1
0
mirror of https://github.com/vcmi/vcmi.git synced 2025-11-23 22:37:55 +02:00
Files
vcmi/client/renderSDL/SDL_Extensions.cpp
2025-07-31 01:06:00 +02:00

985 lines
26 KiB
C++

/*
* SDL_Extensions.cpp, part of VCMI engine
*
* Authors: listed in file AUTHORS in main folder
*
* License: GNU General Public License v2.0 or later
* Full text of license available in license.txt file, in main folder
*
*/
#include "StdInc.h"
#include "SDL_Extensions.h"
#include "SDL_PixelAccess.h"
#include "../GameEngine.h"
#include "../render/Graphics.h"
#include "../render/IImage.h"
#include "../render/IScreenHandler.h"
#include "../render/Colors.h"
#include "../CMT.h"
#include "../xBRZ/xbrz.h"
#include "../../lib/GameConstants.h"
#include <tbb/parallel_for.h>
#include <tbb/parallel_reduce.h>
#include <SDL_render.h>
#include <SDL_surface.h>
#include <SDL_version.h>
Rect CSDL_Ext::fromSDL(const SDL_Rect & rect)
{
return Rect(Point(rect.x, rect.y), Point(rect.w, rect.h));
}
SDL_Rect CSDL_Ext::toSDL(const Rect & rect)
{
SDL_Rect result;
result.x = rect.x;
result.y = rect.y;
result.w = rect.w;
result.h = rect.h;
return result;
}
ColorRGBA CSDL_Ext::fromSDL(const SDL_Color & color)
{
return { color.r, color.g, color.b, color.a };
}
SDL_Color CSDL_Ext::toSDL(const ColorRGBA & color)
{
SDL_Color result;
result.r = color.r;
result.g = color.g;
result.b = color.b;
result.a = color.a;
return result;
}
SDL_Surface * CSDL_Ext::newSurface(const Point & dimensions)
{
return newSurface(dimensions, nullptr);
}
SDL_Surface * CSDL_Ext::newSurface(const Point & dimensions, SDL_Surface * mod) //creates new surface, with flags/format same as in surface given
{
SDL_Surface * ret = nullptr;
if (mod != nullptr)
ret = SDL_CreateRGBSurface(0,dimensions.x,dimensions.y,mod->format->BitsPerPixel,mod->format->Rmask,mod->format->Gmask,mod->format->Bmask,mod->format->Amask);
else
ret = SDL_CreateRGBSurfaceWithFormat(0,dimensions.x,dimensions.y,32,SDL_PixelFormatEnum::SDL_PIXELFORMAT_ARGB8888);
if(ret == nullptr)
{
const char * error = SDL_GetError();
std::string messagePattern = "Failed to create SDL Surface of size %d x %d. Reason: %s";
std::string message = boost::str(boost::format(messagePattern) % dimensions.x % dimensions.y % error);
throw std::runtime_error(message);
}
if (mod && mod->format->palette)
{
assert(ret->format->palette);
assert(ret->format->palette->ncolors >= mod->format->palette->ncolors);
memcpy(ret->format->palette->colors, mod->format->palette->colors, mod->format->palette->ncolors * sizeof(SDL_Color));
}
return ret;
}
void CSDL_Ext::blitAt(SDL_Surface * src, int x, int y, SDL_Surface * dst)
{
CSDL_Ext::blitSurface(src, dst, Point(x, y));
}
void CSDL_Ext::blitAt(SDL_Surface * src, const Rect & pos, SDL_Surface * dst)
{
if (src)
blitAt(src,pos.x,pos.y,dst);
}
// Vertical flip
SDL_Surface * CSDL_Ext::verticalFlip(SDL_Surface * toRot)
{
SDL_Surface * ret = SDL_ConvertSurface(toRot, toRot->format, toRot->flags);
SDL_LockSurface(ret);
SDL_LockSurface(toRot);
const int bpp = ret->format->BytesPerPixel;
char * src = reinterpret_cast<char *>(toRot->pixels);
char * dst = reinterpret_cast<char *>(ret->pixels);
