1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-01-10 00:43:59 +02:00
vcmi/lib/serializer/BinaryDeserializer.h
2024-01-20 23:26:04 +02:00

519 lines
12 KiB
C++

/*
* BinaryDeserializer.h, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#pragma once
#include "CSerializer.h"
#include "CTypeList.h"
#include "ESerializationVersion.h"
#include "../mapObjects/CGHeroInstance.h"
VCMI_LIB_NAMESPACE_BEGIN
class DLL_LINKAGE CLoaderBase
{
protected:
IBinaryReader * reader;
public:
CLoaderBase(IBinaryReader * r): reader(r){};
inline int read(void * data, unsigned size)
{
return reader->read(data, size);
};
};
/// Main class for deserialization of classes from binary form
/// Effectively revesed version of BinarySerializer
class DLL_LINKAGE BinaryDeserializer : public CLoaderBase
{
template<typename Ser,typename T>
struct LoadIfStackInstance
{
static bool invoke(Ser &s, T &data)
{
return false;
}
};
template<typename Ser>
struct LoadIfStackInstance<Ser, CStackInstance *>
{
static bool invoke(Ser &s, CStackInstance* &data)
{
CArmedInstance *armedObj;
SlotID slot;
s.load(armedObj);
s.load(slot);
if(slot != SlotID::COMMANDER_SLOT_PLACEHOLDER)
{
assert(armedObj->hasStackAtSlot(slot));
data = armedObj->stacks[slot];
}
else
{
auto * hero = dynamic_cast<CGHeroInstance *>(armedObj);
assert(hero);
assert(hero->commander);
data = hero->commander;
}
return true;
}
};
template <typename T, typename Enable = void>
struct ClassObjectCreator
{
static T *invoke(IGameCallback *cb)
{
static_assert(!std::is_base_of_v<GameCallbackHolder, T>, "Cannot call new upon map objects!");
static_assert(!std::is_abstract_v<T>, "Cannot call new upon abstract classes!");
return new T();
}
};
template<typename T>
struct ClassObjectCreator<T, typename std::enable_if_t<std::is_abstract_v<T>>>
{
static T *invoke(IGameCallback *cb)
{
throw std::runtime_error("Something went really wrong during deserialization. Attempted creating an object of an abstract class " + std::string(typeid(T).name()));
}
};
template<typename T>
struct ClassObjectCreator<T, typename std::enable_if_t<std::is_base_of_v<GameCallbackHolder, T> && !std::is_abstract_v<T>>>
{
static T *invoke(IGameCallback *cb)
{
static_assert(!std::is_abstract<T>::value, "Cannot call new upon abstract classes!");
return new T(cb);
}
};
STRONG_INLINE ui32 readAndCheckLength()
{
ui32 length;
load(length);
//NOTE: also used for h3m's embedded in campaigns, so it may be quite large in some cases (e.g. XXL maps with multiple objects)
if(length > 1000000)
{
logGlobal->warn("Warning: very big length: %d", length);
reader->reportState(logGlobal);
};
return length;
}
template <typename Type> class CPointerLoader;
class IPointerLoader
{
public:
virtual void * loadPtr(CLoaderBase &ar, IGameCallback * cb, ui32 pid) const =0; //data is pointer to the ACTUAL POINTER
virtual ~IPointerLoader() = default;
template<typename Type> static IPointerLoader *getApplier(const Type * t = nullptr)
{
return new CPointerLoader<Type>();
}
};
template <typename Type>
class CPointerLoader : public IPointerLoader
{
public:
void * loadPtr(CLoaderBase &ar, IGameCallback * cb, ui32 pid) const override //data is pointer to the ACTUAL POINTER
{
auto & s = static_cast<BinaryDeserializer &>(ar);
//create new object under pointer
Type * ptr = ClassObjectCreator<Type>::invoke(cb); //does new npT or throws for abstract classes
s.ptrAllocated(ptr, pid);
ptr->serialize(s);
return static_cast<void*>(ptr);
}
};
CApplier<IPointerLoader> applier;
int write(const void * data, unsigned size);
public:
using Version = ESerializationVersion;
bool reverseEndianess; //if source has different endianness than us, we reverse bytes
Version version;
std::map<ui32, void*> loadedPointers;
std::map<const void*, std::shared_ptr<void>> loadedSharedPointers;
IGameCallback * cb = nullptr;
bool smartPointerSerialization;
bool saving;
BinaryDeserializer(IBinaryReader * r);
template<class T>
BinaryDeserializer & operator&(T & t)
{
this->load(t);
return * this;
}
template < class T, typename std::enable_if < std::is_fundamental<T>::value && !std::is_same<T, bool>::value, int >::type = 0 >
void load(T &data)
{
unsigned length = sizeof(data);
char * dataPtr = reinterpret_cast<char *>(&data);
this->read(dataPtr,length);
if(reverseEndianess)
