1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-12-20 20:23:03 +02:00
vcmi/lib/Connection.h
Karol 53ab0593b7 VCMIDirs update #6
- Minor fixes
- CLoadFile updated to boost::filesystem::path
2014-08-27 12:31:58 +02:00

1672 lines
43 KiB
C++

/*
* Connection.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include <typeinfo> //XXX this is in namespace std if you want w/o use typeinfo.h?
#include <type_traits>
#include <boost/mpl/eval_if.hpp>
#include <boost/mpl/equal_to.hpp>
#include <boost/mpl/int.hpp>
#include <boost/mpl/identity.hpp>
#include <boost/mpl/for_each.hpp>
#include <boost/any.hpp>
#include "ConstTransitivePtr.h"
#include "CCreatureSet.h" //for CStackInstance
#include "mapObjects/CGHeroInstance.h"
#include "mapping/CCampaignHandler.h" //for CCampaignState
#include "rmg/CMapGenerator.h" // for CMapGenOptions
const ui32 version = 750;
const ui32 minSupportedVersion = version;
class CConnection;
class CGObjectInstance;
class CStackInstance;
class CGameState;
class CCreature;
class LibClasses;
class CHero;
struct CPack;
extern DLL_LINKAGE LibClasses * VLC;
namespace mpl = boost::mpl;
const std::string SAVEGAME_MAGIC = "VCMISVG";
namespace boost
{
namespace asio
{
namespace ip
{
class tcp;
}
class io_service;
template <typename Protocol> class stream_socket_service;
template <typename Protocol,typename StreamSocketService>
class basic_stream_socket;
template <typename Protocol> class socket_acceptor_service;
template <typename Protocol,typename SocketAcceptorService>
class basic_socket_acceptor;
}
class mutex;
}
enum SerializationLvl
{
Wrong=0,
Boolean,
Primitive,
Array,
Pointer,
Enum,
Serializable,
BooleanVector
};
struct TypeComparer
{
bool operator()(const std::type_info *a, const std::type_info *b) const
{
return a->before(*b);
}
};
struct IPointerCaster
{
virtual boost::any castRawPtr(const boost::any &ptr) const = 0; // takes From*, performs dynamic cast, returns To*
virtual boost::any castSharedPtr(const boost::any &ptr) const = 0; // takes std::shared_ptr<From>, performs dynamic cast, returns std::shared_ptr<To>
virtual boost::any castWeakPtr(const boost::any &ptr) const = 0; // takes std::weak_ptr<From>, performs dynamic cast, returns std::weak_ptr<To>. The object under poitner must live.
//virtual boost::any castUniquePtr(const boost::any &ptr) const = 0; // takes std::unique_ptr<From>, performs dynamic cast, returns std::unique_ptr<To>
};
template <typename From, typename To>
struct PointerCaster : IPointerCaster
{
virtual boost::any castRawPtr(const boost::any &ptr) const override // takes void* pointing to From object, performs dynamic cast, returns void* pointing to To object
{
From * from = (From*)boost::any_cast<void*>(ptr);
To * ret = dynamic_cast<To*>(from);
return (void*)ret;
}
// Helper function performing casts between smart pointers using dynamic_pointer_cast
template<typename SmartPt>
boost::any castSmartPtr(const boost::any &ptr) const
{
try
{
auto from = boost::any_cast<SmartPt>(ptr);
auto ret = std::dynamic_pointer_cast<To>(from);
return ret;
}
catch(std::exception &e)
{
THROW_FORMAT("Failed cast %s -> %s. Given argument was %s. Error message: %s", typeid(From).name() % typeid(To).name() % ptr.type().name() % e.what());
}
}
virtual boost::any castSharedPtr(const boost::any &ptr) const override
{
return castSmartPtr<std::shared_ptr<From>>(ptr);
}
virtual boost::any castWeakPtr(const boost::any &ptr) const override
{
auto from = boost::any_cast<std::weak_ptr<From>>(ptr);
return castSmartPtr<std::shared_ptr<From>>(from.lock());
}
// virtual boost::any castUniquePtr(const boost::any &ptr) const override
// {
// return castSmartPtr<std::unique_ptr<From>>(ptr);
// }
};
class DLL_LINKAGE CTypeList
{
public:
struct TypeDescriptor;
typedef std::shared_ptr<TypeDescriptor> TypeInfoPtr;
struct TypeDescriptor
{
ui16 typeID;
const char *name;
std::vector<TypeInfoPtr> children, parents;
};
private:
std::map<const std::type_info *, TypeInfoPtr, TypeComparer> typeInfos;
std::map<std::pair<TypeInfoPtr, TypeInfoPtr>, std::unique_ptr<const IPointerCaster>> casters; //for each pair <Base, Der> we provide a caster (each registered relations creates a single entry here)
CTypeList(CTypeList &)
{
// This type is non-copyable.
