1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-01-14 02:33:51 +02:00
vcmi/lib/rmg/CZonePlacer.cpp
Ivan Savenko c3ce4b25df Removed all #include's of CMap.h from headers.
To all - please, avoid #include's in headers as much as possible
This kills incremental build compile times
2015-12-02 21:05:10 +02:00

437 lines
14 KiB
C++

/*
* CZonePlacer.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "../CRandomGenerator.h"
#include "CZonePlacer.h"
#include "CRmgTemplateZone.h"
#include "../mapping/CMap.h"
#include "CZoneGraphGenerator.h"
class CRandomGenerator;
CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone)
{
}
CZonePlacer::CZonePlacer(CMapGenerator * Gen) : gen(Gen)
{
}
CZonePlacer::~CZonePlacer()
{
}
int3 CZonePlacer::cords (const float3 f) const
{
return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z);
}
void CZonePlacer::placeZones(const CMapGenOptions * mapGenOptions, CRandomGenerator * rand)
{
logGlobal->infoStream() << "Starting zone placement";
int width = mapGenOptions->getWidth();
int height = mapGenOptions->getHeight();
auto zones = gen->getZones();
bool underground = mapGenOptions->getHasTwoLevels();
//gravity-based algorithm
const float gravityConstant = 4e-3;
const float stiffnessConstant = 4e-3;
float zoneScale = 1.0f / std::sqrt(zones.size()); //zones starts small and then inflate. placing more zones is more difficult
const float inflateModifier = 1.02;
/*
let's assume we try to fit N circular zones with radius = size on a map
formula: sum((prescaler*n)^2)*pi = WH
prescaler = sqrt((WH)/(sum(n^2)*pi))
*/
std::vector<std::pair<TRmgTemplateZoneId, CRmgTemplateZone*>> zonesVector (zones.begin(), zones.end());
assert (zonesVector.size());
RandomGeneratorUtil::randomShuffle(zonesVector, *rand);
TRmgTemplateZoneId firstZone = zones.begin()->first; //we want lowest ID here
bool undergroundFlag = false;
std::vector<float> totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map
const float radius = 0.4f;
const float pi2 = 6.28f;
for (auto zone : zonesVector)
{
//even distribution for surface / underground zones. Surface zones always have priority.
int level = 0;
if (underground) //only then consider underground zones
{
if (zone.first == firstZone)
{
level = 0;
}
else
{
level = undergroundFlag;
undergroundFlag = !undergroundFlag; //toggle underground on/off
}
}
totalSize[level] += (zone.second->getSize() * zone.second->getSize());
float randomAngle = rand->nextDouble(0, pi2);
zone.second->setCenter(float3(0.5f + std::sin(randomAngle) * radius, 0.5f + std::cos(randomAngle) * radius, level)); //place zones around circle
}
//prescale zones
std::vector<float> prescaler = { 0, 0 };
for (int i = 0; i < 2; i++)
prescaler[i] = sqrt((width * height) / (totalSize[i] * 3.14f));
float mapSize = sqrt (width * height);
for (auto zone : zones)
{
zone.second->setSize (zone.second->getSize() * prescaler[zone.second->getCenter().z]);
}
//gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back
//remember best solution
float bestTotalDistance = 1e10;
float bestTotalOverlap = 1e10;
//float bestRatio = 1e10;
std::map<CRmgTemplateZone *, float3> bestSolution;
const int maxDistanceMovementRatio = zones.size() * zones.size(); //experimental - the more zones, the greater total distance expected
auto getDistance = [](float distance) -> float
{
return (distance ? distance * distance : 1e-6);
};
std::map <CRmgTemplateZone *, float3> forces;
std::map <CRmgTemplateZone *, float> distances;
std::map <CRmgTemplateZone *, float> overlaps;
while (zoneScale < 1) //until zones reach their desired size and fill the map tightly
{
for (auto zone : zones)
{
float3 forceVector(0,0,0);
float3 pos = zone.second->getCenter();
float totalDistance = 0;
//attract connected zones
for (auto con : zone.second->getConnections())
{
auto otherZone = zones[con];
float3 otherZoneCenter = otherZone->getCenter();
float distance = pos.dist2d (otherZoneCenter);
float minDistance = (zone.second->getSize() + otherZone->getSize())/mapSize * zoneScale; //scale down to (0,1) coordinates
if (distance > minDistance)
{
//WARNING: compiler used to 'optimize' that line so it never actually worked
forceVector += (((otherZoneCenter - pos)*(pos.z == otherZoneCenter.z ? (minDistance/distance) : 1)/ getDistance(distance))) * gravityConstant; //positive value
totalDistance += (distance - minDistance);
}
}
distances[zone.second] = totalDistance;
float totalOverlap = 0;
//separate overlaping zones
for (auto otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
//zones on different levels don't push away
if (zone == otherZone || pos.z != otherZoneCenter.z)
continue;
float distance = pos.dist2d (otherZoneCenter);
float minDistance = (zone.second->getSize() + otherZone.second->getSize())/mapSize * zoneScale;
if (distance < minDistance)
{