std::reverse(dataPtr, dataPtr + length);
}
template < typename T, typename std::enable_if < is_serializeable<BinaryDeserializer, T>::value, int >::type = 0 >
void load(T &data)
{
////that const cast is evil because it allows to implicitly overwrite const objects when deserializing
typedef typename std::remove_const<T>::type nonConstT;
auto & hlp = const_cast<nonConstT &>(data);
hlp.serialize(*this);
}
template < typename T, typename std::enable_if < std::is_array<T>::value, int >::type = 0 >
void load(T &data)
{
ui32 size = std::size(data);
for(ui32 i = 0; i < size; i++)
load(data[i]);
}
template < typename T, typename std::enable_if < std::is_enum<T>::value, int >::type = 0 >
void load(T &data)
{
si32 read;
load( read );
data = static_cast<T>(read);
}
template < typename T, typename std::enable_if < std::is_same<T, bool>::value, int >::type = 0 >
void load(T &data)
{
ui8 read;
load( read );
data = static_cast<bool>(read);
}
template <typename T, typename std::enable_if < !std::is_same<T, bool >::value, int >::type = 0>
void load(std::vector<T> &data)
{
ui32 length = readAndCheckLength();
data.resize(length);
for(ui32 i=0;i<length;i++)
load( data[i]);
}
template < typename T, typename std::enable_if < std::is_pointer<T>::value, int >::type = 0 >
void load(T &data)
{
bool isNull;
load( isNull );
if(isNull)
{
data = nullptr;
return;
}
loadPointerImpl(data);
}
template < typename T, typename std::enable_if < std::is_base_of_v<Entity, std::remove_pointer_t<T>>, int >::type = 0 >
void loadPointerImpl(T &data)
{
using DataType = std::remove_pointer_t<T>;
typename DataType::IdentifierType index;
load(index);
auto * constEntity = index.toEntity(VLC);
auto * constData = dynamic_cast<const DataType *>(constEntity);
data = const_cast<DataType *>(constData);
}
template < typename T, typename std::enable_if < !std::is_base_of_v<Entity, std::remove_pointer_t<T>>, int >::type = 0 >
void loadPointerImpl(T &data)
{
if(reader->smartVectorMembersSerialization)
{
typedef typename std::remove_const<typename std::remove_pointer<T>::type>::type TObjectType; //eg: const CGHeroInstance * => CGHeroInstance
typedef typename VectorizedTypeFor<TObjectType>::type VType; //eg: CGHeroInstance -> CGobjectInstance
typedef typename VectorizedIDType<TObjectType>::type IDType;
if(const auto *info = reader->getVectorizedTypeInfo<VType, IDType>())
{
IDType id;
load(id);
if(id != IDType(-1))
{
data = static_cast<T>(reader->getVectorItemFromId<VType, IDType>(*info, id));
return;
}
}
}
if(reader->sendStackInstanceByIds)
{
bool gotLoaded = LoadIfStackInstance<BinaryDeserializer,T>::invoke(* this, data);
if(gotLoaded)
return;
}
ui32 pid = 0xffffffff; //pointer id (or maybe rather pointee id)
if(smartPointerSerialization)
{
load( pid ); //get the id
auto i = loadedPointers.find(pid); //lookup
if(i != loadedPointers.end())
{
// We already got this pointer
// Cast it in case we are loading it to a non-first base pointer
data = static_cast<T>(i->second);
return;
}
}
//get type id
ui16 tid;
load( tid );
if(!tid)
{
typedef typename std::remove_pointer<T>::type npT;
typedef typename std::remove_const<npT>::type ncpT;
data = ClassObjectCreator<ncpT>::invoke(cb);
ptrAllocated(data, pid);
load(*data);
}
else
{
auto * app = applier.getApplier(tid);
if(app == nullptr)
{
logGlobal->error("load %d %d - no loader exists", tid, pid);
data = nullptr;
return;
}
data = static_cast<T>(app->loadPtr(*this, cb, pid));
}
}
template <typename T>
void ptrAllocated(const T *ptr, ui32 pid)
{
if(smartPointerSerialization && pid != 0xffffffff)
loadedPointers[pid] = (void*)ptr; //add loaded pointer to our lookup map; cast is to avoid errors with const T* pt
}
template<typename Base, typename Derived> void registerType(const Base * b = nullptr, const Derived * d = nullptr)
{
applier.registerType(b, d);
}
template <typename T>
void load(std::shared_ptr<T> &data)
{
typedef typename std::remove_const<T>::type NonConstT;
NonConstT *internalPtr;
load(internalPtr);
void * internalPtrDerived = static_cast<void*>(internalPtr);
if(internalPtr)
{
auto itr = loadedSharedPointers.find(internalPtrDerived);
if(itr != loadedSharedPointers.end())
{
// This pointers is already loaded. The "data" needs to be pointed to it,
// so their shared state is actually shared.