// Unfortunately on Windows it is required for DLL_EXPORT-ed type to provide copy c-tor, so we can't =delete it.
assert(0);
}
CTypeList &operator=(CTypeList &)
{
// As above.
assert(0);
return *this;
}
public:
CTypeList();
TypeInfoPtr registerType(const std::type_info *type);
template <typename Base, typename Derived>
void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
static_assert(std::is_base_of<Base, Derived>::value, "First registerType template parameter needs to ba a base class of the second one.");
static_assert(std::has_virtual_destructor<Base>::value, "Base class needs to have a virtual destructor.");
static_assert(!std::is_same<Base, Derived>::value, "Parameters of registerTypes should be two diffrenet types.");
auto bt = getTypeInfo(b), dt = getTypeInfo(d); //obtain std::type_info
auto bti = registerType(bt), dti = registerType(dt); //obtain our TypeDescriptor
// register the relation between classes
bti->children.push_back(dti);
dti->parents.push_back(bti);
casters[std::make_pair(bti, dti)] = make_unique<const PointerCaster<Base, Derived>>();
casters[std::make_pair(dti, bti)] = make_unique<const PointerCaster<Derived, Base>>();
}
ui16 getTypeID(const std::type_info *type);
TypeInfoPtr getTypeDescriptor(const std::type_info *type, bool throws = true); //if not throws, failure returns nullptr
template <typename T>
ui16 getTypeID(const T * t = nullptr)
{
return getTypeID(getTypeInfo(t));
}
// Returns sequence of types starting from "from" and ending on "to". Every next type is derived from the previous.
// Throws if there is no link registered.
std::vector<TypeInfoPtr> castSequence(TypeInfoPtr from, TypeInfoPtr to);
std::vector<TypeInfoPtr> castSequence(const std::type_info *from, const std::type_info *to);
template<boost::any(IPointerCaster::*CastingFunction)(const boost::any &) const>
boost::any castHelper(boost::any inputPtr, const std::type_info *fromArg, const std::type_info *toArg)
{
auto typesSequence = castSequence(fromArg, toArg);
boost::any ptr = inputPtr;
for(int i = 0; i < (int)typesSequence.size() - 1; i++)
{
auto &from = typesSequence[i];
auto &to = typesSequence[i + 1];
auto castingPair = std::make_pair(from, to);
if(!casters.count(castingPair))
THROW_FORMAT("Cannot find caster for conversion %s -> %s which is needed to cast %s -> %s", from->name % to->name % fromArg->name() % toArg->name());
auto &caster = casters.at(castingPair);
ptr = (*caster.*CastingFunction)(ptr); //Why does unique_ptr does not have operator->* ..?
}
return ptr;
}
template<typename TInput>
void *castToMostDerived(const TInput *inputPtr)
{
auto &baseType = typeid(typename std::remove_cv<TInput>::type);
auto derivedType = getTypeInfo(inputPtr);
if(baseType == *derivedType)
return (void*)inputPtr;
return boost::any_cast<void*>(castHelper<&IPointerCaster::castRawPtr>((void*)inputPtr, &baseType, derivedType));
}
template<typename TInput>
boost::any castSharedToMostDerived(const std::shared_ptr<TInput> inputPtr)
{
auto &baseType = typeid(typename std::remove_cv<TInput>::type);
auto derivedType = getTypeInfo(inputPtr.get());
if(baseType == *derivedType)
return inputPtr;
return castHelper<&IPointerCaster::castSharedPtr>(inputPtr, &baseType, derivedType);
}
void* castRaw(void *inputPtr, const std::type_info *from, const std::type_info *to)
{
return boost::any_cast<void*>(castHelper<&IPointerCaster::castRawPtr>(inputPtr, from, to));
}
boost::any castShared(boost::any inputPtr, const std::type_info *from, const std::type_info *to)
{
return castHelper<&IPointerCaster::castSharedPtr>(inputPtr, from, to);
}
template <typename T> const std::type_info * getTypeInfo(const T * t = nullptr)
{
if(t)
return &typeid(*t);
else
return &typeid(T);
}
};
extern DLL_LINKAGE CTypeList typeList;
template<typename Ser>
struct SaveBoolean
{
static void invoke(Ser &s, const bool &data)
{
s.saveBoolean(data);
}
};
template<typename Ser>
struct LoadBoolean
{
static void invoke(Ser &s, bool &data)
{
s.loadBoolean(data);
}
};
template<typename Ser>
struct SaveBooleanVector
{
static void invoke(Ser &s, const std::vector<bool> &data)
{
s.saveBooleanVector(data);
}
};
template<typename Ser>
struct LoadBooleanVector
{
static void invoke(Ser &s, std::vector<bool> &data)
{
s.loadBooleanVector(data);
}
};
template<typename Ser,typename T>
struct SavePrimitive
{
static void invoke(Ser &s, const T &data)
{
s.savePrimitive(data);
}
};
template<typename Ser,typename T>
struct SaveSerializable
{