forceVector -= (((otherZoneCenter - pos)*(minDistance/(distance ? distance : 1e-3))) / getDistance(distance)) * stiffnessConstant; //negative value
totalOverlap += (minDistance - distance) / (zoneScale * zoneScale); //overlapping of small zones hurts us more
}
}
//move zones away from boundaries
//do not scale boundary distance - zones tend to get squashed
float size = zone.second->getSize() / mapSize;
auto pushAwayFromBoundary = [&forceVector, pos, &getDistance, size, stiffnessConstant, &totalOverlap](float x, float y)
{
float3 boundary = float3 (x, y, pos.z);
float distance = pos.dist2d(boundary);
totalOverlap += distance; //overlapping map boundaries is wrong as well
forceVector -= (boundary - pos) * (size - distance) / getDistance(distance) * stiffnessConstant; //negative value
};
if (pos.x < size)
{
pushAwayFromBoundary(0, pos.y);
}
if (pos.x > 1-size)
{
pushAwayFromBoundary(1, pos.y);
}
if (pos.y < size)
{
pushAwayFromBoundary(pos.x, 0);
}
if (pos.y > 1-size)
{
pushAwayFromBoundary(pos.x, 1);
}
overlaps[zone.second] = totalOverlap;
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
forces[zone.second] = forceVector;
}
//update positions
for (auto zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second);
}
//now perform drastic movement of zone that is completely not linked
float maxRatio = 0;
CRmgTemplateZone * misplacedZone = nullptr;
float totalDistance = 0;
float totalOverlap = 0;
for (auto zone : distances) //find most misplaced zone
{
totalDistance += zone.second;
float overlap = overlaps[zone.first];
totalOverlap += overlap;
float ratio = (zone.second + overlap) / forces[zone.first].mag(); //if distance to actual movement is long, the zone is misplaced
if (ratio > maxRatio)
{
maxRatio = ratio;
misplacedZone = zone.first;
}
}
logGlobal->traceStream() << boost::format("Total distance between zones in this iteration: %2.4f, Total overlap: %2.4f, Worst misplacement/movement ratio: %3.2f") % totalDistance % totalOverlap % maxRatio;
//save best solution before drastic jump
if (totalDistance + totalOverlap < bestTotalDistance + bestTotalOverlap)
{
bestTotalDistance = totalDistance;
bestTotalOverlap = totalOverlap;
//if (maxRatio < bestRatio)
//{
// bestRatio = maxRatio;
for (auto zone : zones)
bestSolution[zone.second] = zone.second->getCenter();
}
if (maxRatio > maxDistanceMovementRatio)
{
CRmgTemplateZone * targetZone = nullptr;
float3 ourCenter = misplacedZone->getCenter();
if (totalDistance > totalOverlap)
{
//find most distant zone that should be attracted and move inside it
float maxDistance = 0;
for (auto con : misplacedZone->getConnections())
{
auto otherZone = zones[con];
float distance = otherZone->getCenter().dist2dSQ(ourCenter);
if (distance > maxDistance)
{
maxDistance = distance;
targetZone = otherZone;
}
}
float3 vec = targetZone->getCenter() - ourCenter;
float newDistanceBetweenZones = (std::max(misplacedZone->getSize(), targetZone->getSize())) * zoneScale / mapSize;
logGlobal->traceStream() << boost::format("Trying to move zone %d %s towards %d %s. Old distance %f") %
misplacedZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxDistance;
logGlobal->traceStream() << boost::format("direction is %s") % vec();
misplacedZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size
logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(misplacedZone->getCenter());
}
else
{
float maxOverlap = 0;
for (auto otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
if (otherZone.second == misplacedZone || otherZoneCenter.z != ourCenter.z)
continue;
float distance = otherZoneCenter.dist2dSQ(ourCenter);
if (distance > maxOverlap)
{
maxOverlap = distance;
targetZone = otherZone.second;
}
}
float3 vec = ourCenter - targetZone->getCenter();
float newDistanceBetweenZones = (misplacedZone->getSize() + targetZone->getSize()) * zoneScale / mapSize;
logGlobal->traceStream() << boost::format("Trying to move zone %d %s away from %d %s. Old distance %f") %
misplacedZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxOverlap;
logGlobal->traceStream() << boost::format("direction is %s") % vec();
misplacedZone->setCenter(targetZone->getCenter() + vec.unitVector() * newDistanceBetweenZones); //zones should now be just separated
logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(misplacedZone->getCenter());
}
}
zoneScale *= inflateModifier; //increase size of zones so they
}
logGlobal->traceStream() << boost::format("Best fitness reached: total distance %2.4f, total overlap %2.4f") % bestTotalDistance % bestTotalOverlap;
for (auto zone : zones) //finalize zone positions
{
zone.second->setPos (cords (bestSolution[zone.second]));
logGlobal->traceStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos();
}
}
float CZonePlacer::metric (const int3 &A, const int3 &B) const
{
/*
Matlab code
dx = abs(A(1) - B(1)); %distance must be symmetric
dy = abs(A(2) - B(2));
d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ...