for(int i=0; i<ret->h; i++)
{
//FIXME: optimization bugged
// if (bpp == 1)
// {
// // much faster for 8-bit surfaces (majority of our data)
// std::reverse_copy(src, src + toRot->pitch, dst);
// }
// else
// {
char * srcPxl = src;
char * dstPxl = dst + ret->w * bpp;
for(int j=0; j<ret->w; j++)
{
dstPxl -= bpp;
std::copy(srcPxl, srcPxl + bpp, dstPxl);
srcPxl += bpp;
}
// }
src += toRot->pitch;
dst += ret->pitch;
}
SDL_UnlockSurface(ret);
SDL_UnlockSurface(toRot);
return ret;
}
// Horizontal flip
SDL_Surface * CSDL_Ext::horizontalFlip(SDL_Surface * toRot)
{
SDL_Surface * ret = SDL_ConvertSurface(toRot, toRot->format, toRot->flags);
SDL_LockSurface(ret);
SDL_LockSurface(toRot);
char * src = reinterpret_cast<char *>(toRot->pixels);
char * dst = reinterpret_cast<char *>(ret->pixels) + ret->h * ret->pitch;
for(int i=0; i<ret->h; i++)
{
dst -= ret->pitch;
std::copy(src, src + toRot->pitch, dst);
src += toRot->pitch;
}
SDL_UnlockSurface(ret);
SDL_UnlockSurface(toRot);
return ret;
}
uint32_t CSDL_Ext::getPixel(SDL_Surface *surface, const int & x, const int & y, bool colorByte)
{
int bpp = surface->format->BytesPerPixel;
/* Here p is the address to the pixel we want to retrieve */
uint8_t *p = (uint8_t *)surface->pixels + y * surface->pitch + x * bpp;
switch(bpp)
{
case 1:
if(colorByte)
return colorTouint32_t(surface->format->palette->colors+(*p));
else
return *p;
case 2:
return *(uint16_t *)p;
case 3:
return p[0] | p[1] << 8 | p[2] << 16;
case 4:
return *(uint32_t *)p;
default:
return 0; // shouldn't happen, but avoids warnings
}
}
template<int bpp, bool useAlpha>
int CSDL_Ext::blit8bppAlphaTo24bppT(const SDL_Surface * src, const Rect & srcRectInput, SDL_Surface * dst, const Point & dstPointInput, [[maybe_unused]] uint8_t alpha)
{
SDL_Rect srcRectInstance = CSDL_Ext::toSDL(srcRectInput);
SDL_Rect dstRectInstance = CSDL_Ext::toSDL(Rect(dstPointInput, srcRectInput.dimensions()));
SDL_Rect * srcRect =&srcRectInstance;
SDL_Rect * dstRect =&dstRectInstance;
/* Make sure the surfaces aren't locked */
if ( ! src || ! dst )
{
SDL_SetError("SDL_UpperBlit: passed a nullptr surface");
return -1;
}
if ( src->locked || dst->locked )
{
SDL_SetError("Surfaces must not be locked during blit");
return -1;
}
if (src->format->BytesPerPixel==1 && (bpp==3 || bpp==4 || bpp==2)) //everything's ok
{
SDL_Rect fulldst;
int srcx;
int srcy;
int w;
int h;
/* If the destination rectangle is nullptr, use the entire dest surface */
if ( dstRect == nullptr )
{
fulldst.x = fulldst.y = 0;
dstRect = &fulldst;
}
/* clip the source rectangle to the source surface */
if(srcRect)
{
int maxw;
int maxh;
srcx = srcRect->x;
w = srcRect->w;
if(srcx < 0)
{
w += srcx;
dstRect->x -= srcx;
srcx = 0;
}
maxw = src->w - srcx;
if(maxw < w)
w = maxw;
srcy = srcRect->y;
h = srcRect->h;
if(srcy < 0)
{
h += srcy;
dstRect->y -= srcy;
srcy = 0;
}
maxh = src->h - srcy;
if(maxh < h)
h = maxh;
}
else
{
srcx = srcy = 0;
w = src->w;
h = src->h;
}
/* clip the destination rectangle against the clip rectangle */
{
SDL_Rect *clip = &dst->clip_rect;
int dx;
int dy;
dx = clip->x - dstRect->x;
if(dx > 0)
{
w -= dx;
