1
0
mirror of https://github.com/vcmi/vcmi.git synced 2024-11-26 08:41:13 +02:00
vcmi/lib/rmg/CZonePlacer.cpp
2014-10-31 13:37:23 +01:00

327 lines
9.7 KiB
C++

/*
* CZonePlacer.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "../CRandomGenerator.h"
#include "CZonePlacer.h"
#include "CRmgTemplateZone.h"
#include "CZoneGraphGenerator.h"
class CRandomGenerator;
CPlacedZone::CPlacedZone(const CRmgTemplateZone * zone)
{
}
CZonePlacer::CZonePlacer(CMapGenerator * Gen) : gen(Gen)
{
}
CZonePlacer::~CZonePlacer()
{
}
int3 CZonePlacer::cords (const float3 f) const
{
return int3(std::max(0.f, (f.x * gen->map->width)-1), std::max(0.f, (f.y * gen->map->height-1)), f.z);
}
void CZonePlacer::placeZones(const CMapGenOptions * mapGenOptions, CRandomGenerator * rand)
{
//gravity-based algorithm
float gravityConstant = 1e-2;
float zoneScale = 0.5f; //zones starts small and then inflate
const float inflateModifier = 1.02;
logGlobal->infoStream() << "Starting zone placement";
int width = mapGenOptions->getWidth();
int height = mapGenOptions->getHeight();
auto zones = gen->getZones();
bool underground = mapGenOptions->getHasTwoLevels();
/*
let's assume we try to fit N circular zones with radius = size on a map
formula: sum((prescaler*n)^2)*pi = WH
prescaler = sqrt((WH)/(sum(n^2)*pi))
*/
std::vector<std::pair<TRmgTemplateZoneId, CRmgTemplateZone*>> zonesVector (zones.begin(), zones.end());
assert (zonesVector.size());
RandomGeneratorUtil::randomShuffle(zonesVector, *rand);
TRmgTemplateZoneId firstZone = zones.begin()->first; //we want lowest ID here
bool undergroundFlag = false;
std::vector<float> totalSize = { 0, 0 }; //make sure that sum of zone sizes on surface and uderground match size of the map
for (auto zone : zonesVector)
{
//even distribution for surface / underground zones. Surface zones always have priority.
int level = 0;
if (underground) //only then consider underground zones
{
if (zone.first == firstZone)
{
level = 0;
}
else
{
level = undergroundFlag;
undergroundFlag = !undergroundFlag; //toggle underground on/off
}
}
totalSize[level] += (zone.second->getSize() * zone.second->getSize());
zone.second->setCenter (float3(rand->nextDouble(0.2, 0.8), rand->nextDouble(0.2, 0.8), level)); //start away from borders
}
//prescale zones
std::vector<float> prescaler = { 0, 0 };
for (int i = 0; i < 2; i++)
prescaler[i] = sqrt((width * height) / (totalSize[i] * 3.14f));
float mapSize = sqrt (width * height);
for (auto zone : zones)
{
zone.second->setSize (zone.second->getSize() * prescaler[zone.second->getCenter().z]);
}
//gravity-based algorithm. connected zones attract, intersceting zones and map boundaries push back
auto getDistance = [](float distance) -> float
{
return (distance ? distance * distance : 1e-6);
};
std::map <CRmgTemplateZone *, float3> forces;
std::map <CRmgTemplateZone *, float> distances;
while (zoneScale < 1) //until zones reach their desired size and fill the map tightly
{
for (auto zone : zones)
{
float3 forceVector(0,0,0);
float3 pos = zone.second->getCenter();
float totalDistance = 0;
//attract connected zones
for (auto con : zone.second->getConnections())
{
auto otherZone = zones[con];
float3 otherZoneCenter = otherZone->getCenter();
float distance = pos.dist2d (otherZoneCenter);
float minDistance = (zone.second->getSize() + otherZone->getSize())/mapSize * zoneScale; //scale down to (0,1) coordinates
if (distance > minDistance)
{
//WARNING: compiler used to 'optimize' that line so it never actually worked
forceVector += (((otherZoneCenter - pos)*(pos.z != otherZoneCenter.z ? (distance - minDistance) : 1)/ getDistance(distance))); //positive value
totalDistance += distance;
}
}
distances[zone.second] = totalDistance;
//separate overlaping zones
for (auto otherZone : zones)
{
float3 otherZoneCenter = otherZone.second->getCenter();
//zones on different levels don't push away
if (zone == otherZone || pos.z != otherZoneCenter.z)
continue;
float distance = pos.dist2d (otherZoneCenter);
float minDistance = (zone.second->getSize() + otherZone.second->getSize())/mapSize * zoneScale;
if (distance < minDistance)
{
forceVector -= (((otherZoneCenter - pos)*(minDistance - distance)) / getDistance(distance)); //negative value
}
}
//move zones away from boundaries
//do not scale boundary distance - zones tend to get squashed
float size = zone.second->getSize() / mapSize;
auto pushAwayFromBoundary = [&forceVector, pos, &getDistance](float x, float y)
{
float3 boundary = float3 (x, y, pos.z);
float distance = pos.dist2d(boundary);
forceVector -= (boundary - pos) / getDistance(distance); //negative value
};
if (pos.x < size)
{
pushAwayFromBoundary(0, pos.y);
}
if (pos.x > 1-size)
{
pushAwayFromBoundary(1, pos.y);
}
if (pos.y < size)
{
pushAwayFromBoundary(pos.x, 0);
}
if (pos.y > 1-size)
{
pushAwayFromBoundary(pos.x, 1);
}
forceVector.z = 0; //operator - doesn't preserve z coordinate :/
forces[zone.second] = forceVector * gravityConstant;
}
//update positions
for (auto zone : forces)
{
zone.first->setCenter (zone.first->getCenter() + zone.second);
}
//now perform drastic movement of zone that is completely not linked
float maxRatio = 0;
CRmgTemplateZone * distantZone = nullptr;
float totalDistance = 0;
for (auto zone : distances) //find most misplaced zone
{
totalDistance += zone.second;
float ratio = zone.second / forces[zone.first].mag(); //if distance to actual movement is long, the zone is misplaced
if (ratio > maxRatio)
{
maxRatio = ratio;
distantZone = zone.first;
}
}
logGlobal->traceStream() << boost::format("Total distance between zones in this iteration: %2.2f, Worst distance/movement ratio: %3.2f") % totalDistance % maxRatio;
if (maxRatio > 100) //TODO: scale?