static void invoke(Ser &s, const T &data)
{
s.saveSerializable(data);
}
};
template<typename Ser,typename T>
struct SaveEnum
{
static void invoke(Ser &s, const T &data)
{
s.saveEnum(data);
}
};
template<typename Ser,typename T>
struct LoadEnum
{
static void invoke(Ser &s, T &data)
{
s.loadEnum(data);
}
};
template<typename Ser,typename T>
struct LoadPrimitive
{
static void invoke(Ser &s, T &data)
{
s.loadPrimitive(data);
}
};
template<typename Ser,typename T>
struct SavePointer
{
static void invoke(Ser &s, const T &data)
{
s.savePointer(data);
}
};
template<typename Ser,typename T>
struct LoadPointer
{
static void invoke(Ser &s, T &data)
{
s.loadPointer(data);
}
};
template<typename Ser,typename T>
struct SaveArray
{
static void invoke(Ser &s, const T &data)
{
s.saveArray(data);
}
};
template<typename Ser,typename T>
struct LoadArray
{
static void invoke(Ser &s, T &data)
{
s.loadArray(data);
}
};
template<typename Ser,typename T>
struct LoadSerializable
{
static void invoke(Ser &s, T &data)
{
s.loadSerializable(data);
}
};
template<typename Ser,typename T>
struct SaveWrong
{
static void invoke(Ser &s, const T &data)
{
throw std::runtime_error("Wrong save serialization call!");
}
};
template<typename Ser,typename T>
struct LoadWrong
{
static void invoke(Ser &s, const T &data)
{
throw std::runtime_error("Wrong load serialization call!");
}
};
template<typename Variant, typename Source>
struct VariantLoaderHelper
{
Source & source;
std::vector<std::function<Variant()>> funcs;
VariantLoaderHelper(Source & source):
source(source)
{
mpl::for_each<typename Variant::types>(std::ref(*this));
}
template<typename Type>
void operator()(Type)
{
funcs.push_back([&]() -> Variant
{
Type obj;
source >> obj;
return Variant(obj);
});
}
};
template<typename T>
struct SerializationLevel
{
typedef mpl::integral_c_tag tag;
typedef
typename mpl::eval_if<
boost::is_same<T, bool>,
mpl::int_<Boolean>,
//else
typename mpl::eval_if<
boost::is_same<T, std::vector<bool> >,
mpl::int_<BooleanVector>,
//else
typename mpl::eval_if<
boost::is_fundamental<T>,
mpl::int_<Primitive>,
//else
typename mpl::eval_if<
boost::is_enum<T>,
mpl::int_<Enum>,
//else
typename mpl::eval_if<
boost::is_class<T>,
mpl::int_<Serializable>,
//else
typename mpl::eval_if<
boost::is_array<T>,
mpl::int_<Array>,
//else
typename mpl::eval_if<
boost::is_pointer<T>,
mpl::int_<Pointer>,
//else
typename mpl::eval_if<
boost::is_enum<T>,
mpl::int_<Primitive>,
//else
mpl::int_<Wrong>
>
>
>
>
>
>
>
>::type type;
static const int value = SerializationLevel::type::value;
};
template <typename ObjType, typename IdType>
struct VectorisedObjectInfo
{
const std::vector<ConstTransitivePtr<ObjType> > *vector; //pointer to the appropriate vector
std::function<IdType(const ObjType &)> idRetriever;
//const IdType ObjType::*idPtr; //pointer to the field representing the position in the vector
VectorisedObjectInfo(const std::vector< ConstTransitivePtr<ObjType> > *Vector, std::function<IdType(const ObjType &)> IdGetter)
:vector(Vector), idRetriever(IdGetter)
{
}
};
template<typename T>
si32 idToNumber(const T &t, typename boost::enable_if<boost::is_convertible<T,si32> >::type * dummy = 0)
{
return t;
}
template<typename T, typename NT>
NT idToNumber(const BaseForID<T, NT> &t)
{
return t.getNum();
}
/// Class which is responsible for storing and loading data.
class DLL_LINKAGE CSerializer
{
public:
typedef std::map<const std::type_info *, boost::any, TypeComparer> TTypeVecMap;
TTypeVecMap vectors; //entry must be a pointer to vector containing pointers to the objects of key type
bool smartVectorMembersSerialization;
bool sendStackInstanceByIds;
CSerializer();
~CSerializer();
virtual void reportState(CLogger * out){};
template <typename T, typename U>
void registerVectoredType(const std::vector<T*> *Vector, const std::function<U(const T&)> &idRetriever)
{
vectors[&typeid(T)] = VectorisedObjectInfo<T, U>(Vector, idRetriever);
}
template <typename T, typename U>
void registerVectoredType(const std::vector<ConstTransitivePtr<T> > *Vector, const std::function<U(const T&)> &idRetriever)
{
vectors[&typeid(T)] = VectorisedObjectInfo<T, U>(Vector, idRetriever);
}
template <typename T, typename U>
const VectorisedObjectInfo<T, U> *getVectorisedTypeInfo()
{
const std::type_info *myType = nullptr;
//
// if(boost::is_base_of<CGObjectInstance, T>::value) //ugly workaround to support also types derived from CGObjectInstance -> if we encounter one, treat it aas CGObj..