dstRect->x += dx;
srcx += dx;
}
dx = dstRect->x + w - clip->x - clip->w;
if(dx > 0)
w -= dx;
dy = clip->y - dstRect->y;
if(dy > 0)
{
h -= dy;
dstRect->y += dy;
srcy += dy;
}
dy = dstRect->y + h - clip->y - clip->h;
if(dy > 0)
h -= dy;
}
if(w > 0 && h > 0)
{
dstRect->w = w;
dstRect->h = h;
if(SDL_LockSurface(dst))
return -1; //if we cannot lock the surface
const SDL_Color *colors = src->format->palette->colors;
uint8_t *colory = (uint8_t*)src->pixels + srcy*src->pitch + srcx;
uint8_t *py = (uint8_t*)dst->pixels + dstRect->y*dst->pitch + dstRect->x*bpp;
for(int y=0; y<h; ++y, colory+=src->pitch, py+=dst->pitch)
{
uint8_t *color = colory;
uint8_t *p = py;
for(int x = 0; x < w; ++x)
{
const SDL_Color &tbc = colors[*color++]; //color to blit
if constexpr (useAlpha)
ColorPutter<bpp>::PutColorAlphaSwitch(p, tbc.r, tbc.g, tbc.b, int(alpha) * tbc.a / 255 );
else
ColorPutter<bpp>::PutColorAlphaSwitch(p, tbc.r, tbc.g, tbc.b, tbc.a);
p += bpp;
}
}
SDL_UnlockSurface(dst);
}
}
return 0;
}
int CSDL_Ext::blit8bppAlphaTo24bpp(const SDL_Surface * src, const Rect & srcRect, SDL_Surface * dst, const Point & dstPoint, uint8_t alpha)
{
if (alpha == SDL_ALPHA_OPAQUE)
{
switch(dst->format->BytesPerPixel)
{
case 3: return blit8bppAlphaTo24bppT<3, false>(src, srcRect, dst, dstPoint, alpha);
case 4: return blit8bppAlphaTo24bppT<4, false>(src, srcRect, dst, dstPoint, alpha);
}
}
else
{
switch(dst->format->BytesPerPixel)
{
case 3: return blit8bppAlphaTo24bppT<3, true>(src, srcRect, dst, dstPoint, alpha);
case 4: return blit8bppAlphaTo24bppT<4, true>(src, srcRect, dst, dstPoint, alpha);
}
}
logGlobal->error("%d bpp is not supported!", (int)dst->format->BitsPerPixel);
return -1;
}
uint32_t CSDL_Ext::colorTouint32_t(const SDL_Color * color)
{
uint32_t ret = 0;
ret+=color->a;
ret<<=8; //*=256
ret+=color->b;
ret<<=8; //*=256
ret+=color->g;
ret<<=8; //*=256
ret+=color->r;
return ret;
}
static void drawLineXDashed(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color)
{
double length(x2 - x1);
for(int x = x1; x <= x2; x++)
{
double f = (x - x1) / length;
int y = vstd::lerp(y1, y2, f);
if (std::abs(x - x1) % 5 != 4)
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur, x, y, color.r, color.g, color.b);
}
}
static void drawLineYDashed(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color)
{
double length(y2 - y1);
for(int y = y1; y <= y2; y++)
{
double f = (y - y1) / length;
int x = vstd::lerp(x1, x2, f);
if (std::abs(y - y1) % 5 != 4)
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur, x, y, color.r, color.g, color.b);
}
}
static void drawLineX(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color1, const SDL_Color & color2)
{
double length(x2 - x1);
for(int x = x1; x <= x2; x++)
{
double f = (x - x1) / length;
int y = vstd::lerp(y1, y2, f);
uint8_t r = vstd::lerp(color1.r, color2.r, f);
uint8_t g = vstd::lerp(color1.g, color2.g, f);
uint8_t b = vstd::lerp(color1.b, color2.b, f);
uint8_t a = vstd::lerp(color1.a, color2.a, f);
uint8_t *p = CSDL_Ext::getPxPtr(sur, x, y);
ColorPutter<4>::PutColor(p, r,g,b,a);
}
}
