zone>> & pr)
{
return pr.second->getType() == ETemplateZoneType::WATER;
});
bool underground = map.getMapGenOptions().getHasTwoLevels();
findPathsBetweenZones();
placeOnGrid(rand);
/*
Fruchterman-Reingold algorithm
Let's assume we try to fit N circular zones with radius = size on a map
Connected zones attract, intersecting zones and map boundaries push back
*/
TZoneVector zonesVector(zones.begin(), zones.end());
assert (zonesVector.size());
RandomGeneratorUtil::randomShuffle(zonesVector, *rand);
//0. set zone sizes and surface / underground level
prepareZones(zones, zonesVector, underground, rand);
std::map<std::shared_ptr<Zone>, float3> bestSolution;
TForceVector forces;
TForceVector totalForces; // both attraction and pushback, overcomplicated?
TDistanceVector distances;
TDistanceVector overlaps;
auto evaluateSolution = [this, zones, &distances, &overlaps, &bestSolution]() -> bool
{
bool improvement = false;
float totalDistance = 0;
float totalOverlap = 0;
for (const auto& zone : distances) //find most misplaced zone
{
totalDistance += zone.second;
float overlap = overlaps[zone.first];
totalOverlap += overlap;
}
//check fitness function
if ((totalDistance + 1) * (totalOverlap + 1) < (bestTotalDistance + 1) * (bestTotalOverlap + 1))
{
//multiplication is better for auto-scaling, but stops working if one factor is 0
improvement = true;
}
//Save best solution
if (improvement)
{
bestTotalDistance = totalDistance;
bestTotalOverlap = totalOverlap;
for (const auto& zone : zones)
bestSolution[zone.second] = zone.second->getCenter();
}
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Total distance between zones after this iteration: %2.4f, Total overlap: %2.4f, Improved: %s", totalDistance, totalOverlap , improvement);
#endif
return improvement;
};
//Start with low stiffness. Bigger graphs need more time and more flexibility
for (stifness = stiffnessConstant / zones.size(); stifness <= stiffnessConstant;)
{
//1. attract connected zones
attractConnectedZones(zones, forces, distances);
for(const auto & zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second);
totalForces[zone.first] = zone.second; //override
}
//2. separate overlapping zones
separateOverlappingZones(zones, forces, overlaps);
for(const auto & zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second);
totalForces[zone.first] += zone.second; //accumulate
}
bool improved = evaluateSolution();
if (!improved)
{
//3. now perform drastic movement of zone that is completely not linked
//TODO: Don't do this is fitness was improved
moveOneZone(zones, totalForces, distances, overlaps);
improved |= evaluateSolution();
}
if (!improved)
{
//Only cool down if we didn't see any improvement
stifness *= stiffnessIncreaseFactor;
}
}
logGlobal->trace("Best fitness reached: total distance %2.4f, total overlap %2.4f", bestTotalDistance, bestTotalOverlap);
for(const auto & zone : zones) //finalize zone positions
{
zone.second->setPos (cords (bestSolution[zone.second]));
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Placed zone %d at relative position %s and coordinates %s", zone.first, zone.second->getCenter().toString(), zone.second->getPos().toString());
#endif
}
}
void CZonePlacer::prepareZones(TZoneMap &zones, TZoneVector &zonesVector, const bool underground, vstd::RNG * rand)
{
std::vector<float> totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map
int zonesOnLevel[2] = { 0, 0 };
//even distribution for surface / underground zones. Surface zones always have priority.