// myType = &typeid(CGObjectInstance);
// else
myType = &typeid(T);
TTypeVecMap::iterator i = vectors.find(myType);
if(i == vectors.end())
return nullptr;
else
{
assert(!i->second.empty());
assert(i->second.type() == typeid(VectorisedObjectInfo<T, U>));
VectorisedObjectInfo<T, U> *ret = &(boost::any_cast<VectorisedObjectInfo<T, U>&>(i->second));
return ret;
}
}
template <typename T, typename U>
T* getVectorItemFromId(const VectorisedObjectInfo<T, U> &oInfo, U id) const
{
/* if(id < 0)
return nullptr;*/
si32 idAsNumber = idToNumber(id);
assert(oInfo.vector);
assert(static_cast<si32>(oInfo.vector->size()) > idAsNumber);
return const_cast<T*>((*oInfo.vector)[idAsNumber].get());
}
template <typename T, typename U>
U getIdFromVectorItem(const VectorisedObjectInfo<T, U> &oInfo, const T* obj) const
{
if(!obj)
return U(-1);
return oInfo.idRetriever(*obj);
}
void addStdVecItems(CGameState *gs, LibClasses *lib = VLC);
};
class DLL_LINKAGE CSaverBase : public virtual CSerializer
{
};
class CBasicPointerSaver
{
public:
virtual void savePtr(CSaverBase &ar, const void *data) const =0;
virtual ~CBasicPointerSaver(){}
};
template <typename Serializer, typename T> class CPointerSaver : public CBasicPointerSaver
{
public:
void savePtr(CSaverBase &ar, const void *data) const
{
Serializer &s = static_cast<Serializer&>(ar);
const T *ptr = static_cast<const T*>(data);
//T is most derived known type, it's time to call actual serialize
const_cast<T&>(*ptr).serialize(s,version);
}
};
template <typename T> //metafunction returning CGObjectInstance if T is its derivate or T elsewise
struct VectorisedTypeFor
{
typedef typename
//if
mpl::eval_if<boost::is_same<CGHeroInstance,T>,
mpl::identity<CGHeroInstance>,
//else if
mpl::eval_if<boost::is_base_of<CGObjectInstance,T>,
mpl::identity<CGObjectInstance>,
//else
mpl::identity<T>
> >::type type;
};
template <typename U>
struct VectorizedIDType
{
typedef typename
//if
mpl::eval_if<boost::is_same<CArtifact,U>,
mpl::identity<ArtifactID>,
//else if
mpl::eval_if<boost::is_same<CCreature,U>,
mpl::identity<CreatureID>,
//else if
mpl::eval_if<boost::is_same<CHero,U>,
mpl::identity<HeroTypeID>,
//else if
mpl::eval_if<boost::is_same<CArtifactInstance,U>,
mpl::identity<ArtifactInstanceID>,
//else if
mpl::eval_if<boost::is_same<CGHeroInstance,U>,
mpl::identity<HeroTypeID>,
//else if
mpl::eval_if<boost::is_base_of<CGObjectInstance,U>,
mpl::identity<ObjectInstanceID>,
//else
mpl::identity<si32>
> > > > > >::type type;
};
template <typename Handler>
struct VariantVisitorSaver : boost::static_visitor<>
{
Handler &h;
VariantVisitorSaver(Handler &H):h(H)
{
}
template <typename T>
void operator()(const T &t)
{
h << t;
}
};
template<typename Ser,typename T>
struct SaveIfStackInstance
{
static bool invoke(Ser &s, const T &data)
{
return false;
}
};
template<typename Ser>
struct SaveIfStackInstance<Ser, CStackInstance *>
{
static bool invoke(Ser &s, const CStackInstance* const &data)
{
assert(data->armyObj);
SlotID slot;
if(data->getNodeType() == CBonusSystemNode::COMMANDER)
slot = SlotID::COMMANDER_SLOT_PLACEHOLDER;
else
slot = data->armyObj->findStack(data);
assert(slot != SlotID());
s << data->armyObj << slot;
return true;
}
};
template<typename Ser,typename T>
struct LoadIfStackInstance
{
static bool invoke(Ser &s, T &data)
{
return false;
}
};
template<typename Ser>
struct LoadIfStackInstance<Ser, CStackInstance *>
{
static bool invoke(Ser &s, CStackInstance* &data)
{
CArmedInstance *armedObj;
SlotID slot;
s >> armedObj >> slot;
if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER)
{
assert(armedObj->hasStackAtSlot(slot));
data = armedObj->stacks[slot];
}
else
{
auto hero = dynamic_cast<CGHeroInstance *>(armedObj);
assert(hero);
assert(hero->commander);
data = hero->commander;
}
return true;
}
};
/// The class which manages saving objects.
template <typename Serializer> class DLL_LINKAGE COSer : public CSaverBase
{
public:
bool saving;
std::map<ui16,CBasicPointerSaver*> savers; // typeID => CPointerSaver<serializer,type>
std::map<const void*, ui32> savedPointers;
bool smartPointerSerialization;
COSer()
{
saving=true;
smartPointerSerialization = true;
}
~COSer()
{
std::map<ui16,CBasicPointerSaver*>::iterator iter;
for(iter = savers.begin(); iter != savers.end(); iter++)
delete iter->second;
}
template<typename T>
void addSaver(const T * t = nullptr)
{
auto ID = typeList.getTypeID(t);
if(!savers.count(ID))
savers[ID] = new CPointerSaver<COSer<Serializer>, T>;
}
template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
typeList.registerType(b, d);
addSaver(b);
addSaver(d);
}
Serializer * This()
{
return static_cast<Serializer*>(this);
}
template<class T>
Serializer & operator<<(const T &t)
{
this->This()->save(t);
return * this->This();
}
template<class T>
COSer & operator&(const T & t)
{
return * this->This() << t;
}
int write(const void * data, unsigned size);
template <typename T>
void savePrimitive(const T &data)
{
this->This()->write(&data,sizeof(data));
}
template <typename T>
void savePointer(const T &data)
{
//write if pointer is not nullptr
ui8 hlp = (data!=nullptr);
*this << hlp;
//if pointer is nullptr then we don't need anything more...
if(!hlp)
return;
if(smartVectorMembersSerialization)
{
typedef typename boost::remove_const<typename boost::remove_pointer<T>::type>::type TObjectType;
typedef typename VectorisedTypeFor<TObjectType>::type VType;
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = getVectorisedTypeInfo<VType, IDType>())
{
IDType id = getIdFromVectorItem<VType>(*info, data);
*this << id;
if(id != IDType(-1)) //vector id is enough
return;
}
}
if(sendStackInstanceByIds)
{
const bool gotSaved = SaveIfStackInstance<Serializer,T>::invoke(*This(), data);
if(gotSaved)
return;
}
if(smartPointerSerialization)
{
// We might have an object that has multiple inheritance and store it via the non-first base pointer.