static void drawLineY(SDL_Surface * sur, int x1, int y1, int x2, int y2, const SDL_Color & color1, const SDL_Color & color2)
{
double length(y2 - y1);
for(int y = y1; y <= y2; y++)
{
double f = (y - y1) / length;
int x = vstd::lerp(x1, x2, f);
uint8_t r = vstd::lerp(color1.r, color2.r, f);
uint8_t g = vstd::lerp(color1.g, color2.g, f);
uint8_t b = vstd::lerp(color1.b, color2.b, f);
uint8_t a = vstd::lerp(color1.a, color2.a, f);
uint8_t *p = CSDL_Ext::getPxPtr(sur, x, y);
ColorPutter<4>::PutColor(p, r,g,b,a);
}
}
void CSDL_Ext::drawLine(SDL_Surface * sur, const Point & from, const Point & dest, const SDL_Color & color1, const SDL_Color & color2, int thickness)
{
//FIXME: duplicated code with drawLineDashed
int width = std::abs(from.x - dest.x);
int height = std::abs(from.y - dest.y);
if(width == 0 && height == 0)
{
uint8_t * p = CSDL_Ext::getPxPtr(sur, from.x, from.y);
ColorPutter<4>::PutColorAlpha(p, color1);
return;
}
for(int i = 0; i < thickness; ++i)
{
if(width > height)
{
if(from.x < dest.x)
drawLineX(sur, from.x, from.y + i, dest.x, dest.y + i, color1, color2);
else
drawLineX(sur, dest.x, dest.y + i, from.x, from.y + i, color2, color1);
}
else
{
if(from.y < dest.y)
drawLineY(sur, from.x + i, from.y, dest.x + i, dest.y, color1, color2);
else
drawLineY(sur, dest.x + i, dest.y, from.x + i, from.y, color2, color1);
}
}
}
void CSDL_Ext::drawLineDashed(SDL_Surface * sur, const Point & from, const Point & dest, const SDL_Color & color)
{
//FIXME: duplicated code with drawLine
int width = std::abs(from.x - dest.x);
int height = std::abs(from.y - dest.y);
if ( width == 0 && height == 0)
{
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur, from.x, from.y, color.r, color.g, color.b);
return;
}
if (width > height)
{
if ( from.x < dest.x)
drawLineXDashed(sur, from.x, from.y, dest.x, dest.y, color);
else
drawLineXDashed(sur, dest.x, dest.y, from.x, from.y, color);
}
else
{
if ( from.y < dest.y)
drawLineYDashed(sur, from.x, from.y, dest.x, dest.y, color);
else
drawLineYDashed(sur, dest.x, dest.y, from.x, from.y, color);
}
}
void CSDL_Ext::drawBorder(SDL_Surface * sur, int x, int y, int w, int h, const SDL_Color &color, int depth)
{
depth = std::max(1, depth);
for(int depthIterator = 0; depthIterator < depth; depthIterator++)
{
for(int i = 0; i < w; i++)
{
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+i,y+depthIterator,color.r,color.g,color.b);
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+i,y+h-1-depthIterator,color.r,color.g,color.b);
}
for(int i = 0; i < h; i++)
{
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+depthIterator,y+i,color.r,color.g,color.b);
CSDL_Ext::putPixelWithoutRefreshIfInSurf(sur,x+w-1-depthIterator,y+i,color.r,color.g,color.b);
}
}
}
void CSDL_Ext::drawBorder( SDL_Surface * sur, const Rect &r, const SDL_Color &color, int depth)
{
drawBorder(sur, r.x, r.y, r.w, r.h, color, depth);
}
uint8_t * CSDL_Ext::getPxPtr(const SDL_Surface * const &srf, const int x, const int y)
{
return (uint8_t *)srf->pixels + y * srf->pitch + x * srf->format->BytesPerPixel;
}
void CSDL_Ext::putPixelWithoutRefresh(SDL_Surface *ekran, const int & x, const int & y, const uint8_t & R, const uint8_t & G, const uint8_t & B, uint8_t A)