TZoneVector zonesToPlace;
std::map<TRmgTemplateZoneId, int> levels;
//first pass - determine fixed surface for zones
for(const auto & zone : zonesVector)
{
if (!underground) //this step is ignored
zonesToPlace.push_back(zone);
else //place players depending on their factions
{
if(std::optional<int> owner = zone.second->getOwner())
{
auto player = PlayerColor(*owner - 1);
auto playerSettings = map.getMapGenOptions().getPlayersSettings();
FactionID faction = FactionID::RANDOM;
if (playerSettings.size() > player)
{
faction = std::next(playerSettings.begin(), player)->second.getStartingTown();
}
else
{
logGlobal->trace("Player %d (starting zone %d) does not participate in game", player.getNum(), zone.first);
}
if (faction == FactionID::RANDOM) //TODO: check this after a town has already been randomized
zonesToPlace.push_back(zone);
else
{
auto & tt = (*VLC->townh)[faction]->nativeTerrain;
if(tt == ETerrainId::NONE)
{
//any / random
zonesToPlace.push_back(zone);
}
else
{
const auto & terrainType = VLC->terrainTypeHandler->getById(tt);
if(terrainType->isUnderground() && !terrainType->isSurface())
{
//underground only
zonesOnLevel[1]++;
levels[zone.first] = 1;
}
else
{
//surface
zonesOnLevel[0]++;
levels[zone.first] = 0;
}
}
}
}
else //no starting zone or no underground altogether
{
zonesToPlace.push_back(zone);
}
}
}
for(const auto & zone : zonesToPlace)
{
if (underground) //only then consider underground zones
{
int level = 0;
if (zonesOnLevel[1] < zonesOnLevel[0]) //only if there are less underground zones
level = 1;
else
level = 0;
levels[zone.first] = level;
zonesOnLevel[level]++;
}
else
levels[zone.first] = 0;
}
for(const auto & zone : zonesVector)
{
int level = levels[zone.first];
totalSize[level] += (zone.second->getSize() * zone.second->getSize());
float3 center = zone.second->getCenter();
center.z = level;
zone.second->setCenter(center);
}
/*
prescale zones
formula: sum((prescaler*n)^2)*pi = WH
prescaler = sqrt((WH)/(sum(n^2)*pi))
*/
std::vector<float> prescaler = { 0, 0 };
for (int i = 0; i < 2; i++)
prescaler[i] = std::sqrt((width * height) / (totalSize[i] * PI_CONSTANT));
mapSize = static_cast<float>(sqrt(width * height));
for(const auto & zone : zones)
{
zone.second->setSize(static_cast<int>(zone.second->getSize() * prescaler[zone.second->getCenter().z]));
}
}
void CZonePlacer::attractConnectedZones(TZoneMap & zones, TForceVector & forces, TDistanceVector & distances) const
{
for(const auto & zone : zones)
{
float3 forceVector(0, 0, 0);
float3 pos = zone.second->getCenter();
float totalDistance = 0;
for (const auto & connection : zone.second->getConnections())
{
switch (connection.getConnectionType())
{
//Do not consider virtual connections for graph distance
case rmg::EConnectionType::REPULSIVE:
case rmg::EConnectionType::FORCE_PORTAL:
continue;
}
if (connection.getZoneA() == connection.getZoneB())
{
//Do not consider self-connections
continue;
}
auto otherZone = zones[connection.getOtherZoneId(zone.second->getId())];
float3 otherZoneCenter = otherZone->getCenter();
auto distance = static_cast<float>(pos.dist2d(otherZoneCenter));
forceVector += (otherZoneCenter - pos) * distance * gravityConstant * scaleForceBetweenZones(zone.second, otherZone); //positive value
//Attract zone centers always
float minDistance = 0;
if (pos.z != otherZoneCenter.z)
minDistance = 0; //zones on different levels can overlap completely
else
minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize; //scale down to (0,1) coordinates
if (distance > minDistance)
totalDistance += (distance - minDistance);
}
distances[zone.second] = totalDistance;
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
forces[zone.second] = forceVector;
}
}
void CZonePlacer::separateOverlappingZones(TZoneMap &zones, TForceVector &forces, TDistanceVector &overlaps)
{
for(const auto & zone : zones)
{
float3 forceVector(0, 0, 0);
float3 pos = zone.second->getCenter();
float overlap = 0;
//separate overlapping zones
for(const auto & otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
//zones on different levels don't push away
if (zone == otherZone || pos.z != otherZoneCenter.z)
continue;
auto distance = static_cast<float>(pos.dist2d(otherZoneCenter));
float minDistance = (zone.second->getSize() + otherZone.second->getSize()) / mapSize;
if (distance < minDistance)
{
float3 localForce = (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stifness;
//negative value
localForce *= scaleForceBetweenZones(zone.second, otherZone.second);
forceVector -= localForce * (distancesBetweenZones[zone.second->getId()][otherZone.second->getId()] / 2.0f);
overlap += (minDistance - distance); //overlapping of small zones hurts us more
}
}
//move zones away from boundaries
//do not scale boundary distance - zones tend to get squashed
float size = zone.second->getSize() / mapSize;
auto pushAwayFromBoundary = [&forceVector, pos, size, &overlap, this](float x, float y)
{
float3 boundary = float3(x, y, pos.z);
auto distance = static_cast<float>(pos.dist2d(boundary));
overlap += std::max<float>(0, distance - size); //check if we're closer to map boundary than value of zone size
forceVector -= (boundary - pos) * (size - distance) / this->getDistance(distance) * this->stifness; //negative value
};
if (pos.x < size)
{
pushAwayFromBoundary(0, pos.y);
}
if (pos.x > 1 - size)
{
pushAwayFromBoundary(1, pos.y);
}
if (pos.y < size)
{
pushAwayFromBoundary(pos.x, 0);
}
if (pos.y > 1 - size)
{
pushAwayFromBoundary(pos.x, 1);
}
//Always move repulsive zones away, no matter their distance
//TODO: Consider z plane?