// Therefore, all pointers need to be normalized to the actual object address.
auto actualPointer = typeList.castToMostDerived(data);
std::map<const void*,ui32>::iterator i = savedPointers.find(actualPointer);
if(i != savedPointers.end())
{
//this pointer has been already serialized - write only it's id
*this << i->second;
return;
}
//give id to this pointer
ui32 pid = (ui32)savedPointers.size();
savedPointers[actualPointer] = pid;
*this << pid;
}
//write type identifier
ui16 tid = typeList.getTypeID(data);
*this << tid;
This()->savePointerHlp(tid, data);
}
//that part of ptr serialization was extracted to allow customization of its behavior in derived classes
template <typename T>
void savePointerHlp(ui16 tid, const T &data)
{
if(!tid)
*this << *data; //if type is unregistered simply write all data in a standard way
else
savers[tid]->savePtr(*this, typeList.castToMostDerived(data)); //call serializer specific for our real type
}
template <typename T>
void saveArray(const T &data)
{
ui32 size = ARRAY_COUNT(data);
for(ui32 i=0; i < size; i++)
*this << data[i];
}
template <typename T>
void save(const T &data)
{
typedef
//if
typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Boolean> >,
mpl::identity<SaveBoolean<Serializer> >,
//else if
typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<BooleanVector> >,
mpl::identity<SaveBooleanVector<Serializer> >,
//else if
typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Primitive> >,
mpl::identity<SavePrimitive<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Enum> >,
mpl::identity<SaveEnum<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Pointer> >,
mpl::identity<SavePointer<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Array> >,
mpl::identity<SaveArray<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Serializable> >,
mpl::identity<SaveSerializable<Serializer,T> >,
//else
mpl::identity<SaveWrong<Serializer,T> >
>
>
>
>
>
>
>::type typex;
typex::invoke(* this->This(), data);
}
template <typename T>
void saveSerializable(const T &data)
{
const_cast<T&>(data).serialize(*this,version);
}
template <typename T>
void saveSerializable(const shared_ptr<T> &data)
{
T *internalPtr = data.get();
*this << internalPtr;
}
template <typename T>
void saveSerializable(const unique_ptr<T> &data)
{
T *internalPtr = data.get();
*this << internalPtr;
}
template <typename T>
void saveSerializable(const std::vector<T> &data)
{
ui32 length = data.size();
*this << length;
for(ui32 i=0;i<length;i++)
*this << data[i];
}
template <typename T, size_t N>
void saveSerializable(const std::array<T, N> &data)
{
for(ui32 i=0; i < N; i++)
*this << data[i];
}
template <typename T>
void saveSerializable(const std::set<T> &data)
{
std::set<T> &d = const_cast<std::set<T> &>(data);
ui32 length = d.size();
*this << length;
for(typename std::set<T>::iterator i=d.begin();i!=d.end();i++)
*this << *i;
}
template <typename T, typename U>
void saveSerializable(const std::unordered_set<T, U> &data)
{
std::unordered_set<T, U> &d = const_cast<std::unordered_set<T, U> &>(data);
ui32 length = d.size();
*this << length;
for(typename std::unordered_set<T, U>::iterator i=d.begin();i!=d.end();i++)
*this << *i;
}
template <typename T>
void saveSerializable(const std::list<T> &data)
{
std::list<T> &d = const_cast<std::list<T> &>(data);
ui32 length = d.size();
*this << length;
for(typename std::list<T>::iterator i=d.begin();i!=d.end();i++)
*this << *i;
}
void saveSerializable(const std::string &data)
{
*this << ui32(data.length());
this->This()->write(data.c_str(),data.size());
}
template <typename T1, typename T2>
void saveSerializable(const std::pair<T1,T2> &data)
{
*this << data.first << data.second;
}
template <typename T1, typename T2>
void saveSerializable(const std::map<T1,T2> &data)
{
*this << ui32(data.size());
for(typename std::map<T1,T2>::const_iterator i=data.begin();i!=data.end();i++)
*this << i->first << i->second;
}
template <typename T1, typename T2>
void saveSerializable(const std::multimap<T1, T2> &data)
{
*this << ui32(data.size());
for(typename std::map<T1, T2>::const_iterator i = data.begin(); i != data.end(); i++)
*this << i->first << i->second;
}
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
void saveSerializable(const boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data)
{
si32 which = data.which();
*this << which;
VariantVisitorSaver<Serializer> visitor(*this->This());
boost::apply_visitor(visitor, data);
}
template <typename T>
void saveSerializable(const boost::optional<T> &data)
{
if(data)
{
*this << (ui8)1;
*this << *data;
}
else
{
*this << (ui8)0;
}
}
template <typename E>
void saveEnum(const E &data)
{
si32 writ = static_cast<si32>(data);
*this << writ;
}
void saveBoolean(const bool & data)
{
ui8 writ = static_cast<ui8>(data);
*this << writ;
}
void saveBooleanVector(const std::vector<bool> & data)
{
std::vector<ui8> convData;
std::copy(data.begin(), data.end(), std::back_inserter(convData));
saveSerializable(convData);
}
};
class DLL_LINKAGE CLoaderBase : public virtual CSerializer
{};
class CBasicPointerLoader
{
public:
virtual const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER
virtual ~CBasicPointerLoader(){}
};
template <typename T, typename Enable = void>
struct ClassObjectCreator
{
static T *invoke()
{
static_assert(!std::is_abstract<T>::value, "Cannot call new upon abstract classes!");
return new T();
}
};
template<typename T>
struct ClassObjectCreator<T, typename std::enable_if<std::is_abstract<T>::value>::type>
{
static T *invoke()
{
throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name()));
}
};
template <typename Serializer, typename T> class CPointerLoader : public CBasicPointerLoader
{
public:
const std::type_info * loadPtr(CLoaderBase &ar, void *data, ui32 pid) const //data is pointer to the ACTUAL POINTER
{
Serializer &s = static_cast<Serializer&>(ar);
T *&ptr = *static_cast<T**>(data);
//create new object under pointer
typedef typename boost::remove_pointer<T>::type npT;
ptr = ClassObjectCreator<npT>::invoke(); //does new npT or throws for abstract classes
s.ptrAllocated(ptr, pid);
//T is most derived known type, it's time to call actual serialize
ptr->serialize(s,version);
return &typeid(T);
}
};
/// The class which manages loading of objects.