{
uint8_t *p = getPxPtr(ekran, x, y);
switch(ekran->format->BytesPerPixel)
{
case 3:
ColorPutter<3>::PutColor(p, R, G, B);
Channels::px<3>::a.set(p, A); break;
case 4:
ColorPutter<4>::PutColor(p, R, G, B);
Channels::px<4>::a.set(p, A); break;
}
}
void CSDL_Ext::putPixelWithoutRefreshIfInSurf(SDL_Surface *ekran, const int & x, const int & y, const uint8_t & R, const uint8_t & G, const uint8_t & B, uint8_t A)
{
const SDL_Rect & rect = ekran->clip_rect;
if(x >= rect.x && x < rect.w + rect.x
&& y >= rect.y && y < rect.h + rect.y)
CSDL_Ext::putPixelWithoutRefresh(ekran, x, y, R, G, B, A);
}
template<typename Functor>
void loopOverPixel(SDL_Surface * surf, const Rect & rect, Functor functor)
{
uint8_t * pixels = static_cast<uint8_t*>(surf->pixels);
tbb::parallel_for(tbb::blocked_range<size_t>(rect.top(), rect.bottom()), [&](const tbb::blocked_range<size_t>& r)
{
for(int yp = r.begin(); yp != r.end(); ++yp)
{
uint8_t * pixel_from = pixels + yp * surf->pitch + rect.left() * surf->format->BytesPerPixel;
uint8_t * pixel_dest = pixels + yp * surf->pitch + rect.right() * surf->format->BytesPerPixel;
for (uint8_t * pixel = pixel_from; pixel < pixel_dest; pixel += surf->format->BytesPerPixel)
{
int r = Channels::px<4>::r.get(pixel);
int g = Channels::px<4>::g.get(pixel);
int b = Channels::px<4>::b.get(pixel);
functor(r, g, b);
Channels::px<4>::r.set(pixel, r);
Channels::px<4>::g.set(pixel, g);
Channels::px<4>::b.set(pixel, b);
}
}
});
}
void CSDL_Ext::convertToGrayscale(SDL_Surface * surf, const Rect & rect )
{
loopOverPixel(surf, rect, [](int &r, int &g, int &b){
int gray = static_cast<int>(0.299 * r + 0.587 * g + 0.114 * b);
r = gray;
g = gray;
b = gray;
});
}
void CSDL_Ext::convertToH2Scheme(SDL_Surface * surf, const Rect & rect )
{
loopOverPixel(surf, rect, [](int &r, int &g, int &b){
double gray = 0.3 * r + 0.59 * g + 0.11 * b;
double factor = 2.0;
//fast approximation instead of colorspace conversion
r = static_cast<int>(gray + (r - gray) * factor);
g = static_cast<int>(gray + (g - gray) * factor);
b = static_cast<int>(gray + (b - gray) * factor);
r = std::clamp(r, 0, 255);
g = std::clamp(g, 0, 255);
b = std::clamp(b, 0, 255);
});
}
void CSDL_Ext::blitSurface(SDL_Surface * src, const Rect & srcRectInput, SDL_Surface * dst, const Point & dstPoint)
{
SDL_Rect srcRect = CSDL_Ext::toSDL(srcRectInput);
SDL_Rect dstRect = CSDL_Ext::toSDL(Rect(dstPoint, srcRectInput.dimensions()));
int result = SDL_UpperBlit(src, &srcRect, dst, &dstRect);
if (result != 0)
logGlobal->error("SDL_UpperBlit failed! %s", SDL_GetError());
}
void CSDL_Ext::blitSurface(SDL_Surface * src, SDL_Surface * dst, const Point & dest)
{
Rect allSurface( Point(0,0), Point(src->w, src->h));
blitSurface(src, allSurface, dst, dest);
}
void CSDL_Ext::fillSurface( SDL_Surface *dst, const SDL_Color & color )
{
Rect allSurface( Point(0,0), Point(dst->w, dst->h));
fillRect(dst, allSurface, color);
}
void CSDL_Ext::fillRect( SDL_Surface *dst, const Rect & dstrect, const SDL_Color & color)
{
SDL_Rect newRect = CSDL_Ext::toSDL(dstrect);