for (auto& connection : zone.second->getConnections())
{
if (connection.getConnectionType() == rmg::EConnectionType::REPULSIVE)
{
auto & otherZone = zones[connection.getOtherZoneId(zone.second->getId())];
float3 otherZoneCenter = otherZone->getCenter();
//TODO: Roll into lambda?
auto distance = static_cast<float>(pos.dist2d(otherZoneCenter));
float minDistance = (zone.second->getSize() + otherZone->getSize()) / mapSize;
float3 localForce = (((otherZoneCenter - pos)*(minDistance / (distance ? distance : 1e-3f))) / getDistance(distance)) * stifness;
localForce *= (distancesBetweenZones[zone.second->getId()][otherZone->getId()]);
forceVector -= localForce * scaleForceBetweenZones(zone.second, otherZone);
}
}
overlaps[zone.second] = overlap;
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
forces[zone.second] = forceVector;
}
}
void CZonePlacer::moveOneZone(TZoneMap& zones, TForceVector& totalForces, TDistanceVector& distances, TDistanceVector& overlaps)
{
//The more zones, the greater total distance expected
//Also, higher stiffness make expected movement lower
const int maxDistanceMovementRatio = zones.size() * zones.size() * (stiffnessConstant / stifness);
typedef std::pair<float, std::shared_ptr<Zone>> Misplacement;
std::vector<Misplacement> misplacedZones;
float totalDistance = 0;
float totalOverlap = 0;
for (const auto& zone : distances) //find most misplaced zone
{
if (vstd::contains(lastSwappedZones, zone.first->getId()))
{
continue;
}
totalDistance += zone.second;
float overlap = overlaps[zone.first];
totalOverlap += overlap;
//if distance to actual movement is long, the zone is misplaced
float ratio = (zone.second + overlap) / static_cast<float>(totalForces[zone.first].mag());
if (ratio > maxDistanceMovementRatio)
{
misplacedZones.emplace_back(std::make_pair(ratio, zone.first));
}
}
if (misplacedZones.empty())
return;
boost::sort(misplacedZones, [](const Misplacement& lhs, Misplacement& rhs)
{
return lhs.first > rhs.first; //Largest displacement first
});
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Worst misplacement/movement ratio: %3.2f", misplacedZones.front().first);
#endif
if (misplacedZones.size() >= 2)
{
//Swap 2 misplaced zones
auto firstZone = misplacedZones.front().second;
std::shared_ptr<Zone> secondZone;
std::set<TRmgTemplateZoneId> connectedZones;
for (const auto& connection : firstZone->getConnections())
{
switch (connection.getConnectionType())
{
//Do not consider virtual connections for graph distance
case rmg::EConnectionType::REPULSIVE:
case rmg::EConnectionType::FORCE_PORTAL:
continue;
}
if (connection.getZoneA() == connection.getZoneB())
{
//Do not consider self-connections
continue;
}
connectedZones.insert(connection.getOtherZoneId(firstZone->getId()));
}
auto level = firstZone->getCenter().z;
for (size_t i = 1; i < misplacedZones.size(); i++)
{
//Only swap zones on the same level
//Don't swap zones that should be connected (Jebus)
if (misplacedZones[i].second->getCenter().z == level &&
!vstd::contains(connectedZones, misplacedZones[i].second->getId()))
{
secondZone = misplacedZones[i].second;
break;
}
}
if (secondZone)
{
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Swapping two misplaced zones %d and %d", firstZone->getId(), secondZone->getId());
#endif
auto firstCenter = firstZone->getCenter();
auto secondCenter = secondZone->getCenter();
firstZone->setCenter(secondCenter);
secondZone->setCenter(firstCenter);
lastSwappedZones.insert(firstZone->getId());