template <typename Serializer> class DLL_LINKAGE CISer : public CLoaderBase
{
public:
bool saving;
std::map<ui16,CBasicPointerLoader*> loaders; // typeID => CPointerSaver<serializer,type>
si32 fileVersion;
bool reverseEndianess; //if source has different endianness than us, we reverse bytes
std::map<ui32, void*> loadedPointers;
std::map<ui32, const std::type_info*> loadedPointersTypes;
std::map<const void*, boost::any> loadedSharedPointers;
bool smartPointerSerialization;
CISer()
{
saving = false;
fileVersion = 0;
smartPointerSerialization = true;
reverseEndianess = false;
}
~CISer()
{
std::map<ui16,CBasicPointerLoader*>::iterator iter;
for(iter = loaders.begin(); iter != loaders.end(); iter++)
delete iter->second;
}
template<typename T>
void addLoader(const T * t = nullptr)
{
auto ID = typeList.getTypeID(t);
if(!loaders.count(ID))
loaders[ID] = new CPointerLoader<CISer<Serializer>, T>;
}
template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
typeList.registerType(b, d);
addLoader(b);
addLoader(d);
}
Serializer * This()
{
return static_cast<Serializer*>(this);
}
template<class T>
Serializer & operator>>(T &t)
{
this->This()->load(t);
return * this->This();
}
template<class T>
CISer & operator&(T & t)
{
return * this->This() >> t;
}
int write(const void * data, unsigned size);
template <typename T>
void load(T &data)
{
typedef
//if
typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Boolean> >,
mpl::identity<LoadBoolean<Serializer> >,
//else if
typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<BooleanVector> >,
mpl::identity<LoadBooleanVector<Serializer> >,
//else if
typename mpl::eval_if< mpl::equal_to<SerializationLevel<T>,mpl::int_<Primitive> >,
mpl::identity<LoadPrimitive<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Enum> >,
mpl::identity<LoadEnum<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Pointer> >,
mpl::identity<LoadPointer<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Array> >,
mpl::identity<LoadArray<Serializer,T> >,
//else if
typename mpl::eval_if<mpl::equal_to<SerializationLevel<T>,mpl::int_<Serializable> >,
mpl::identity<LoadSerializable<Serializer,T> >,
//else
mpl::identity<LoadWrong<Serializer,T> >
>
>
>
>
>
>
>::type typex;
typex::invoke(* this->This(), data);
}
template <typename T>
void loadPrimitive(T &data)
{
if(0) //for testing #989
{
this->This()->read(&data,sizeof(data));
}
else
{
unsigned length = sizeof(data);
char* dataPtr = (char*)&data;
this->This()->read(dataPtr,length);
if(reverseEndianess)
std::reverse(dataPtr, dataPtr + length);
}
}
template <typename T>
void loadSerializableBySerializeCall(T &data)
{
////that const cast is evil because it allows to implicitly overwrite const objects when deserializing
typedef typename boost::remove_const<T>::type nonConstT;
nonConstT &hlp = const_cast<nonConstT&>(data);
hlp.serialize(*this,fileVersion);
//data.serialize(*this,myVersion);
}
template <typename T>
void loadSerializable(T &data)
{
loadSerializableBySerializeCall(data);
}
template <typename T>
void loadArray(T &data)
{
ui32 size = ARRAY_COUNT(data);
for(ui32 i = 0; i < size; i++)
*this >> data[i];
}
template <typename T>
void loadPointer(T &data)
{
ui8 hlp;
*this >> hlp;
if(!hlp)
{
data = nullptr;
return;
}
if(smartVectorMembersSerialization)
{
typedef typename boost::remove_const<typename boost::remove_pointer<T>::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance
typedef typename VectorisedTypeFor<TObjectType>::type VType; //eg: CGHeroInstance -> CGobjectInstance
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = getVectorisedTypeInfo<VType, IDType>())
{
IDType id;
*this >> id;
if(id != IDType(-1))
{
data = static_cast<T>(getVectorItemFromId<VType, IDType>(*info, id));
return;
}
}
}
if(sendStackInstanceByIds)
{
bool gotLoaded = LoadIfStackInstance<Serializer,T>::invoke(*This(), data);
if(gotLoaded)
return;
}
ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id)
if(smartPointerSerialization)
{
*this >> pid; //get the id
std::map<ui32, void*>::iterator i = loadedPointers.find(pid); //lookup
if(i != loadedPointers.end())
{
// We already got this pointer
// Cast it in case we are loading it to a non-first base pointer
assert(loadedPointersTypes.count(pid));
data = reinterpret_cast<T>(typeList.castRaw(i->second, loadedPointersTypes.at(pid), &typeid(typename boost::remove_const<typename boost::remove_pointer<T>::type>::type)));
return;
}
}
//get type id
ui16 tid;
*this >> tid;
This()->loadPointerHlp(tid, data, pid);
}
//that part of ptr deserialization was extracted to allow customization of its behavior in derived classes
template <typename T>
void loadPointerHlp( ui16 tid, T & data, ui32 pid )
{
if(!tid)
{
typedef typename boost::remove_pointer<T>::type npT;
typedef typename boost::remove_const<npT>::type ncpT;
data = ClassObjectCreator<ncpT>::invoke();
ptrAllocated(data, pid);
*this >> *data;
}
else
{
auto typeInfo = loaders[tid]->loadPtr(*this,&data, pid);
data = reinterpret_cast<T>(typeList.castRaw((void*)data, typeInfo, &typeid(typename boost::remove_const<typename boost::remove_pointer<T>::type>::type)));