uint32_t sdlColor = SDL_MapRGBA(dst->format, color.r, color.g, color.b, color.a);
SDL_FillRect(dst, &newRect, sdlColor);
}
void CSDL_Ext::fillRectBlended( SDL_Surface *dst, const Rect & dstrect, const SDL_Color & color)
{
SDL_Rect newRect = CSDL_Ext::toSDL(dstrect);
uint32_t sdlColor = SDL_MapRGBA(dst->format, color.r, color.g, color.b, color.a);
SDL_Surface * tmp = SDL_CreateRGBSurface(0, newRect.w, newRect.h, dst->format->BitsPerPixel, dst->format->Rmask, dst->format->Gmask, dst->format->Bmask, dst->format->Amask);
SDL_FillRect(tmp, nullptr, sdlColor);
SDL_BlitSurface(tmp, nullptr, dst, &newRect);
SDL_FreeSurface(tmp);
}
STRONG_INLINE static uint32_t mapColor(SDL_Surface * surface, SDL_Color color)
{
return SDL_MapRGBA(surface->format, color.r, color.g, color.b, color.a);
}
void CSDL_Ext::setColorKey(SDL_Surface * surface, SDL_Color color)
{
uint32_t key = mapColor(surface,color);
SDL_SetColorKey(surface, SDL_TRUE, key);
}
void CSDL_Ext::setDefaultColorKey(SDL_Surface * surface)
{
setColorKey(surface, toSDL(Colors::DEFAULT_KEY_COLOR));
}
void CSDL_Ext::setDefaultColorKeyPresize(SDL_Surface * surface)
{
uint32_t key = mapColor(surface, toSDL(Colors::DEFAULT_KEY_COLOR));
auto & color = surface->format->palette->colors[key];
// set color key only if exactly such color was found
if (color.r == Colors::DEFAULT_KEY_COLOR.r && color.g == Colors::DEFAULT_KEY_COLOR.g && color.b == Colors::DEFAULT_KEY_COLOR.b)
{
SDL_SetColorKey(surface, SDL_TRUE, key);
color.a = SDL_ALPHA_TRANSPARENT;
}
}
void CSDL_Ext::setClipRect(SDL_Surface * src, const Rect & other)
{
SDL_Rect rect = CSDL_Ext::toSDL(other);
SDL_SetClipRect(src, &rect);
}
void CSDL_Ext::getClipRect(SDL_Surface * src, Rect & other)
{
SDL_Rect rect;
SDL_GetClipRect(src, &rect);
other = CSDL_Ext::fromSDL(rect);
}
SDL_Surface* CSDL_Ext::drawOutline(SDL_Surface* sourceSurface, const SDL_Color& color, int thickness)
{
if(thickness < 1)
return nullptr;
SDL_Surface* destSurface = newSurface(Point(sourceSurface->w, sourceSurface->h));
if(SDL_MUSTLOCK(sourceSurface)) SDL_LockSurface(sourceSurface);
if(SDL_MUSTLOCK(destSurface)) SDL_LockSurface(destSurface);
int width = sourceSurface->w;
int height = sourceSurface->h;
// Helper lambda to get alpha
auto getAlpha = [&](int x, int y) -> Uint8 {
if (x < 0 || x >= width || y < 0 || y >= height)
return 0;
Uint32 pixel = *((Uint32*)sourceSurface->pixels + y * width + x);
Uint8 r;
Uint8 g;
Uint8 b;
Uint8 a;
SDL_GetRGBA(pixel, sourceSurface->format, &r, &g, &b, &a);
return a;
};
tbb::parallel_for(tbb::blocked_range<size_t>(0, height), [&](const tbb::blocked_range<size_t>& r)
{
for (int y = r.begin(); y != r.end(); ++y)
{
for (int x = 0; x < width; x++)
{
Uint8 alpha = getAlpha(x, y);
if (alpha != 0)
continue; // Skip opaque or semi-transparent pixels
Uint8 maxNearbyAlpha = 0;
for (int dy = -thickness; dy <= thickness; ++dy)
{
for (int dx = -thickness; dx <= thickness; ++dx)
{
if (dx * dx + dy * dy > thickness * thickness)
continue; // circular area
int nx = x + dx;
int ny = y + dy;
if (nx < 0 || ny < 0 || nx >= width || ny >= height)
continue;
Uint8 neighborAlpha = getAlpha(nx, ny);
if (neighborAlpha > maxNearbyAlpha)