{
//find most distant zone that should be attracted and move inside it
CRmgTemplateZone * targetZone = nullptr;
float maxDistance = 0;
float3 ourCenter = distantZone->getCenter();
for (auto con : distantZone->getConnections())
{
auto otherZone = zones[con];
float distance = otherZone->getCenter().dist2dSQ(ourCenter);
if (distance > maxDistance)
{
maxDistance = distance;
targetZone = otherZone;
}
}
float3 vec = targetZone->getCenter() - ourCenter;
float newDistanceBetweenZones = (std::max (distantZone->getSize(),targetZone->getSize())) * zoneScale / mapSize;
logGlobal->traceStream() << boost::format("Trying to move zone %d %s towards %d %s. Old distance %f") %
distantZone->getId() % ourCenter() % targetZone->getId() % targetZone->getCenter()() % maxDistance;
logGlobal->traceStream() << boost::format("direction is %s") % vec();
distantZone->setCenter(targetZone->getCenter() - vec.unitVector() * newDistanceBetweenZones); //zones should now overlap by half size
logGlobal->traceStream() << boost::format("New distance %f") % targetZone->getCenter().dist2d(distantZone->getCenter());
}
zoneScale *= inflateModifier; //increase size of zones so they
}
for (auto zone : zones) //finalize zone positions
{
zone.second->setPos(cords(zone.second->getCenter()));
logGlobal->infoStream() << boost::format ("Placed zone %d at relative position %s and coordinates %s") % zone.first % zone.second->getCenter() % zone.second->getPos();
}
}
float CZonePlacer::metric (const int3 &A, const int3 &B) const
{
/*
Matlab code
dx = abs(A(1) - B(1)); %distance must be symmetric
dy = abs(A(2) - B(2));
d = 0.01 * dx^3 - 0.1618 * dx^2 + 1 * dx + ...
0.01618 * dy^3 + 0.1 * dy^2 + 0.168 * dy;
*/
float dx = abs(A.x - B.x) * scaleX;
float dy = abs(A.y - B.y) * scaleY;
//Horner scheme
return dx * (1 + dx * (0.1 + dx * 0.01)) + dy * (1.618 + dy * (-0.1618 + dy * 0.01618));
}
void CZonePlacer::assignZones(const CMapGenOptions * mapGenOptions)
{
logGlobal->infoStream() << "Starting zone colouring";
auto width = mapGenOptions->getWidth();
auto height = mapGenOptions->getHeight();
//scale to Medium map to ensure smooth results
scaleX = 72.f / width;
scaleY = 72.f / height;
auto zones = gen->getZones();
typedef std::pair<CRmgTemplateZone *, float> Dpair;
std::vector <Dpair> distances;
distances.reserve(zones.size());
auto compareByDistance = [](const Dpair & lhs, const Dpair & rhs) -> bool
{
return lhs.second < rhs.second;
};
int levels = gen->map->twoLevel ? 2 : 1;
for (int i=0; i<width; i++)
{
for(int j=0; j<height; j++)
{
for (int k = 0; k < levels; k++)
{
distances.clear();
int3 pos(i, j, k);
for (auto zone : zones)
{
if (zone.second->getPos().z == k)
distances.push_back (std::make_pair(zone.second, metric(pos, zone.second->getPos())));
else
distances.push_back (std::make_pair(zone.second, std::numeric_limits<float>::max()));
}
boost::sort (distances, compareByDistance);
distances.front().first->addTile(pos); //closest tile belongs to zone
}
}
}
//set position to center of mass
for (auto zone : zones)
{
int3 total(0,0,0);
auto tiles = zone.second->getTileInfo();
for (auto tile : tiles)
{
total += tile;
}
int size = tiles.size();
assert (size);
zone.second->setPos (int3(total.x/size, total.y/size, total.z/size));
//TODO: similiar for islands
if (zone.second->getPos().z)
{
zone.second->discardDistantTiles(gen, zone.second->getSize() + 1);
//make sure that terrain inside zone is not a rock
//FIXME: reorder actions?
zone.second->paintZoneTerrain (gen, ETerrainType::SUBTERRANEAN);
}
}
logGlobal->infoStream() << "Finished zone colouring";
}