}
}
template <typename T>
void ptrAllocated(const T *ptr, ui32 pid)
{
if(smartPointerSerialization && pid != 0xffffffff)
{
loadedPointersTypes[pid] = &typeid(T);
loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt
}
}
#define READ_CHECK_U32(x) \
ui32 length; \
*this >> length; \
if(length > 500000) \
{ \
logGlobal->warnStream() << "Warning: very big length: " << length;\
reportState(logGlobal); \
};
template <typename T>
void loadSerializable(shared_ptr<T> &data)
{
typedef typename boost::remove_const<T>::type NonConstT;
NonConstT *internalPtr;
*this >> internalPtr;
void *internalPtrDerived = typeList.castToMostDerived(internalPtr);
if(internalPtr)
{
auto itr = loadedSharedPointers.find(internalPtrDerived);
if(itr != loadedSharedPointers.end())
{
// This pointers is already loaded. The "data" needs to be pointed to it,
// so their shared state is actually shared.
try
{
auto actualType = typeList.getTypeInfo(internalPtr);
auto typeWeNeedToReturn = typeList.getTypeInfo<T>();
if(*actualType == *typeWeNeedToReturn)
{
// No casting needed, just unpack already stored shared_ptr and return it
data = boost::any_cast<std::shared_ptr<T>>(itr->second);
}
else
{
// We need to perform series of casts
auto ret = typeList.castShared(itr->second, actualType, typeWeNeedToReturn);
data = boost::any_cast<std::shared_ptr<T>>(ret);
}
}
catch(std::exception &e)
{
logGlobal->errorStream() << e.what();
logGlobal->errorStream() << boost::format("Failed to cast stored shared ptr. Real type: %s. Needed type %s. FIXME FIXME FIXME")
% itr->second.type().name() % typeid(std::shared_ptr<T>).name();
//TODO scenario with inheritance -> we can have stored ptr to base and load ptr to derived (or vice versa)
assert(0);
}
}
else
{
auto hlp = std::shared_ptr<NonConstT>(internalPtr);
data = hlp; //possibly adds const
loadedSharedPointers[internalPtrDerived] = typeList.castSharedToMostDerived(hlp);
}
}
else
data.reset();
}
template <typename T>
void loadSerializable(unique_ptr<T> &data)
{
T *internalPtr;
*this >> internalPtr;
data.reset(internalPtr);
}
template <typename T>
void loadSerializable(std::vector<T> &data)
{
READ_CHECK_U32(length);
data.resize(length);
for(ui32 i=0;i<length;i++)
*this >> data[i];
}
template <typename T, size_t N>
void loadSerializable(std::array<T, N> &data)
{
for(ui32 i = 0; i < N; i++)
*this >> data[i];
}
template <typename T>
void loadSerializable(std::set<T> &data)
{
READ_CHECK_U32(length);
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
*this >> ins;
data.insert(ins);
}
}
template <typename T, typename U>
void loadSerializable(std::unordered_set<T, U> &data)
{
READ_CHECK_U32(length);
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
*this >> ins;
data.insert(ins);
}
}
template <typename T>
void loadSerializable(std::list<T> &data)
{
READ_CHECK_U32(length);
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
*this >> ins;
data.push_back(ins);
}
}
template <typename T1, typename T2>
void loadSerializable(std::pair<T1,T2> &data)
{
*this >> data.first >> data.second;
}
template <typename T1, typename T2>
void loadSerializable(std::map<T1,T2> &data)
{
READ_CHECK_U32(length);
data.clear();
T1 t;
for(ui32 i=0;i<length;i++)
{
*this >> t;
*this >> data[t];
}
}
template <typename T1, typename T2>
void loadSerializable(std::multimap<T1, T2> &data)
{
READ_CHECK_U32(length);
data.clear();
T1 key;
T2 value;
for(ui32 i = 0; i < length; i++)
{
*this >> key >> value;
data.insert(std::pair<T1, T2>(std::move(key), std::move(value)));
}
}
void loadSerializable(std::string &data)
{
READ_CHECK_U32(length);
data.resize(length);
this->This()->read((void*)data.c_str(),length);
}
template <BOOST_VARIANT_ENUM_PARAMS(typename T)>
void loadSerializable(boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> &data)
{
typedef boost::variant<BOOST_VARIANT_ENUM_PARAMS(T)> TVariant;
VariantLoaderHelper<TVariant, CISer> loader(*this);
si32 which;
*this >> which;
assert(which < loader.funcs.size());
data = loader.funcs.at(which)();
}
template <typename T>
void loadSerializable(boost::optional<T> & data)
{
ui8 present;
*this >> present;
if(present)
{
T t;
*this >> t;
data = t;
}
else
{
data = boost::optional<T>();
}
}
// void loadSerializable(CStackInstance *&s)
// {
// if(sendStackInstanceByIds)
// {
// CArmedInstance *armed;
// SlotID slot;
// *this >> armed >> slot;
// assert(armed->hasStackAtSlot(slot));
// s = armed->stacks[slot];
// }
// else
// loadSerializableBySerializeCall(s);
// }
template <typename E>
void loadEnum(E &data)
{
si32 read;
*this >> read;
data = static_cast<E>(read);
}
void loadBoolean(bool &data)
{
ui8 read;
*this >> read;
data = static_cast<bool>(read);
}
void loadBooleanVector(std::vector<bool> & data)
{
std::vector<ui8> convData;
loadSerializable(convData);
convData.resize(data.size());
range::copy(convData, data.begin());
}
};
class DLL_LINKAGE CSaveFile
: public COSer<CSaveFile>
{
public:
std::string fName;
unique_ptr<std::ofstream> sfile;
CSaveFile(const std::string &fname); //throws!