maxNearbyAlpha = neighborAlpha;
}
}
if (maxNearbyAlpha > 0)
{
Uint8 finalAlpha = maxNearbyAlpha - alpha; // alpha is 0 here, so effectively maxNearbyAlpha
Uint32 newPixel = SDL_MapRGBA(destSurface->format, color.r, color.g, color.b, finalAlpha);
*((Uint32*)destSurface->pixels + y * width + x) = newPixel;
}
}
}
});
if(SDL_MUSTLOCK(sourceSurface)) SDL_UnlockSurface(sourceSurface);
if(SDL_MUSTLOCK(destSurface)) SDL_UnlockSurface(destSurface);
return destSurface;
}
void applyAffineTransform(SDL_Surface* src, SDL_Surface* dst, double a, double b, double c, double d, double tx, double ty)
{
// Check if the transform is purely scaling (and optionally translation)
bool isPureScaling = vstd::isAlmostZero(b) && vstd::isAlmostZero(c);
if (isPureScaling)
{
// Calculate target dimensions
int scaledW = static_cast<int>(src->w * a);
int scaledH = static_cast<int>(src->h * d);
SDL_Rect srcRect = { 0, 0, src->w, src->h };
SDL_Rect dstRect = { static_cast<int>(tx), static_cast<int>(ty), scaledW, scaledH };
// Convert surfaces to same format if needed
if (src->format->format != dst->format->format)
{
SDL_Surface* converted = SDL_ConvertSurface(src, dst->format, 0);
if (!converted)
throw std::runtime_error("SDL_ConvertSurface failed!");
SDL_BlitScaled(converted, &srcRect, dst, &dstRect);
SDL_FreeSurface(converted);
}
else
SDL_BlitScaled(src, &srcRect, dst, &dstRect);
return;
}
// Lock surfaces for direct pixel access
if (SDL_MUSTLOCK(src)) SDL_LockSurface(src);
if (SDL_MUSTLOCK(dst)) SDL_LockSurface(dst);
// Calculate inverse matrix M_inv for mapping dst -> src
double det = a * d - b * c;
if (vstd::isAlmostZero(det))
throw std::runtime_error("Singular transform matrix!");
double invDet = 1.0 / det;
double ia = d * invDet;
double ib = -b * invDet;
double ic = -c * invDet;
double id = a * invDet;
auto srcPixels = (Uint32*)src->pixels;
auto dstPixels = (Uint32*)dst->pixels;
tbb::parallel_for(tbb::blocked_range<size_t>(0, dst->h), [&](const tbb::blocked_range<size_t>& r)
{
// For each pixel in the destination image
for(int y = r.begin(); y != r.end(); ++y)
{
for(int x = 0; x < dst->w; x++)
{
// Map destination pixel (x,y) back to source coordinates (srcX, srcY)
double srcX = ia * (x - tx) + ib * (y - ty);
double srcY = ic * (x - tx) + id * (y - ty);
// Nearest neighbor sampling (can be improved to bilinear)
auto srcXi = static_cast<int>(round(srcX));
auto srcYi = static_cast<int>(round(srcY));
// Check bounds
if (srcXi >= 0 && srcXi < src->w && srcYi >= 0 && srcYi < src->h)
{
Uint32 pixel = srcPixels[srcYi * src->w + srcXi];
dstPixels[y * dst->w + x] = pixel;
}
else
dstPixels[y * dst->w + x] = 0x00000000; // transparent black
}
}
});
if (SDL_MUSTLOCK(src)) SDL_UnlockSurface(src);
if (SDL_MUSTLOCK(dst)) SDL_UnlockSurface(dst);
}
int getLowestNonTransparentY(SDL_Surface* surface)
{
if (SDL_MUSTLOCK(surface)) SDL_LockSurface(surface);
const int w = surface->w;
const int h = surface->h;
const int bpp = surface->format->BytesPerPixel;
auto pixels = static_cast<Uint8*>(surface->pixels);
// Use parallel_reduce to find the max y with non-transparent pixel
int lowestY = tbb::parallel_reduce(