lastSwappedZones.insert(secondZone->getId());
return;
}
}
lastSwappedZones.clear(); //If we didn't swap zones in this iteration, we can do it in the next
//find most distant zone that should be attracted and move inside it
std::shared_ptr<Zone> targetZone;
auto misplacedZone = misplacedZones.front().second;
float3 ourCenter = misplacedZone->getCenter();
if ((totalDistance / (bestTotalDistance + 1)) > (totalOverlap / (bestTotalOverlap + 1)))
{
//Move one zone towards most distant zone to reduce distance
float maxDistance = 0;
for (auto con : misplacedZone->getConnections())
{
if (con.getConnectionType() == rmg::EConnectionType::REPULSIVE)
{
continue;
}
auto otherZone = zones[con.getOtherZoneId(misplacedZone->getId())];
float distance = static_cast<float>(otherZone->getCenter().dist2dSQ(ourCenter));
if (distance > maxDistance)
{
maxDistance = distance;
targetZone = otherZone;
}
}
if (targetZone)
{
float3 vec = targetZone->getCenter() - ourCenter;
float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) / mapSize;
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Trying to move zone %d %s towards %d %s. Direction is %s", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), vec.toString());
#endif
misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size
}
}
else
{
//Move misplaced zone away from overlapping zone
float maxOverlap = 0;
for(const auto & otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z)
continue;
auto distance = static_cast<float>(otherZoneCenter.dist2dSQ(ourCenter));
if (distance > maxOverlap)
{
maxOverlap = distance;
targetZone = otherZone.second;
}
}
if (targetZone)
{
float3 vec = ourCenter - targetZone->getCenter();
float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) / mapSize;
#ifdef ZONE_PLACEMENT_LOG
logGlobal->trace("Trying to move zone %d %s away from %d %s. Direction is %s", misplacedZone->getId(), ourCenter.toString(), targetZone->getId(), targetZone->getCenter().toString(), vec.toString());
#endif
misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated
}
}
//Don't swap that zone in next iteration
lastSwappedZones.insert(misplacedZone->getId());
}
float CZonePlacer::metric (const int3 &A, const int3 &B) const
{
return A.dist2dSQ(B);
}
void CZonePlacer::assignZones(vstd::RNG * rand)
{
logGlobal->info("Starting zone colouring");
auto width = map.getMapGenOptions().getWidth();
auto height = map.getMapGenOptions().getHeight();
auto zones = map.getZones();
vstd::erase_if(zones, [](const std::pair<TRmgTemplateZoneId, std::shared_ptr<Zone>> & pr)
{
return pr.second->getType() == ETemplateZoneType::WATER;
});
using Dpair = std::pair<std::shared_ptr<Zone>, float>;
std::vector <Dpair> distances;
distances.reserve(zones.size());
//now place zones correctly and assign tiles to each zone
auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
//bigger zones have smaller distance
return lhs.second / lhs.first->getSize() < rhs.second / rhs.first->getSize();
};
auto simpleCompareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
//bigger zones have smaller distance
return lhs.second < rhs.second;
};
auto moveZoneToCenterOfMass = [width, height](const std::shared_ptr<Zone> & zone) -> void
{
int3 total(0, 0, 0);
auto tiles = zone->area()->getTiles();
for(const auto & tile : tiles)
{
total += tile;
}
int size = static_cast<int>(tiles.size());
assert(size);
auto newPos = int3(total.x / size, total.y / size, total.z / size);
zone->setPos(newPos);
zone->setCenter(float3(float(newPos.x) / width, float(newPos.y) / height, newPos.z));