~CSaveFile();
int write(const void * data, unsigned size);
void openNextFile(const std::string &fname); //throws!
void clear();
void reportState(CLogger * out);
void putMagicBytes(const std::string &text);
};
class DLL_LINKAGE CLoadFile
: public CISer<CLoadFile>
{
public:
std::string fName;
unique_ptr<boost::filesystem::ifstream> sfile;
CLoadFile(const boost::filesystem::path & fname, int minimalVersion = version); //throws!
~CLoadFile();
int read(void * data, unsigned size); //throws!
void openNextFile(const boost::filesystem::path & fname, int minimalVersion); //throws!
void clear();
void reportState(CLogger * out);
void checkMagicBytes(const std::string & text);
};
class DLL_LINKAGE CLoadIntegrityValidator : public CISer<CLoadIntegrityValidator>
{
public:
unique_ptr<CLoadFile> primaryFile, controlFile;
bool foundDesync;
CLoadIntegrityValidator(const std::string &primaryFileName, const std::string &controlFileName, int minimalVersion = version); //throws!
int read( void * data, unsigned size); //throws!
void checkMagicBytes(const std::string &text);
unique_ptr<CLoadFile> decay(); //returns primary file. CLoadIntegrityValidator stops being usable anymore
};
typedef boost::asio::basic_stream_socket < boost::asio::ip::tcp , boost::asio::stream_socket_service<boost::asio::ip::tcp> > TSocket;
typedef boost::asio::basic_socket_acceptor<boost::asio::ip::tcp, boost::asio::socket_acceptor_service<boost::asio::ip::tcp> > TAcceptor;
class DLL_LINKAGE CConnection
: public CISer<CConnection>, public COSer<CConnection>
{
//CGameState *gs;
CConnection(void);
void init();
void reportState(CLogger * out);
public:
boost::mutex *rmx, *wmx; // read/write mutexes
TSocket * socket;
bool logging;
bool connected;
bool myEndianess, contactEndianess; //true if little endian, if endianness is different we'll have to revert received multi-byte vars
boost::asio::io_service *io_service;
std::string name; //who uses this connection
int connectionID;
boost::thread *handler;
bool receivedStop, sendStop;
CConnection(std::string host, std::string port, std::string Name);
CConnection(TAcceptor * acceptor, boost::asio::io_service *Io_service, std::string Name);
CConnection(TSocket * Socket, std::string Name); //use immediately after accepting connection into socket
int write(const void * data, unsigned size);
int read(void * data, unsigned size);
void close();
bool isOpen() const;
template<class T>
CConnection &operator&(const T&);
virtual ~CConnection(void);
CPack *retreivePack(); //gets from server next pack (allocates it with new)
void sendPackToServer(const CPack &pack, PlayerColor player, ui32 requestID);
void disableStackSendingByID();
void enableStackSendingByID();
void disableSmartPointerSerialization();
void enableSmartPointerSerializatoin();
void disableSmartVectorMemberSerialization();
void enableSmartVectorMemberSerializatoin();
void prepareForSendingHeroes(); //disables sending vectorised, enables smart pointer serialization, clears saved/loaded ptr cache
void enterPregameConnectionMode();
};
DLL_LINKAGE std::ostream &operator<<(std::ostream &str, const CConnection &cpc);
// Serializer that stores objects in the dynamic buffer. Allows performing deep object copies.
class DLL_LINKAGE CMemorySerializer
: public CISer<CMemorySerializer>, public COSer<CMemorySerializer>
{
std::vector<ui8> buffer;
size_t readPos; //index of the next byte to be read
public:
int read(void * data, unsigned size); //throws!
int write(const void * data, unsigned size);
CMemorySerializer();
template <typename T>
static unique_ptr<T> deepCopy(const T &data)
{
CMemorySerializer mem;
mem << &data;
unique_ptr<T> ret;
mem >> ret;
return ret;
}
};
template<typename T>
class CApplier
{
public:
std::map<ui16,T*> apps;
~CApplier()
{
typename std::map<ui16, T*>::iterator iter;
for(iter = apps.begin(); iter != apps.end(); iter++)
delete iter->second;
}
template<typename RegisteredType>
void addApplier(ui16 ID)
{
if(!apps.count(ID))
{
RegisteredType * rtype = nullptr;
apps[ID] = T::getApplier(rtype);
}
}
template<typename Base, typename Derived>
void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
typeList.registerType(b, d);
addApplier<Base>(typeList.getTypeID(b));
addApplier<Derived>(typeList.getTypeID(d));
}
};