tbb::blocked_range<int>(0, h),
-1, // initial lowestY = -1 (fully transparent)
[&](const tbb::blocked_range<int>& r, int localMaxY) -> int
{
for (int y = r.begin(); y != r.end(); ++y)
{
Uint8* row = pixels + y * surface->pitch;
for (int x = 0; x < w; ++x)
{
Uint32 pixel = *(Uint32*)(row + x * bpp);
Uint8 a = (pixel >> 24) & 0xFF; // Fast path for ARGB8888
if (a > 0)
{
localMaxY = std::max(localMaxY, y);
break; // no need to scan rest of row
}
}
}
return localMaxY;
},
[](int a, int b) -> int
{
return std::max(a, b);
}
);
if (SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface);
return lowestY;
}
void fillAlphaPixelWithRGBA(SDL_Surface* surface, Uint8 r, Uint8 g, Uint8 b, Uint8 a)
{
if (SDL_MUSTLOCK(surface)) SDL_LockSurface(surface);
auto pixels = (Uint32*)surface->pixels;
int pixelCount = surface->w * surface->h;
tbb::parallel_for(tbb::blocked_range<size_t>(0, pixelCount), [&](const tbb::blocked_range<size_t>& range)
{
for(int i = range.begin(); i != range.end(); ++i)
{
Uint32 pixel = pixels[i];
Uint8 pr;
Uint8 pg;
Uint8 pb;
Uint8 pa;
// Extract existing RGBA components using SDL_GetRGBA
SDL_GetRGBA(pixel, surface->format, &pr, &pg, &pb, &pa);
Uint32 newPixel = SDL_MapRGBA(surface->format, r, g, b, a);
if(pa < 128)
newPixel = SDL_MapRGBA(surface->format, 0, 0, 0, 0);
pixels[i] = newPixel;
}
});
if (SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface);
}
void boxBlur(SDL_Surface* surface)
{
if (SDL_MUSTLOCK(surface)) SDL_LockSurface(surface);
int width = surface->w;
int height = surface->h;
int pixelCount = width * height;
Uint32* pixels = static_cast<Uint32*>(surface->pixels);
std::vector<Uint32> temp(pixelCount);
tbb::parallel_for(0, height, [&](int y)
{
for (int x = 0; x < width; ++x)
{
int sumR = 0;
int sumG = 0;
int sumB = 0;
int sumA = 0;
int count = 0;
for (int ky = -1; ky <= 1; ++ky)
{
int ny = std::clamp(y + ky, 0, height - 1);
for (int kx = -1; kx <= 1; ++kx)
{
int nx = std::clamp(x + kx, 0, width - 1);
Uint32 pixel = pixels[ny * width + nx];
sumA += (pixel >> 24) & 0xFF;
sumR += (pixel >> 16) & 0xFF;
sumG += (pixel >> 8) & 0xFF;
sumB += (pixel >> 0) & 0xFF;
++count;
}
}
Uint8 a = sumA / count;
Uint8 r = sumR / count;
Uint8 g = sumG / count;
Uint8 b = sumB / count;
temp[y * width + x] = (a << 24) | (r << 16) | (g << 8) | b;
}
});
std::copy(temp.begin(), temp.end(), pixels);
if (SDL_MUSTLOCK(surface)) SDL_UnlockSurface(surface);
}
SDL_Surface * CSDL_Ext::drawShadow(SDL_Surface * sourceSurface, bool doSheer)
{
SDL_Surface *destSurface = newSurface(Point(sourceSurface->w, sourceSurface->h));
double shearX = doSheer ? 0.5 : 0.0;
double scaleY = doSheer ? 0.5 : 0.25;
int lowestSource = getLowestNonTransparentY(sourceSurface);
int lowestTransformed = lowestSource * scaleY;
// Parameters for applyAffineTransform
double a = 1.0;
double b = shearX;
double c = 0.0;
double d = scaleY;
double tx = -shearX * lowestSource;
double ty = lowestSource - lowestTransformed;
applyAffineTransform(sourceSurface, destSurface, a, b, c, d, tx, ty);
fillAlphaPixelWithRGBA(destSurface, 0, 0, 0, 128);
boxBlur(destSurface);
return destSurface;
}