data = std::static_pointer_cast<T>(itr->second);
}
else
{
auto hlp = std::shared_ptr<NonConstT>(internalPtr);
data = hlp;
loadedSharedPointers[internalPtrDerived] = std::static_pointer_cast<void>(hlp);
}
}
else
data.reset();
}
void load(std::monostate & data)
{
// no-op
}
template <typename T>
void load(std::shared_ptr<const T> & data)
{
std::shared_ptr<T> nonConstData;
load(nonConstData);
data = nonConstData;
}
template <typename T>
void load(std::unique_ptr<T> &data)
{
T *internalPtr;
load( internalPtr );
data.reset(internalPtr);
}
template <typename T, size_t N>
void load(std::array<T, N> &data)
{
for(ui32 i = 0; i < N; i++)
load( data[i] );
}
template <typename T>
void load(std::set<T> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
load( ins );
data.insert(ins);
}
}
template <typename T, typename U>
void load(std::unordered_set<T, U> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
load(ins);
data.insert(ins);
}
}
template <typename T>
void load(std::list<T> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T ins;
for(ui32 i=0;i<length;i++)
{
load(ins);
data.push_back(ins);
}
}
template <typename T1, typename T2>
void load(std::pair<T1,T2> &data)
{
load(data.first);
load(data.second);
}
template <typename T1, typename T2>
void load(std::map<T1,T2> &data)
{
ui32 length = readAndCheckLength();
data.clear();
T1 key;
for(ui32 i=0;i<length;i++)
{
load(key);
load(data[key]);
}
}
void load(std::string &data)
{
ui32 length = readAndCheckLength();
data.resize(length);
this->read((void*)data.c_str(),length);
}
template<typename... TN>
void load(std::variant<TN...> & data)
{
si32 which;
load( which );
assert(which < sizeof...(TN));
// Create array of variants that contains all default-constructed alternatives
const std::variant<TN...> table[] = { TN{ }... };
// use appropriate alternative for result
data = table[which];
// perform actual load via std::visit dispatch
std::visit([&](auto& o) { load(o); }, data);
}
template<typename T>
void load(std::optional<T> & data)
{
ui8 present;
load( present );
if(present)
{
//TODO: replace with emplace once we start request Boost 1.56+, see PR360
T t;
load(t);
data = std::make_optional(std::move(t));
}
else
{
data = std::optional<T>();
}
}
template <typename T>
void load(boost::multi_array<T, 3> & data)
{
ui32 length = readAndCheckLength();
ui32 x;
ui32 y;
ui32 z;
load(x);
load(y);
load(z);
data.resize(boost::extents[x][y][z]);
assert(length == data.num_elements()); //x*y*z should be equal to number of elements
for(ui32 i = 0; i < length; i++)
load(data.data()[i]);
}
template <std::size_t T>
void load(std::bitset<T> &data)
{
static_assert(T <= 64);
if constexpr (T <= 16)
{
uint16_t read;
load(read);
data = read;
}
else if constexpr (T <= 32)
{
uint32_t read;
load(read);
data = read;
}
else if constexpr (T <= 64)
{
uint64_t read;
load(read);
data = read;
}
}
};
VCMI_LIB_NAMESPACE_END