0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy;
*/
float dx = abs(A.x - B.x) * scaleX;
float dy = abs(A.y - B.y) * scaleY;
//Horner scheme
return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618));
}
void CZonePlacer::assignZones(const CMapGenOptions * mapGenOptions)
{
logGlobal->infoStream() << "Starting zone colouring";
auto width = mapGenOptions->getWidth();
auto height = mapGenOptions->getHeight();
//scale to Medium map to ensure smooth results
scaleX = 72.f / width;
scaleY = 72.f / height;
auto zones = gen->getZones();
typedef std::pair<CRmgTemplateZone *, float> Dpair;
std::vector <Dpair> distances;
distances.reserve(zones.size());
//now place zones correctly and assign tiles to each zone
auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
return lhs.second < rhs.second;
};
auto moveZoneToCenterOfMass = [](CRmgTemplateZone * zone) -> void
{
int3 total(0, 0, 0);
auto tiles = zone->getTileInfo();
for (auto tile : tiles)
{
total += tile;
}
int size = tiles.size();
assert(size);
zone->setPos(int3(total.x / size, total.y / size, total.z / size));
};
int levels = gen->map->twoLevel ? 2 : 1;
/*
1. Create Voronoi diagram
2. find current center of mass for each zone. Move zone to that center to balance zones sizes
*/
for (int i = 0; i<width; i++)
{
for (int j = 0; j<height; j++)
{
for (int k = 0; k < levels; k++)
{
distances.clear();
int3 pos(i, j, k);
for (auto zone : zones)
{
if (zone.second->getPos().z == k)
distances.push_back(std::make_pair(zone.second, pos.dist2dSQ(zone.second->getPos())));
else
distances.push_back(std::make_pair(zone.second, std::numeric_limits<float>::max()));
}
boost::sort(distances, compareByDistance);
distances.front().first->addTile(pos); //closest tile belongs to zone
}
}
}
for (auto zone : zones)
moveZoneToCenterOfMass(zone.second);
//assign actual tiles to each zone using nonlinear norm for fine edges
for (auto zone : zones)
zone.second->clearTiles(); //now populate them again
for (int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
for (int k = 0; k < levels; k++)
{
distances.clear();
int3 pos(i, j, k);
for (auto zone : zones)
{
if (zone.second->getPos().z == k)
distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos())));
else
distances.push_back (std::make_pair(zone.second, std::numeric_limits<float>::max()));
}
boost::sort (distances, compareByDistance);
distances.front().first->addTile(pos); //closest tile belongs to zone
}
}
}
//set position (town position) to center of mass of irregular zone
for (auto zone : zones)
{
moveZoneToCenterOfMass(zone.second);
//TODO: similiar for islands
#define CREATE_FULL_UNDERGROUND true //consider linking this with water amount
if (zone.second->getPos().z)
{
if (!CREATE_FULL_UNDERGROUND)
zone.second->discardDistantTiles(gen, zone.second->getSize() + 1);
//make sure that terrain inside zone is not a rock
//FIXME: reorder actions?
zone.second->paintZoneTerrain (gen, ETerrainType::SUBTERRANEAN);
}
}
logGlobal->infoStream() << "Finished zone colouring";
}