};
int levels = map.levels();
// Find current center of mass for each zone. Move zone to that center to balance zones sizes
std::vector<RmgMap::Zones> zonesOnLevel;
for(int level = 0; level < levels; level++)
{
zonesOnLevel.push_back(map.getZonesOnLevel(level));
}
int3 pos;
for(pos.z = 0; pos.z < levels; pos.z++)
{
for(pos.x = 0; pos.x < width; pos.x++)
{
for(pos.y = 0; pos.y < height; pos.y++)
{
distances.clear();
for(const auto & zone : zonesOnLevel[pos.z])
{
distances.emplace_back(zone.second, static_cast<float>(pos.dist2dSQ(zone.second->getPos())));
}
boost::min_element(distances, compareByDistance)->first->area()->add(pos); //closest tile belongs to zone
}
}
}
for(const auto & zone : zones)
{
if(zone.second->area()->empty())
throw rmgException("Empty zone is generated, probably RMG template is inappropriate for map size");
moveZoneToCenterOfMass(zone.second);
}
for(const auto & zone : zones)
zone.second->clearTiles(); //now populate them again
PenroseTiling penrose;
for (int level = 0; level < levels; level++)
{
//Create different tiling for each level
auto vertices = penrose.generatePenroseTiling(zonesOnLevel[level].size(), rand);
// Assign zones to closest Penrose vertex
std::map<std::shared_ptr<Zone>, std::set<int3>> vertexMapping;
for (const auto & vertex : vertices)
{
distances.clear();
for(const auto & zone : zonesOnLevel[level])
{
distances.emplace_back(zone.second, zone.second->getCenter().dist2dSQ(float3(vertex.x(), vertex.y(), level)));
}
auto closestZone = boost::min_element(distances, compareByDistance)->first;
vertexMapping[closestZone].insert(int3(vertex.x() * width, vertex.y() * height, level)); //Closest vertex belongs to zone
}
//Assign actual tiles to each zone
pos.z = level;
for (pos.x = 0; pos.x < width; pos.x++)
{
for (pos.y = 0; pos.y < height; pos.y++)
{
distances.clear();
for(const auto & zoneVertex : vertexMapping)
{
auto zone = zoneVertex.first;
for (const auto & vertex : zoneVertex.second)
{
distances.emplace_back(zone, metric(pos, vertex));
}
}
//Tile closest to vertex belongs to zone
auto closestZone = boost::min_element(distances, simpleCompareByDistance)->first;
closestZone->area()->add(pos);
map.setZoneID(pos, closestZone->getId());
}
}
for(const auto & zone : zonesOnLevel[level])
{
if(zone.second->area()->empty())
{
// FIXME: Some vertices are duplicated, but it's not a source of problem
logGlobal->error("Zone %d at %s is empty, dumping Penrose tiling", zone.second->getId(), zone.second->getCenter().toString());
for (const auto & vertex : vertices)
{
logGlobal->warn("Penrose Vertex: %s", vertex.toString());
}
throw rmgException("Empty zone after Penrose tiling");
}
}
}
//set position (town position) to center of mass of irregular zone
for(const auto & zone : zones)
{
moveZoneToCenterOfMass(zone.second);
//TODO: similar for islands
#define CREATE_FULL_UNDERGROUND true //consider linking this with water amount
if (zone.second->isUnderground())
{
if (!CREATE_FULL_UNDERGROUND)
{
auto discardTiles = collectDistantTiles(*zone.second, zone.second->getSize() + 1.f);
for(const auto & t : discardTiles)
zone.second->area()->erase(t);
}
//make sure that terrain inside zone is not a rock
auto v = zone.second->area()->getTilesVector();
map.getMapProxy()->drawTerrain(*rand, v, ETerrainId::SUBTERRANEAN);
}
}
logGlobal->info("Finished zone colouring");
}
const TDistanceMap& CZonePlacer::getDistanceMap()
{
return distancesBetweenZones;
}
VCMI_LIB_NAMESPACE_END